
Selecting Sequences of Items via Submodular Maximization

Sebastian Tschiatschek
ETH Zurich

sebastian.tschiatschek@inf.ethz.ch

Adish Singla
ETH Zurich

adish.singla@inf.ethz.ch

Andreas Krause
ETH Zurich

krausea@ethz.ch

Abstract

Motivated by many real world applications such as recommen-
dations in online shopping or entertainment, we consider the
problem of selecting sequences of items. In this paper we intro-
duce a novel class of utility functions over sequences of items,
strictly generalizing the commonly used class of submodular
set functions. We encode the sequential dependencies between
items by a directed graph underlying the utility function. Clas-
sical algorithms fail to achieve any constant factor approxi-
mation guarantees on the problem of selecting sequences of
bounded length with maximum utility. We propose an efficient
algorithm for this problem that comes with strong theoretical
guarantees characterized by the structural properties of the
underlying graph. We demonstrate the effectiveness of our
algorithm in synthetic and real world experiments on a movie
recommendation dataset.

Introduction

A huge variety of applications involve the selection of se-
quences of items. Common to many of these applications
is that the order of the selected items is not random but
that items selected early, influence which items are selected
later (Shani, Heckerman, and Brafman 2005). This is illus-
trated by the following three application scenarios: When on-
line shopping for a new smartphone, users usually select the
desired smartphone first and subsequently add corresponding
accessories such as cases or headphones (McAuley, Pandey,
and Leskovec 2015). When assembling (academic) reading
lists, researchers very often work backwards in time, i.e. start-
ing from recent relevant papers they trace back relevant lines
of research to their origin (Shahaf, Guestrin, and Horvitz
2012). In entertainment, when watching videos, users typ-
ically consume all episodes of a series or if they watch a
movie they particularly like, they may watch other movies by
the same director produced in the future (Sarwar et al. 2001;
Devooght and Bersini 2016).

Very often these sequential dependencies among items
are neglected and the utility of a sequence of items is
erroneously assumed to not depend on the order of the
items, i.e. sequences of items are actually treated as sets
of items. A class of widely applicable utility functions for
sets of items that has gained much attention is the class

Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of submodular set functions (Krause and Golovin 2014;
Bilmes 2015). On the one hand, not considering the order of
sequences has the advantages that the search space is expo-
nentially smaller (in the length of the selected sequences) and
that many algorithms enjoying strong theoretical guarantees
exist, e.g. the greedy algorithm for submodular maximiza-
tion under cardinality constraints (Nemhauser, Wolsey, and
Fisher 1978). On the other hand, however, considering sets
instead of sequences results in less expressive models and
the inability to exploit the sequential dependencies.

Most existing algorithms cannot be readily applied to se-
lect sequences of items. Furthermore, certain tractable ap-
proaches for subset selection do not enjoy any theoretical
guarantees if extended naively to select sequences, even in
restricted scenarios (cf. Algorithms section).
Overview of our approach. We close this important gap
by considering an expressive class of utility functions over
sequences. This function class strictly generalizes the class
of submodular utility functions and enables one to capture
ordered preferences among items over arbitrarily long ranges.
These ordered preferences are encoded by a directed acyclic
graph over the items, where a directed edge between two
items encodes that there is an additional utility when select-
ing the “tail" item before picking the “head" item. Further-
more, our model can capture diminishing returns between
edges, i.e. the fore-mentioned additional utility can vary in
the context of other edges. For the introduced function class,
we propose a provably effective greedy algorithm for select-
ing sequences of items under sequence length constraints. In
contrast to a naive item-based greedy algorithm, the proposed
algorithm greedily selects edges in the graph and exploits
graph-theoretic properties to determine an optimal sequence
of items from a given set of edges.
Our main contributions include:

• We introduce a novel class of functions over sequences
of items, strictly generalizing the commonly used class of
submodular functions.

• We propose efficient algorithms for maximizing functions
from that class and prove approximation guarantees for
maximization under sequence length constraints.

• We demonstrate the effectiveness of our approach in syn-
thetic and real world experiments.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

2667

Problem Statement

Sequences of items. Let V := {v1, v2, . . . , vn} be a set of n
items a user can choose from. We are interested in selecting
sequences of these items, i.e. the order in which the items
are selected is important. Let Σ := {(σ1, σ2, . . . , σk) | k ∈
[n], σ1, . . . , σk ∈ V, ∀i, j ∈ [k] : i �= j ⇒ σi �= σj} be the
set of all possible sequences of items (without repetitions)
that can be created from V . By |σ| we denote the length of
the sequence σ ∈ Σ. For two sequences σ, π ∈ Σ we denote
their concatenation as σ ⊕ π.
Ordered preferences and utility function. Commonly,
when defining utility functions, the ordering of the items
in σ is ignored and one simply assigns a utility to the set
of items constituting σ. However, in many applications it is
natural that the order of the items effects the actual utility,
e.g. in entertainment as illustrated in Figure 1. In this paper,
we model these ordered preferences by utilizing a directed
graph G = (V, E) whose vertices correspond to the items V .
Formally, we define the considered utility functions as

f(σ) = h(edges(σ)), (1)

where h(·) is a set valued function described shortly and
where edges(σ) = ∪j∈[|σ|]{(σi, σj) | (σi, σj) ∈ E , i ≤ j}.
The function edges(σ) maps a sequence of items to a set
of active edges according to G and σ, i.e. edges(σ) consists
of all edges in G from items appearing early in σ to items
appearing later in σ. Informally, the self-cycle (vi, vi) in the
graph G represents the utility of selecting an individual item
vi; and the edge (vi, vj) in the graph represents the utility in
selecting item vi before item vj .
Submodularity assumption. We assume that h(E) is a
non-negative monotone submodular set function over the
edges E . Submodular set functions satisfy the diminishing
returns property which guarantees that the marginal gain
of an edge e ∈ E is larger in the context of some set of
edges A compared to a larger set of edges B ⊇ A, i.e.
formally h(A ∪ {e}) − h(A) ≥ h(B ∪ {e}) − h(B) for
A ⊆ B ⊆ E \ {e}. A set function h(E) is monotone if
h(A) ≤ h(B) for all A ⊆ B.
Sequences versus sets. Note that although h(E) is a sub-
modular set function over edges, the utility function f(σ)
we are interested in is neither a set function nor does it
satisfy a diminishing returns property in general. To see
this, consider the example from Figure 1 and assume that
h(E) = |E|. Then the utilities assigned to the sequences
(B1), (B2), (B1, B2) and (B2, B1) are given as follows:

f((B1)) = h({(B1, B1)}) = 1

f((B2)) = h({(B2, B2)}) = 1

f((B1, B2)) = h({(B1, B1), (B2, B2), (B1, B2)}) = 3

f((B2, B1)) = h({(B1, B1), (B2, B2)}) = 2

Note that the order of the items matters, i.e. f((B1, B2)) �=
f((B2, B1)), and that f(·) does not have diminishing returns,
i.e. f((B2))− f(()) �≥ f((B1, B2))− f(B1)).
Expressive power. The utility functions defined in (1) are
strictly more expressive than submodular set functions over
items. To see this, consider a graph G that only contains self-
cycles and no other edges. Then f(σ) = h(edges(σ)) =

B1 Big Bang Theory S1E1 C1 IT Crowd S1E1

B2 Big Bang Theory S1E2 C2 IT Crowd S1E2

B3 Big Bang Theory S1E3

Figure 1: Ordered preferences for TV show recommendation.
When watching TV shows, the order of consuming the shows
affects the utility, e.g. watching The Big Bang Theory (TBBT)
Season 1 Episode 1 before watching TBBT Season 1 Episode
2 has higher utility than watching these shows in the opposite
order. Furthermore, if a user has already watched episode
1 and episode 2 of TBBT Season 1, the utility of watching
episode 3 is higher than if that user has watched only episode
1 or 2. Similar preferences hold for the episodes of different
series. Self-cycles indicate that there is a utility in selecting
individual shows.

h({(σi, σi) | i ∈ [|σ|]}), i.e. edges(σ) is a set of |σ| items
that does not depend on the ordering of the items in σ. Hence,
any submodular set function over items V can be expressed
in the form of (1).
Optimization problem. Our objective is to select sequences
of items of limited length which maximize the previously
defined utility. This can be formalized as the following opti-
mization problem,

max
σ∈Σ,|σ|≤k

f(σ). (P)

The solution to this problem depends on the graph G through
the utility function f(σ), and, as we will observe later, the key
properties characterizing the performance of the proposed
algorithms for solving (P) in the next section will be the
indegree Δin := maxvi∈V |{vj ∈ V | (vj , vi) ∈ E}| and the
outdegree Δout := maxvi∈V |{vj ∈ V | (vi, vj) ∈ E}|.
Remarks. The search space for optimal solutions of prob-
lem (P) is much larger than in the case of unordered sets. In
particular there are only

(|V|
k

)
subsets of the items of size k

but k!
(|V|

k

)
sequences of items of length k. That is, the search

space is exponentially larger in terms of k.

Algorithms

In this section we consider algorithms for solving prob-
lem (P). Firstly, we consider natural extensions of the greedy
algorithm used for subset selection and show that these do
not have any constant factor approximation guarantees, even
for cases in which the graphs underlying the utility func-
tion satisfy Δ = min{Δin,Δout} ≤ c, for some constant
c ∈ N. Secondly, we present our proposed algorithm for op-
timizing (P) which enjoys strong approximation guarantees
and achieves good performance in synthetic and real world
experiments, cf. Experiments section.

2668

For notational convenience, we introduce the following:
(i) for a given set of edges E ⊆ E , the function nodes(E)
returns the set of items covered by the edges in E; and (ii)
for a given sequence of items σ ∈ Σ, the function nodes(σ)
returns the set of items present in σ.

The proofs of all theorems are presented in the extended
version of this paper (Tschiatschek, Singla, and Krause 2017).

Greedily Picking Items

For the case of non-negative monotone submodular utility
functions over (unordered) sets, the classical greedy algo-
rithm enjoys a (1− e−1) constant factor approximation ratio
for maximization under cardinality constraints (Nemhauser,
Wolsey, and Fisher 1978). Given this result, it is natural to
consider the following naive extension of this greedy algo-
rithm to our setting: The algorithm iteratively computes a
sequence σ by greedily appending items which maximize the
marginal gain in terms of the utility function (1) to the in-
terim solution at the respective iteration. More generally, the
algorithm can include a lookahead parameter l which allows
the algorithm to expand the sequence σ by appending up to l
items in every iteration, cf. Algorithm 1. We refer to this al-
gorithm simply as GREEDY. For the case l = 1, a single item
is appended to the sequence σ in every iteration, mimicking
the greedy algorithm used for submodular maximization. For
l = 2, sequences of up to length 2 can be appended in line
5 of the algorithm. While the complexity of the algorithm
grows exponentially with l, the algorithm can exploit some
of the ordered dependencies for l ≥ 2.

In spite of the resemblance of the greedy algorithm for
maximizing submodular functions, GREEDY does not enjoy
similarly nice theoretical properties. This is substantiated in
the following theorem.

Theorem 1. There exist instances of problem (P) where the
graph underlying the utility function is a DAG (excluding
self-cycles) with bounded Δ = min{Δin,Δout} for which
GREEDY does not enjoy any constant factor approximation
guarantee for any constant l.

Algorithm 1 GREEDY: Node-based Greedy Algorithm

Require: Set of items V , lookahead parameter l, maximum
number of items k, utility function f

1: σ ← ()
2: while |σ| < k do
3: C ← {π ∈ Σ | |π| ≤ min{l, k − |σ|}}
4: π∗ ← argmaxπ∈C f(σ ⊕ π)
5: σ ← σ ⊕ π∗
6: end while
7: return σ

Greedily Picking Edges with Reordering

In this section, we propose our algorithm OMEGA (Or-
dered MAximization), a greedy algorithm applied to selecting
edges in the graph G for solving problem (P), cf. Algorithm 2.
OMEGA iteratively and greedily extends a set of edges E

Algorithm 2 OMEGA: Edge-based Greedy Algorithm with
Reordering

Require: Set of items V , maximum number of items k, util-
ity function f

1: E ← ∅
2: while ∃e ∈ E \ E s.t. |nodes(E ∪ {e})| ≤ k do
3: C ← {e ∈ E \ E | |nodes(E ∪ {e})| ≤ k}
4: e∗ ← argmaxe∈C f(REORDER(E ∪ {e}))
5: E ← E ∪ {e∗}
6: end while
7: σ ← REORDER(E)
8: return σ

Algorithm 3 REORDER: Compute Sequence of Items from
Set of Edges

Require: set A = nodes(E) to order
1: ρ ← topological order of G {if G is not a DAG after

excluding self-cycles, let π be a user specified or random
order of the items}

2: σ ← ()
3: for i=1,. . . ,|σ| do
4: a∗ ← argmina∈A ρ(a)
5: σ ← σ ⊕ (a∗)
6: A← A \ {a∗}
7: end for
8: return σ

(and a corresponding sequence of items σ). The key obser-
vation for obtaining a provably efficient algorithm for our
sequence selection problem is the following: If G is a DAG,
then for every set of edges, we can (efficiently) compute
an ordering of the items which are covered by the edges
which maximizes the utility function (1) over all possible
orderings of these items. In other words, by exploiting the
DAG property of the graph underlying the utility function,
we can compute for every set of items its optimal ordering.
This reordering is implemented in the algorithm REORDER
presented in Algorithm 3. The algorithm first computes a
topological ordering of the graph G and then sorts the pro-
vided sets of items according to that order.

These ideas when applied to the greedy algorithm are
sufficient to ensure a constant factor approximation guarantee
for sequence selection:

Theorem 2. OMEGA enjoys a (1− e−
1

2Δ) approximation
guarantee for problem (P), where the graph underlying the
utility function is a DAG (excluding self-cycles) that satisfies
Δ = min{Δin,Δout}.

We can also easily obtain the following result for the spe-
cial case that G only contains self-cycles:

Theorem 3. If G contains only self-cycles, OMEGA enjoys
a (1− e−1) approximation ratio, recovering the guarantee
of the greedy algorithm for submodular maximization.

For the special case that the utility function h(·) is modu-
lar, i.e. both h(·) and −h(·) are submodular, we obtain the
following (improved) approximation guarantee.

2669

Theorem 4. For modular h(·), OMEGA enjoys a 1
2Δ ap-

proximation ratio, where the graph is a DAG (excluding
self-cycles) and Δ = min{Δin,Δout}.

Note that a non-negative modular utility function h(·) does
not imply a modular utility over the items, but rather has
attractive properties in terms of the (ordered set of) items.
Remarks. If the graph G is not a DAG, our algorithm
OMEGA can still be applied, although our theoretical guar-
antees do not hold. In this case, the algorithm REORDER uses
either a random order of the items or must be supplied with
an approximate order. Such an approximate order can for
example be determined by computing a feedback vertex set
of G (Karp 1972), i.e. a set of nodes whose removal results
in a graph without cycles. Then, a topological ordering of
G after removing the feedback vertex set can be computed.
This ordering can finally be augmented by a random or user
specified order over the items in the feedback vertex set.
Runtime Complexity. The computational complexity of
GREEDY for picking items is O(knl), i.e. exponential in
the lookahead. In contrast, our proposed algorithm OMEGA
for picking edges with reordering has a runtime complexity
of O((m+ n) + kΔm(k log k)), where m = |E| is the num-
ber of edges in the graph. Here, the first term is the runtime
complexity for computing a topological sort of the graph.1
In the second term, the factor kΔ results from the fact that
for a length constraint of k items, the algorithm can pick at
most kΔ edges; and the factor k log k is the complexity for
sorting, i.e. executing REORDER.

Experiments

Synthetic Experiments

In this section we present results on synthetic experiments
demonstrating the superior performance of our algorithm
over several natural baselines.
Modular utility over edges. As a first synthetic experiment,
we evaluate the performance of OMEGA for instances where
h(E) is a modular function and where we vary the maxi-
mum outdegree Δout of the underlying graph G. We created
the graph G as follows: Let A be the adjacency matrix of
G, i.e. Ai,j = 1 if there is an edge from the ith item to
the jth item. For every i ∈ [n] we selected a subset of size
min{Δout, n− i} uniformly at random from [i+1, n] and set
the corresponding entries of A to 1. This construction ensures
the desired maximum outdegree. We assigned every edge of
G a utility independently drawn from the uniform distribution
U([0, 1]). Furthermore, we assigned a weight U([0, 1]) to ev-
ery edge (i, i), i ∈ [n], i.e. we add self-cycles for every item.
We then used these weights to define the modular function
h(·). The objective value of solutions computed by OMEGA
and certain baseline algorithms relative to the optimal so-
lution (computed by exhaustive enumeration) are shown in
Figure 2a for n = 20, k = 6 and Δ ∈ {1, . . . , 10}. As
baselines we use random selection of k items (random) and
GREEDY with lookahead parameters l = 1 (GREEDY l = 1)

1When executing OMEGA this has to be done only once at the
beginning and not, as indicated for convenience of presentation, in
every call to REORDER.

and l = 2 (GREEDY l = 2). For every setting of n, k,Δout
we averaged the results over 50 problem instances. We can
observe that our algorithm OMEGA performs best, achieving
a performance close to optimal—almost independent of Δout.
The performance of GREEDY degrades with increasing Δout
for l = 1 and l = 2, in particular for small values of Δout.
Submodular utilities over edges. For this synthetic exper-
iment we constructed the graph and the weights similar to
before with the only difference that the weights of the self-
cycles are drawn from U([0, 0.1]). Furthermore, we use a
probabilistic coverage function for h(E), i.e.

h(E) =
∑

j∈nodes(E)

[
1−

∏
(i,j)∈E

(1− wi,j)
]
,

where wi,j is the weight associated with edge (i, j). Results
are shown in Figure 2b. We observe, that OMEGA performs
best again. With increasing Δout, all algorithms perform bet-
ter, even random selection, indicating that the problems to
solve become easier.

Real World Experiments

We performed real world movie recommendation experi-
ments on the Movielens 1M dataset2.
Dataset. This dataset contains 1,000,209 ratings of 6,040
users for 3,706 movies. Every rating takes a value in
{1, . . . , 5} and has a timestamp. On average, every user rated
165.6 movies and every movie received 269.9 ratings. In our
experiments, we do not seek to predict the rating values, but
rather the sequence of movies watched by the user, i.e. V
is the set of movies. Hence we view the data as a collec-
tion of (movie) sequences, one sequence σi for each user
i, i.e. D = {σ1, σ2, . . .}. In particular, σi = (σi

1, σ
i
2, . . .),

where σi
j is the jth movie rated by user i according to the

timestamps of the ratings (ties are broken arbitrarily). We
randomly partitioned the data D into training data Dtrain and
testing data Dtest such that |Dtest| = 500.
Recommendation task and evaluation. The task is to rec-
ommend movies to a test user i not present in the train-
ing data, given a few past ratings of that user. Formally, let
σ = (σ1, . . . , σm) be the sequence of movies rated by the
test user. Then, given the first half of the movies rated by the
user, i.e. σpr = (σ1, . . . , σl) where l = �m/2�, we want to
make predictions about which other movies the user rated
later, i.e. σft = (σl+1, . . . , σm). Given some k ∈ N, the pre-
cision when predicting k elements Prec@k is the number of
correct predictions out of the k predictions averaged over the
test data, i.e.

Prec@k :=
1

k|Dtest|
∑

σ∈Dtest

|nodes(σft) ∩ Pk(σ
pr)|, (2)

where Pk(σ
pr) is a set of k predictions given the partial se-

quence of ratings σpr and all sequences σft are assumed to be
at least of size k.
Baselines. We compare our model with two commonly used
baselines (Devooght and Bersini 2016). The models ex-
plained in the following are test instance dependent models,

2http://grouplens.org/datasets/movielens/1m/

2670

1 2 3 4 5 6 7 8 9 10

outdegree Δout

0.0

0.2

0.4

0.6

0.8

1.0

ap
pr

ox
im

at
io

n
ra

ti
o

random
GREEDY l=1

GREEDY l=2
OMEGA

(a) Modular h(·)

1 2 3 4 5 6 7 8 9 10

outdegree Δout

0.0

0.2

0.4

0.6

0.8

1.0

ap
pr

ox
im

at
io

n
ra

ti
o

random
GREEDY l=1

GREEDY l=2
OMEGA

(b) Submodular h(·)

Figure 2: Average performance of our algorithm on random instances for (a) modular and (b) submodular utility functions
over the edges and varying maximum outdegree Δout. Our proposed Algorithm OMEGA achieves the best approximation ratio,
almost independent of the oudegree Δout, outperforming various baseline algorithms. Error bars are omitted for legibility.

i.e. their construction depends on the given test instance σ.
It turns out, that these baselines are special instances of (1).
Hence, predictions Pk(σ

pr) from these models can be com-
puted by executing a conditional variant of OMEGA, which
is explained shortly.

The first baseline, FREQ, selects items based on their em-
pirical frequencies estimated from the training data without
accounting for item dependencies (Devooght and Bersini
2016; Tschiatschek, Djolonga, and Krause 2016). This base-
line can be seen a special instance of the utility function (1),
as illustrated in Figure 3a. In particular, h(·) is a modular
function and the graph G contains only self-cycles for all
items. The value associated with every self-cycle corresponds
to the empirical frequency of the respective item.

The idea behind the second baseline, BG is to model the
transition probabilities from the last item σl in σpr to unse-
lected items (Devooght and Bersini 2016). Again, this is a
specific instance of the utility function (1), as illustrated in
Figure 3b. The utility function h(·) is again modular. There
is an edge between item σl and another item v ∈ V if v is not
in σpr. The value associated with that edge is the empirical
transition probability from σl to v.

When estimating the empirical frequencies used in the
baseline models by counting and subsequent normalization,
we used a threshold of 10 to reduce noise, i.e. we set counts
below 10 to 0.
Our model. In our model we use a probabilistic coverage util-
ity function h(·) such that it combines and extends ideas from
the two baseline models. Similar to the baseline models, our
model, illustrated in Figure 3c, is test instance dependent. We
model dependencies between the last z items in σpr and the
items that can be selected, where we used z ∈ {1, 2, 5,∞}
in our experiments (z = ∞ means that all items in σpr are
considered). Our utility function takes the form

h(E) =
∑

j∈nodes(E)

[
1−

∏
(i,j)∈E

(1− pj|i)
]
,

where pj|i is the conditional probability that a user rates
movie j given that she has rated movie i before. Note that our
model includes self-cycles and associates the item frequency
pi (also denoted as pi|i for notational convenience) with the
edge (i, i). Informally, the utility of a set of edges E is large
if the nodes nodes(E) are well covered. We estimated the

Table 1: Recommendation results for Movielens (Prec@k).

OUR

k FREQ BG z = 1 z = 2 z = 5 z =∞
1 0.28 0.36 0.36 0.37 0.39 0.40
2 0.27 0.34 0.34 0.36 0.37 0.38
3 0.25 0.32 0.32 0.35 0.37 0.37
4 0.25 0.32 0.31 0.34 0.35 0.36
5 0.25 0.31 0.31 0.33 0.35 0.35

probabilities pj|i from the training data. We found that it is
beneficial for this estimation, to account only instances in
ranking histories for which the distance between items i and
j in the sequence is below a certain limit (we limited this
distance to 5 in our estimations). Predictions Pk(σ

pr) from
our model are computed by executing a conditional variant
of OMEGA. This variant iteratively grows the set of edges
given that the set of nodes determined by reorder always
starts with σpr, i.e. no edges linking back to the items in σpr

must be selected.
Results. Recommendation results for our model and the base-
line models are shown in Table 1 for varying length of pre-
dicted sequences k. For our model, we also varied the length
of the users’ history considered for constructing our model.
We observe that our model outperforms the two baselines
FREQ and BG in terms of precision for z ≥ 2 for all consid-
ered k. For our model and fixed k, the prediction performance
increases slightly with increasing z, indicating that consider-
ing a longer history of a user is beneficial.

Related Work

Submodular utility functions. Submodular set functions
arise in numerous applications and their optimization has
been studied extensively. A popular subclass is that of non-
negative monotone submodular functions. For this subclass,
the seminal work of Nemhauser, Wolsey, and Fisher (1978)
shows that a simple greedy algorithm provides a constant
factor approximation of (1 − e−1) for maximization under
cardinality constraints. Different generalizations have been
considered recently, for example, maximizing non-monotone
submodular functions (Buchbinder et al. 2014) and maxi-

2671

σ1 . . . σl-1 σl

...

(a) FREQ

σ1 . . . σl-1 σl

...

(b) BG

σ1 . . . σl-1 σl

...

(c) OUR

Figure 3: Illustration of the utility functions h(·) instantiated for the Movielens experiments. Solid nodes represent the items
in σpr = (σ1, . . . , σl), empty nodes represent items that are not in σpr and can be selected. (a) In FREQ, there is no interaction
between the items and the utility of an item is encoded by the represented self-cycles. (b) In BG, the last item σl in σpr determines
which items are selected next. Items that have been selected commonly after σl have higher utilities than items that were selected
less frequently. This is encoded by the edge weights. (c) Our proposed model OUR combines properties of FREQ and BG.
Furthermore, dependencies between all items (not only the last one) in σpr and items that can still be selected are encoded.

mization under noisy value oracles (Singla, Tschiatschek,
and Krause 2016). The results have been extended to con-
sider more general constraints such as graph connectivity
constraints (Singh, Krause, and Kaiser 2009) to tackle the sub-
modular orienteering / path planning problem (Chekuri and
Pal 2005), and privacy-aware optimization (Singla et al. 2014;
2015). Recently, distributed algorithms for submodular opti-
mization have been studied for large-scale problems (Mirza-
soleiman et al. 2013). However, all these optimization prob-
lems and algorithms consider selecting sets instead of se-
quences and are unable to exploit the sequential information.
String and adaptive submodularity. A few extensions have
been recently introduced to extend the expressive power of
submodular utility functions. Zhang et al. (2016) and Alaei
and Malekian (2010) study string or sequence submodular
optimization. A function over sequences of items (strings)
is string submodular (Zhang et al. 2016) if it satisfies the
following diminishing returns property: for two sequences σ
and π such that σ is a prefix for π, the gain of adding an item
to σ is larger than that of adding it to the longer sequence
π. For non-negative string submodular functions, a greedy
algorithm similar to Algorithm 1 achieves a constant factor
approximation ratio of (1−e−1). Golovin and Krause (2011)
introduced the notion of adaptive submodularity for solving
stochastic optimization problems where the items are random
variables associated with outcomes. The submodular set func-
tion is defined over the set of outcomes of the selected items.
Their approach generalizes the problem of set selection to
adaptive policies. A variant of the greedy algorithm achieves
a constant factor approximation ratio of (1− e−1) w.r.t. the
optimal policy. The key limitation of these extensions is that
they rely on some notion of diminishing returns, which is in
general not satisfied by our class of utility functions.
Recommending sequences of items. Many real-world ap-
plications involve the recommendation of sequences of items.
Shahaf and Guestrin (2010) study the problem of finding
structured sequences of information in the domain of news
articles. Specifically, given two news articles, their approach
finds a coherent sequence of articles connecting the two given
articles. Shahaf, Guestrin, and Horvitz (2012) further extend
this work to find a sequence of articles which are coherent,

diverse with high topic coverage and high connectivity in
terms of conveying the underlying structure. However, the
techniques developed in Shahaf and Guestrin (2010) and Sha-
haf, Guestrin, and Horvitz (2012) are very different from our
paper — their work does not formalize the optimization prob-
lem of sequence selection by encoding the preferences via a
graph as done in our model. Motivated by the application of
sequential recommendations in online shoping portals such as
Amazon, McAuley, Pandey, and Leskovec (2015) study the
problem of inferring the underlying network of substitutable
and complementary products. This work is complementary
to ours: we assume access to the preference graph as well
as the underlying utility function, and rather focus on the
optimization problem of sequence selection.

Conclusion

We introduced a novel class of utility functions over se-
quences of items, thereby extending the expressive power
of commonly used submodular set functions. We showed
that the naive extensions of classical algorithms fail for our
problem of selecting sequences of items of bounded length
that maximize the utility. In fact, the search space for the opti-
mal solutions for this new class of functions is exponentially
larger than that of the classical subset selection problems. We
developed a novel algorithm for sequence selection which
takes into account the structural properties of the graph un-
derlying the sequential preferences. Our theoretical analysis
provides approximation guarantees for our algorithm w.r.t.
the intractable optimal solution. We performed experiments
on a movie recommendation dataset for the task of recom-
mending sequences of movies to a user. We demonstrate that
several existing baselines can be cast as a special instances
of our model and show the effectiveness of our approach in
terms of improved accuracy over these baselines.
Acknowledgements. This work was supported in part by
the Swiss National Science Foundation, and Nano-Tera.ch
program as part of the Opensense II project, ERC StG 307036,
and a Microsoft Research Faculty Fellowship. Adish Singla
acknowledges support by a Facebook Graduate Fellowship.

2672

References

Alaei, S., and Malekian, A. 2010. Maximizing sequence-
submodular functions and its application to online advertising.
arXiv preprint arXiv:1009.4153.
Bilmes, J. 2015. Submodularity in machine learning appli-
cations. Twenty-Ninth Conference on Artificial Intelligence,
AAAI-15 Tutorial Forum.
Buchbinder, N.; Feldman, M.; Naor, J.; and Schwartz, R.
2014. Submodular maximization with cardinality constraints.
In SODA, 1433–1452.
Chekuri, C., and Pal, M. 2005. A recursive greedy algorithm
for walks in directed graphs. In FOCS, 245–253. IEEE.
Devooght, R., and Bersini, H. 2016. Collaborative fil-
tering with recurrent neural networks. arXiv preprint
arXiv:1608.07400.
Golovin, D., and Krause, A. 2011. Adaptive submodularity:
Theory and applications in active learning and stochastic
optimization. JAIR 42:427–486.
Karp, R. M. 1972. Reducibility among Combinatorial Prob-
lems. Springer US. 85–103.
Krause, A., and Golovin, D. 2014. Submodular function
maximization. In Tractability: Practical Approaches to Hard
Problems. Cambridge University Press.
McAuley, J.; Pandey, R.; and Leskovec, J. 2015. Inferring
networks of substitutable and complementary products. In
KDD, 785–794.
Mirzasoleiman, B.; Karbasi, A.; Sarkar, R.; and Krause, A.
2013. Distributed submodular maximization: Identifying
representative elements in massive data. In NIPS.
Nemhauser, G.; Wolsey, L.; and Fisher, M. 1978. An anal-
ysis of the approximations for maximizing submodular set
functions. Math. Prog. 14:265–294.
Sarwar, B.; Karypis, G.; Konstan, J.; and Riedl, J. 2001. Item-
based collaborative filtering recommendation algorithms. In
WWW, 285–295.
Shahaf, D., and Guestrin, C. 2010. Connecting the dots
between news articles. In KDD, 623–632.
Shahaf, D.; Guestrin, C.; and Horvitz, E. 2012. Metro maps
of science. In KDD, 1122–1130.
Shani, G.; Heckerman, D.; and Brafman, R. I. 2005. An mdp-
based recommender system. Journal of Machine Learning
Research 6(Sep):1265–1295.
Singh, A.; Krause, A.; and Kaiser, W. J. 2009. Nonmyopic
adaptive informative path planning for multiple robots. In
IJCAI, 1843–1850.
Singla, A.; Horvitz, E.; Kamar, E.; and White, R. W. 2014.
Stochastic privacy. In AAAI.
Singla, A.; Horvitz, E.; Kohli, P.; White, R.; and Krause, A.
2015. Information gathering in networks via active explo-
ration. In IJCAI.
Singla, A.; Tschiatschek, S.; and Krause, A. 2016. Noisy
submodular maximization via adaptive sampling with appli-
cations to crowdsourced image collection summarization. In
AAAI.

Tschiatschek, S.; Djolonga, J.; and Krause, A. 2016. Learn-
ing probabilistic submodular diversity models via noise con-
trastive estimation. In AISTATS.
Tschiatschek, S.; Singla, A.; and Krause, A. 2017. Selecting
sequences of items via submodular maximization (extended
version).
Zhang, Z.; Chong, E. K.; Pezeshki, A.; and Moran, W. 2016.
String submodular functions with curvature constraints. IEEE
Transactions on Automatic Control 61(3):601–616.

2673

