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Abstract

We propose a method for recognizing such event causalities
as “smoke cigarettes” → “die of lung cancer” using back-
ground knowledge taken from web texts as well as original
sentences from which candidates for the causalities were ex-
tracted. We retrieve texts related to our event causality candi-
dates from four billion web pages by three distinct methods,
including a why-question answering system, and feed them
to our multi-column convolutional neural networks. This al-
lows us to identify the useful background knowledge scat-
tered in web texts and effectively exploit the identified knowl-
edge to recognize event causalities. We empirically show that
the combination of our neural network architecture and back-
ground knowledge significantly improves average precision,
while the previous state-of-the-art method gains just a small
benefit from such background knowledge.

1 Introduction

Event causality, such as “smoke cigarettes” → “die of lung
cancer,” is critical knowledge for many NLP applications,
including machine reading and comprehension (Richard-
son, Burges, and Renshaw 2013; Berant et al. 2014), pro-
cess extraction (Scaria et al. 2013), and future event/scenario
prediction (Radinsky, Davidovich, and Markovitch 2012;
Hashimoto et al. 2014). However, the state-of-the-art meth-
ods for event causality recognition still suffer from low pre-
cision and coverage because event causality is expressed in
a wide range of forms that often lack explicit clues indicat-
ing the existence of event causality. Consider the following
sentences:

1. Typhoons have strengthened because global warming has
worsened.

2. Global warming worsened, and typhoons strengthened.

The first sentence includes “because,” which explic-
itly indicates the event causality between effect “typhoons
strengthen” and cause “global warming worsens.” On the
other hand, the second sentence has no such clues. Nonethe-
less, many people would infer that this sentence expresses
the same event causality as that in the first sentence. This is
possible because people have background knowledge about
“typhoons” and “global warming.”
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keizaikankyou-ga akkasuru → shijoukinri-ga gerakusuru
(“economic environment deteriorates” → “markets decline”)

bukka-wa gerakusuru → defure-ni naru
(“prices of commodities decline” → “become deflation”)

kubi-ni naru → sitsugyouhoken-o morau
(“get fired” → “get unemployment insurance”)

chiyuryoku-o takameru → atopii-o kokufukusu
(“enhance healing power” → “defeat atopic syndrome”)

bitamin-ga fusokusuru → koukakuen-ni naru
(“lack vitamin” → “cause angular cheilitis”)

Table 1: Japanese examples of event causalities successfully
recognized by our proposed method

This work develops a method that recognizes event
causalities from sentences regardless whether they have
such explicit clues as “because.” The novelty of this work
lies in that we exploit a wide range of background knowledge
(written in web texts) using convolutional neural networks.
In other words, given an event causality candidate, our neu-
ral network analyzes descriptions in web texts that are some-
how related to the given causality candidate and judges
whether the candidate is a proper causality. The web texts
are retrieved by three distinct methods from our 4-billion-
page web archive. We target such event causalities as “global
warming worsens” → “typhoons strengthen,” in which each
cause phrase (“global warming worsens”) and effect phrase
(“typhoons strengthen”) consists of a noun (“global warm-
ing”) and a verb (“worsens”). Our experimental results
showed that our neural network-based method outperforms
the state-of-the-art method based on SVMs (Hashimoto et
al. 2014) and its variants augmented with the background
knowledge sources introduced in this work. This suggests
that our neural network architecture is more suitable for
dealing with background knowledge. Table 1 shows ex-
amples of event causalities successfully recognized by our
method but not by Hashimoto et al.’s method.

As one method to extract background knowledge from
web archives, we use a why-question answering (why-QA)
system following (Oh et al. 2013) that retrieves seven-
sentence passages as answers to a given why-type ques-
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Figure 1: Our MCNN architecture

tion. We automatically generate a question from the ef-
fect part of an event causality candidate and extract back-
ground knowledge from its answers. For recognizing the
event causality candidate, “global warming worsens” → “ty-
phoons strengthen” as a proper causality, our method gen-
erates the question, “Why do typhoons strengthen?”, and
retrieves such answers as one that includes the following
two sentences: “Typhoons are becoming more powerful than
before. This is probably an effect of recent global warm-
ing.” Useful background knowledge here might be the causal
relation between “Typhoons are becoming more powerful”
and “global warming,” which somehow resembles the event
causality candidate. A problem is that the why-QA system’s
answers have a wide variety of forms, and the recognition
of such relations and their similarity to our target causality
candidates is not a trivial task. Furthermore, not all of the
answers necessarily express any useful background knowl-
edge. Even proper answers to a given question may not pro-
vide any useful knowledge (e.g., “The paper reported that
typhoons are becoming powerful due to high sea tempera-
ture. Another paper addressed the issues caused by global
warming.”). Extracting useful knowledge from such noisy
texts itself is challenging.

To perform this difficult task, we use multi-column con-
volutional neural networks (MCNNs) (Ciresan, Meier, and
Schmidhuber 2012), which are a variant of convolutional
neural networks (Lecun et al. 1998) with several indepen-
dent columns. Each column has its own convolutional and
pooling layers, and the outputs of all the columns are com-
bined in the last layer to provide a final prediction (Fig. 1).
In our architecture, we use five columns to process the event
causality candidates and their surrounding contexts in the
original sentence and three other columns to deal with web
texts retrieved by different methods.

Our work was inspired by the research of Hashimoto et
al. (2014). They improved the performance of event causal-
ity recognition using a carefully selected set of short binary
patterns that connect pairs of nouns, like “A causes B” and
“A prevents B”. For instance, to judge whether causality
“smoke cigarettes” → “die of lung cancer” is proper, they
checked whether “cigarettes” and “lung cancer” fill any of
the binary patterns in a web archive. If such patterns ex-

ist, they are encoded in the features of their SVM classifier.
Note that the set of short binary patterns they prepared in-
cludes not only CAUSE (“A causes B”) relations but also
such relations as MATERIAL (“A is made of B”) and USE
(“A is used for B”), which are not directly related to causal-
ity. They showed that such patterns actually improved the
performance, suggesting that a wide range of texts can be
effective clues for judging causality.

We extend Hashimoto et al.’s method by introducing MC-
NNs to effectively use a wider range of background knowl-
edge expressed in a wider range of web texts. By “back-
ground knowledge,” we refer to any type of information that
is useful to generally recognize event causalities. Our as-
sumption is that a wide range of dependency paths between
nouns can be used as background knowledge, not just the
short binary patterns that Hashimoto et al. proposed to ex-
ploit. In this work, we did not start from pre-specified pat-
terns, but designed our method so that it can automatically
learn/identify a wide range of paths as background knowl-
edge in extra texts, such as why-QA system’s answers. Our
method is given those paths even if they are long and com-
plex. We also even extend the notion of dependency paths
to inter-sentential ones so that they can capture the inter-
sentential relations between two nouns that appear in con-
secutive sentences.

In addition to the above why-QA system’s answers, we
tried the following two types of texts as sources of back-
ground knowledge:

A. A wider range of short binary patterns than those used in
Hashimoto et al. (2014). Contrary to their work, we did
not pose any semantic restrictions on the patterns.

B. One or two (consecutive) sentences that include such clue
terms for causality as “reason” and “because” and the two
nouns in a target event causality, like “Recently powerful
typhoons have been reported. One reason is global warm-
ing.” Note that we do not use any sophisticated mech-
anism such as a why-QA system to retrieve these sen-
tences. We just retrieve all the texts including the clue
terms and the nouns.
Although our target language is Japanese, we believe that

our method is extendable to other languages without much
cost. Note that we use English examples for the sake of read-
ability throughout this paper.

2 Related work

For event causality recognition, researchers have exploited
various clues, including discourse connectives and word
sharing between cause and effect (Torisawa 2006; Abe, Inui,
and Matsumoto 2008; Riaz and Girju 2010). Do, Chan, and
Roth (2011) proposed cause-effect association (CEA) statis-
tics. Radinsky, Davidovich, and Markovitch (2012) used ex-
isting ontologies, such as YAGO (Suchanek, Kasneci, and
Weikum 2007). Hashimoto et al. (2012) introduced a new se-
mantic orientation of predicates, and Hashimoto et al. (2014)
exploited a handcrafted set of short binary patterns as back-
ground knowledge, as mentioned in the Introduction.

Following the seminal work of Collobert et al. (2011),
convolutional neural networks (CNNs) have been applied
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to such NLP tasks as document classification (Kalchbren-
ner, Grefenstette, and Blunsom 2014; Kim 2014; Johnson
and Zhang 2015), paraphrase (Yin and Schütze 2015),
and relation extraction/classification (dos Santos, Xiang, and
Zhou 2015; Nguyen and Grishman 2015). Multi-column
CNNs (MCNNs) were first proposed by Ciresan, Meier,
and Schmidhuber (2012) for image classification. In NLP,
Dong et al. (2015) used MCNNs to capture the multi-
ple aspects of candidate answers for question-answering.
Zeng et al. (2015) proposed an analogue of MCNNs called
a piecewise max-pooling network for relation extraction.
Our MCNN architecture was inspired by Siamese architec-
ture (Chopra, Hadsell, and LeCun 2005), which we extend
to a multi-column network and replace its similarity mea-
sure with a softmax function at its top. A similar MCNN
architecture was successfully applied to zero-anaphora res-
olution (Iida et al. 2016).

Zeng et al. (2015) also tried to exploit external knowledge
in the convolutional neural network framework. They ob-
tained labeled training data by applying distant supervision
(Mintz et al. 2009) to external knowledge, while our frame-
work does not generate new labeled training samples. Since
our additional texts are quite noisy, generating labeled sam-
ples from them would be difficult. Here we just attach those
additional texts to existing labeled samples and use MCNN
to identify useful background knowledge from such noisy
web texts. Oh et al. (2017) proposed the most similar frame-
work to ours; they used a variant of a multi-column convolu-
tional neural network for why-QA and gave additional texts
to columns as background knowledge.

Note that, in the previous attempts to apply MCNNs to
NLP, columns were used to deal with several distinct word
embeddings or distinct text fragments taken from the input
texts. Our contribution is a novel way to use such MCNNs
to deal with extra texts that work as a source of background
knowledge for the target task.

3 Proposed method

3.1 Task definition and primary input

The primary input of our method is such event causality
candidates as “smoke cigarettes” → “die of lung cancer,”
and our task is to judge whether they express a proper event
causality. We regard causality candidate A → B proper iff
“if A happens, the probability of B increases.” In the can-
didates, the cause phrase (“smoke cigarettes”) and the ef-
fect phrase (“die of lung cancer”) consist of a predicate
with argument position X (template, hereafter) like “smoke
X” and a noun like “cigarettes” that fills X . The pred-
icate of the cause phrase must also syntactically depend
on the effect phrase, possibly through such connectives as
“and” or “since” in the original sentence. The format of
the event causality candidates is the same as Hashimoto et
al. (2014). We chose this compact format because it con-
tains the essence of event causalities and is easy to use in ap-
plications (e.g., future event/scenario prediction (Radinsky,
Davidovich, and Markovitch 2012; Hashimoto et al. 2014)).

3.2 Method overview

In our work, the event causality candidates are fed to one
of the columns in our MCNNs, as shown in Fig. 1. More
precisely, the word vectors of the cause and effect parts are
given to the column. Text fragments surrounding the causal-
ity candidate in its original sentence are given as contexts to
the other four columns. Following the SVM-based method
in Hashimoto et al. (2014), we use the following text frag-
ments as context: (a) the text fragments between the noun
and the predicate of a cause phrase, (b) the fragments be-
tween the noun and the predicate of an effect phrase, (c) the
fragments between the cause noun and the effect predicate,
and (d) all the words after the effect predicate. Each of the
four fragments is given to a distinct column as the sequence
of the word vectors. We use a total of five columns to treat
the causality candidates and their contexts. In addition to the
above inputs, we use extra texts as source of background
knowledge as described in the next section.

3.3 Sources of background knowledge

We use three types of additional texts retrieved from our 4-
billion-page web archive as background knowledge along
with an event causality candidate and its contexts. In the fol-
lowing, we explain all of the types of text and how to feed
them to our MCNNs.

Short binary patterns As a source of background knowl-
edge for event causality recognition, Hashimoto et al. (2014)
used a set of 395,578 carefully selected binary patterns, such
as “A causes B” and “A prevents B,” which are somehow
related to event causalities.1 The patterns here are depen-
dency paths that connect two nouns, which are replaced with
variables A and B.

We also use such binary patterns as background knowl-
edge. Hashimoto et al. (2014) selected their patterns from
a set of all the patterns in which variables A and B are
filled with ten or more distinct noun pairs in 600 million web
pages. This condition filters out long and uncommon binary
patterns and only relatively short patterns remain. Here, we
do not conduct such selection; instead we use all the patterns
that survived the above ten distinct noun-pair filters. Given
two nouns, the number of retrieved patterns varies from one
to several hundred. Then we heuristically select a maximum
of 15 binary patterns that are most frequently observed with
the noun pair, concatenate them with a delimiter, “|” (e.g.,
“A causes B | A prevents B | . . .”), and give the result-
ing word sequence to the sixth column in our MCNNs. The
number (15) of patterns given to MCNNs was determined by
preliminary experiments on our development set, in which
we tried various numbers up to 250 without observing any
significant changes in performance. Since a larger number
extends the training time, we chose 15.

1Hashimoto et al. (2014) prepared the binary patterns in the
following two ways: (1) by manually selecting a small number of
seed patterns and expanding them by a pattern entailment database
constructed by machine learning (Kloetzer et al. 2013; 2015) and
(2) by adding additional predicate arguments to the unary patterns
in an existing semantic predicate lexicon (Hashimoto et al. 2012;
Sano et al. 2014).
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Answers from a why-QA system As another source of
background knowledge, we use the answers of a why-QA
system, which is the implementation of Oh et al. (2013). The
system retrieves passages, all of which are seven consecutive
sentences, from four billion web pages using the terms in a
given why-question and ranks the retrieved passages using a
supervised ranker (SVM). The system respectively achieved
accuracies of 59.3%, 83.3%, and 90.3% for the Top 1, 3, and
5 answers on our test data.2

In our event causality recognition, we automatically gen-
erate a question from the effect part of a given event
causality candidate by basically attaching “why” (“naze” in
Japanese) to its effect part. Then we retrieve the top 200 an-
swers ranked by the why-QA system and keep those answers
that contain the two nouns in the target causality candidate.

Since helpful background knowledge is often expressed
as relations between the two nouns of the causality candi-
date, we extracted the patterns that are likely to represent
such relations from the answers as follows. If the two nouns
in a causality candidate appear in a single sentence, we iden-
tify the dependency paths from the individual nouns to the
root of the sentence and combine them, preserving their
word order and retaining the clue terms if they exist, regard-
less whether they are in the dependency paths. For instance,
for the question, “Why (do people) die of lung cancer?”,3
one of the answers included the sentence, “Many people
cannot stop smoking cigarettes, and, as a result, they suffer
from lung cancer.” From this sentence, the pattern “cannot
stop A and result suffer from B” was extracted, where A
and B are the variables for the nouns in the cause and ef-
fect parts and “result” is a clue term. If two nouns appear
in consecutive sentences, we create an artificial dependency
link from the root of the first sentence to that of the second
sentence and extract the patterns assuming the two sentences
are just one. For example, if the answer includes such sen-
tences as “Cigarettes are harmful. They cause lung cancer,
for instance,” the resulting pattern is “A is harmful causes
B” (See Fig. 2 for a Japanese example). Just like the short
binary patterns, we concatenated the 15 patterns, which were
extracted from the most highly ranked answers, with delim-
iters, and gave them to the seventh column in our MCNNs.

Note that the patterns extracted in this way are quite long
and can give useful information that cannot be covered by
short binary patterns.

One or two consecutive sentences with clue terms As a
third type of knowledge source, we used sentences retrieved
from four billion web pages by searching for two nouns in
an event causality candidate and such clue terms as “be-
cause.”4 More precisely, we retrieved one or two consecutive
sentences in which the nouns and one of the clue terms ap-

2The system was trained using 65,738 question-answer pairs for
6,109 questions. The evaluation was done against our test data that
consisted of 3,438 question-answer pairs for 400 questions. Three
human annotators annotated our data, and the final decision was
made by a majority vote. The Fleiss’ kappa was substantial (κ =
0.776).

3In Japanese, the subjects (e.g., people) are commonly omitted.
4We used 65 clue terms that were prepared manually.
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Figure 2: Example of pattern extraction from two consecu-
tive sentences
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Figure 3: Column of our MCNNs

peared. Then the patterns were extracted from the sentences
by the same method as the one used for the answers from
our why-QA system. We estimated the frequencies of each
pattern in all the patterns extracted for our event causality
training data and selected the 15 most frequent patterns for
an event causality candidate. If the frequency is identical,
shorter patterns are preferred. The selected patterns are con-
catenated with a delimiter and fed to the eighth column in
our MCNNs.

3.4 MCNN architecture

Our MCNNs consist of eight columns, one of which is
shown in Fig. 3. We represent each word in text fragment t
by d-dimensional embedding vector xi and t by matrix T =
[x1, . . . ,x|t|].5 T is then wired to a set of M feature maps
where each feature map is a vector. Each element O in the
feature map (i.e., a neuron) is computed by a filter denoted
by fj (1 ≤ j ≤ M ) from N -gram word sequences in t for
some fixed integer N , as O = ReLU(Wfj •xi:i+N−1+bfj ),

5We used zero padding for dealing with variable-length text
fragments (Kim 2014).

3469



Data Examples True causalities (%)

Training 112,098 9,650 (8.6)
Dev 23,602 3,759 (15.9)
Test 23,650 3,647 (15.4)

Table 2: Statistics of our datasets

where • denotes element-wise multiplication followed by
the summation of the resulting elements (i.e., Frobenious in-
ner product) and ReLU(x) = max(0, x). In other words, we
construct a feature map by convolving a text fragment with
a filter, which is parameterized by weight Wfj ∈ R

d×N and
bias bfj ∈ R. Note that there can be several sets of feature
maps where each set covers N -grams for different N . Since
we build our MCNNs upon Siamese architecture (Chopra,
Hadsell, and LeCun 2005), all the columns share the same
Wfj and bfj for the same N .

As a whole, these feature maps are called a convolution
layer. The next layer is called a pooling layer. In this layer,
we use max-pooling, which simply selects the maximum
value among the elements in the same feature map (Col-
lobert et al. 2011). Our expectation is that the maximum
value indicates the existence of a strong clue (i.e., an N -
gram) for our final judgments. The selected maximum val-
ues from all the M feature maps are concatenated, and
the resulting M -dimensional vector is given to our final
layer. Note that since each feature map has different weights
and biases, max-pooling might select different N -gram se-
quences. This means we can choose multiple N -gram se-
quences that work as strong clues.

The final layer has vectors coming from multiple fea-
ture maps in multiple columns. They are again concate-
nated and constitute a high-dimensional feature vector. The
final layer applies a softmax function to produce the class
probabilities of the causality labels: true and false. We use
a mini-batch stochastic gradient descent (SGD) with the
Adadelta update rule (Zeiler 2012). We randomly initialize
filter weights Wfj from a uniform distribution in the range
of [−0.01, 0.01] and set the remaining parameters to zero.

4 Experiments

4.1 Settings

Hashimoto et al. (2014) extracted 2,451,254 event causality
candidates from 600 million web pages. We used samples
from them as our datasets. Three human annotators (not the
authors) annotated the data, according to the following def-
inition of event causality: A → B is a proper causality iff
(a) “if A happens, the probability of B increases,” and (b)
the causality is self-contained (i.e., comprehensible without
contextual information). They judged whether phrase pairs
constitute a causality without their contexts. The final deci-
sion was made by a majority vote, and Fleiss’ kappa showed
substantial agreement (κ = 0.67). Table 2 shows the statistics
of the training, development, and test data. The development
and test data were randomly sampled from all the extracted
candidates, but not the training set. There were no dupli-
cate causality candidates (i.e., phrase pairs) among the three

datasets.
We implemented our MCNNs using Theano (Bastien et

al. 2012). We pre-trained 300-dimensional word embedding
vectors using the skip-gram model (Mikolov et al. 2013)
on the set of sentences (2.4M sentences, 0.6M words) from
which our causality candidates were extracted. We set the
skip distance to 5 and the number of negative samples to 10.
We treated words that did not occur in the embedding vo-
cabulary as unknown words. If their frequencies were less
than five, we mapped all of them to a single random vec-
tor. On the other hand, if their frequencies were equal to or
greater than five, we assigned each of them a distinct random
vector. We also regarded the variables in the patterns as un-
known words and gave them random vectors.6 We updated
all word embedding vectors during training.

To avoid overfitting, we applied early-stopping and
dropout (Hinton et al. 2012). Following Graves (2013),
we split the development data into two smaller sets
(roughly 50%/50%) for early-stopping and selecting hyper-
parameters. In all the experiments, we applied a dropout rate
of 0.5 to the final layer and used an SGD with mini-batches
of 100 and a learning rate decay of 0.95. We ran five epochs
through all of the training data, where each epoch consisted
of many mini-batch updates.

We examined the hyper-parameter settings on our devel-
opment data as follows. We tried 3, 4, and 5 combinations
of various N -grams where N ∈ {2, . . ., 6}. One setting, for
example, was (2,3,4)×200, which is interpreted as a com-
bination of 2-, 3-, and 4-grams with 200 filters each. We
restricted the N -gram combinations to consecutive numbers
(e.g., the (2,3,4) combination but not (2,4,6)). The number of
filters was set to 50, 100, or 200. The total possible number
of hyper-parameter settings was 18; we tried all of them.

Following Hashimoto et al. (2014), we used the average
precision (AP) as our evaluation metric. We chose the top
two hyper-parameter settings by average precision in the de-
velopment set, trained five models for each setting using a
different random seed, and applied model averaging over
2×5 models to produce the final prediction. This strategy
not only consistently improved performance but also yielded
more stable results (Bengio 2012).

Table 3 presents the best hyper-parameter setting and its
average precision results of our development data. Base
is our MCNNs that use only the cause/effect phrases of a
causality candidate and the contexts in the original sentence
without additional background knowledge. The following
are the acronyms of our knowledge sources: BP = short bi-
nary patterns, WH = why-QA system’s answers, and CL =
sentences with clue terms.

4.2 Results

Table 4 shows the experimental results on the test data, in-
cluding those for our proposed methods and the other meth-
ods for comparison.

Hashimoto14 denotes Hashimoto et al. (2014)’s SVM
classifier that integrates various features, such as carefully

6All of the random vectors were sampled from a uniform distri-
bution in the range of [−0.25, 0.25].
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Method AP

Base (2,3,4)×200 46.85
Base+BP (2,3,4,5)×100 51.29
Base+WH (3,4,5)×200 50.20
Base+CL (3,4,5)×200 49.78
Base+BP+WH (2,3,4,5,6)×200 52.23
Base+BP+CL (4,5,6)×200 52.12
Base+WH+CL (3,4,5)×200 50.65
Base+BP+WH+CL (3,4,5)×100 52.88

Table 3: Best hyper-parameter setting for each source com-
bination on our development data

Method AP

CNN-SENT 43.76
Hashimoto14 47.32
Hashimoto14+BP 47.39
Hashimoto14+WH 43.41
Hashimoto14+CL 40.11
Hashimoto14+BP+WH 47.52
Hashimoto14+BP+CL 45.96
Hashimoto14+WH+CL 41.75
Hashimoto14+BP+WH+CL 45.81
MCNN-based methods
Base 49.34
Base+BP 54.32
Base+WH 52.03
Base+CL 52.27
Base+BP+WH 54.85
Base+BP+CL 54.36
Base+WH+CL 53.08
Base+BP+WH+CL 55.13

Table 4: Test data results

selected binary patterns, contexts, and association measures.
We used all of their features and fine-tuned their SVM clas-
sifier on the full development data.7 We also conducted ex-
periments integrating our new knowledge sources to their
framework to see how beneficial they are for the SVM. For
instance, Hashimoto14+WH is a setting when we give the
patterns from the why-QA system’s answers to the SVM as
binary features, like feature encoding for the short binary
patterns in their method. Note that in these methods, we used
all of the extracted patterns (not just the 15 patterns as in our
method) for all the knowledge sources, since they used all of
the patterns that they could find from web pages.

CNN-SENT denotes a CNN that contains a single col-
umn. This resembles a single-column version of our MC-
NNs. The difference is that it scans the original sentence, in-
cluding our causality candidate. We chose its optimal hyper-
parameters and performed model averaging using our de-
scribed strategy.

As seen in Table 4, our proposed methods achieved signif-
icantly better average precision than the other methods. The

7We tried two types of kernels, including linear and polynomial
(degree = 2, 3), and varied C in {0.0001, 0.001, . . . , 100, 1000}.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Base+BP+WH+CL (Ours)
Base (Ours)
Hashimoto14+BP+WH
Hashimoto14
CNN-SENT

Figure 4: Precision-recall curves of our proposed methods
and other methods

Method AP

Base+BP+WH+CL 55.13
Base+BP+WH\BP+CL\BP 55.42

Table 5: Test data results when removing BP’s patterns from
WH and CL

best average precision of the proposed methods (55.13%)
was achieved when we used all of the types of back-
ground knowledge (i.e., Base+BP+WH+CL), which was
7.6% higher than the best of Hashimoto et al.’s methods
(47.52%). Note that we obtained 5.6% improvement by ex-
tending single CNNs to multi-column CNNs (CNN-SENT
vs. Base). Integrating background knowledge further gave
5.8% improvement (Base vs. Base+BP+WH+CL). Fig. 4
shows their precision-recall curves and that our proposed
methods achieved better precision than the other methods
at most recall levels. These results suggest that our MCNN
architecture is effective for this task.

4.3 Discussion

We further validated the contributions of the WH and CL
patterns. Note that our pattern extraction method for WH
and CL might produce some short binary patterns identical
to those of BP, but these short patterns might not be selected
as inputs to the BP column due to the limitation on the num-
ber of selected patterns (i.e., 15). We removed from WH and
CL any short binary patterns that should have appeared in
the input of BP’s column as if there were no limitation and
evaluated the resulting method. Surprisingly, removing BP’s
patterns from WH and CL further yielded 0.29% improve-
ment, as shown in Table 5. This confirms the effectiveness of
the complex and relatively long patterns from WH and CL.

In our proposed methods, all the knowledge sources im-
proved the performances over Base. (See Base, Base+BP,
Base+WH, and Base+CL.) This indicates that our MCNN
architecture effectively exploited each type of knowledge
source. The combination of different knowledge sources
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Figure 5: Precision-recall curves of our proposed methods
using different word embeddings

AP
Method 15 ptns. All ptns.

Base+BP+WH+CL (Ours) 55.13 -
Hashimoto14+BP+WH 47.88 47.52
Hashimoto14+BP+WH+CL 46.07 45.81

Table 6: Test data results of our method and Hashimoto et
al.’s method when using identical patterns

produced better results in all cases.
The best performance (Hashimoto14+BP+WH) of

Hashimoto et al.’s SVM-based method was much lower
than that of our MCNN-based methods. Also, when adding
our knowledge sources to Hashimoto et al.’s original
method, the performance significantly dropped in most
cases (e.g., Hashimoto14+WH). Such poor performance
is probably due to the feature encoding scheme in their
method. Their binary features for expressing patterns cannot
encode explicitly semantic similarity or synonymy between
distinct patterns (e.g., “A causes B” and “A is a cause of
B”) because the features cannot indicate that two patterns
share common/synonymous words. Then the SVMs cannot
capture generalization over semantically similar patterns.
Contrarily, we believe that word embeddings in patterns and
the (N -gram based) convolution/pooling operation on them
in our method are likely to capture such similarity.

Another difference between Hashimoto et al.’s method
and ours is the number of patterns (i.e., a maximum of
15 in our method and no such limitations in theirs). This
may have caused overfitting in their method. We evaluated
their method by posing the same limitation (Table 6). Even
though the average precision was slightly improved in some
cases, the best performance was only improved by 0.36%
(Hashimoto14+BP+WH), suggesting that overfitting actu-
ally occurred but its effect was limited.

Finally, we examined the effects of word embedding vec-
tors. First, we pre-trained another set of word embeddings

using Wikipedia articles.8 Second, we initialized all of the
word embeddings using random initialization. Wikipedia’s
word embeddings gave average precision at 54.84%, while
the random initialization’s ones yielded much worse average
precision at 48.48%. Fig. 5 compares their precision-recall
curves with word embeddings trained from Hashimoto et
al. (2014)’s 2.4M sentences. These results indicate that pre-
trained word embeddings are one important component to
the success of our proposed method. When using word em-
beddings trained from a more general-domain corpus like
Wikipedia, our MCNN architecture still maintained rela-
tively high average precision.

5 Conclusion

We presented a method for recognizing such event causal-
ities as “smoke cigarettes” → “die of lung cancer.” Our
method exploits background knowledge extracted from
noisy texts (e.g., why-QA system’s answers and texts re-
trieved by a simple keyword search). We empirically showed
that the combination of MCNNs and such background
knowledge can significantly improve performance over the
previous state-of-the-art method. In future work, we plan
to apply our proposed method to event causality hypothesis
generation (Hashimoto et al. 2015).
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