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Abstract

Temporal abstraction is key to scaling up learning and plan-
ning in reinforcement learning. While planning with tempo-
rally extended actions is well understood, creating such ab-
stractions autonomously from data has remained challenging.
We tackle this problem in the framework of options [Sutton,
Precup & Singh, 1999; Precup, 2000]. We derive policy gra-
dient theorems for options and propose a new option-critic
architecture capable of learning both the internal policies and
the termination conditions of options, in tandem with the pol-
icy over options, and without the need to provide any addi-
tional rewards or subgoals. Experimental results in both dis-
crete and continuous environments showcase the flexibility
and efficiency of the framework.

Introduction

Temporal abstraction allows representing knowledge about
courses of action that take place at different time scales.
In reinforcement learning, options (Sutton, Precup, and
Singh 1999; Precup 2000) provide a framework for defin-
ing such courses of action and for seamlessly learning and
planning with them. Discovering temporal abstractions au-
tonomously has been the subject of extensive research ef-
forts in the last 15 years (McGovern and Barto 2001;
Stolle and Precup 2002; Menache, Mannor, and Shimkin
2002; Şimşek and Barto 2009; Silver and Ciosek 2012),
but approaches that can be used naturally with continu-
ous state and/or action spaces have only recently started
to become feasible (Konidaris et al. 2011; Niekum 2013;
Mann, Mannor, and Precup 2015; Mankowitz, Mann, and
Mannor 2016; Kulkarni et al. 2016; Vezhnevets et al. 2016;
Daniel et al. 2016).

The majority of the existing work has focused on finding
subgoals (useful states that an agent should reach) and sub-
sequently learning policies to achieve them. This idea has
led to interesting methods but ones which are also difficult
to scale up given their “combinatorial” flavor. Additionally,
learning policies associated with subgoals can be expensive
in terms of data and computation time; in the worst case, it
can be as expensive as solving the entire task.

We present an alternative view, which blurs the line be-
tween the problem of discovering options from that of learn-
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ing options. Based on the policy gradient theorem (Sutton
et al. 2000), we derive new results which enable a gradual
learning process of the intra-option policies and termination
functions, simultaneously with the policy over them. This
approach works naturally with both linear and non-linear
function approximators, under discrete or continuous state
and action spaces. Existing methods for learning options are
considerably slower when learning from a single task: much
of the benefit comes from re-using the learned options in
similar tasks. In contrast, we show that our approach is ca-
pable of successfully learning options within a single task
without incurring any slowdown and while still providing
benefits for transfer learning.

We start by reviewing background related to the two main
ingredients of our work: policy gradient methods and op-
tions. We then describe the core ideas of our approach:
the intra-option policy and termination gradient theorems.
Additional technical details are included in the appendix.
We present experimental results showing that our approach
learns meaningful temporally extended behaviors in an ef-
fective manner. As opposed to other methods, we only need
to specify the number of desired options; it is not necessary
to have subgoals, extra rewards, demonstrations, multiple
problems or any other special accommodations (however,
the approach can take advantage of pseudo-reward functions
if desired). To our knowledge, this is the first end-to-end ap-
proach for learning options that scales to very large domains
at comparable efficiency.

Preliminaries and Notation

A Markov Decision Process consists of a set of states S , a set
of actions A, a transition function P : S×A → (S → [0, 1])
and a reward function r : S × A → R. For convenience,
we develop our ideas assuming discrete state and action
sets. However, our results extend to continuous spaces using
usual measure-theoretic assumptions (some of our empirical
results are in continuous tasks). A (Markovian stationary)
policy is a probability distribution over actions conditioned
on states, π : S × A → [0, 1]. In discounted problems, the
value function of a policy π is defined as the expected return:
Vπ(s) = Eπ [

∑∞
t=0 γ

trt+1 | s0 = s] and its action-value
function as Qπ(s, a) = Eπ [

∑∞
t=0 γ

trt+1 | s0 = s, a0 = a],
where γ ∈ [0, 1) is the discount factor. A policy π is
greedy with respect to a given action-value function Q if
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π(s, a) > 0 iff a = argmaxa′ Q(s, a′). In a discrete MDP,
there is at least one optimal policy which is greedy with re-
spect to its own action-value function.

Policy gradient methods (Sutton et al. 2000; Konda
and Tsitsiklis 2000) address the problem of finding a
good policy by performing stochastic gradient descent
to optimize a performance objective over a given fam-
ily of parametrized stochastic policies, πθ. The policy
gradient theorem (Sutton et al. 2000) provides expres-
sions for the gradient of the average reward and dis-
counted reward objectives with respect to θ. In the dis-
counted setting, the objective is defined with respect to
a designated start state (or distribution) s0: ρ(θ, s0) =
Eπθ

[
∑∞

t=0 γ
trt+1 | s0]. The policy gradient theorem shows

that: ∂ρ(θ,s0)
∂θ =

∑
s μπθ

(s | s0)
∑

a
∂πθ(a|s)

∂θ Qπθ
(s, a),

where μπθ
(s | s0) =

∑∞
t=0 γ

t P (st = s | s0) is a dis-
counted weighting of the states along the trajectories start-
ing from s0. In practice, the policy gradient is estimated
from samples along the on-policy stationary distribution.
(Thomas 2014) showed that neglecting the discount factor
in this stationary distribution makes the usual policy gradi-
ent estimator biased. However, correcting for this discrep-
ancy also reduces data efficiency. For simplicity, we build
on the framework of (Sutton et al. 2000) and discuss how to
extend our results according to (Thomas 2014).

The options framework (Sutton, Precup, and Singh
1999; Precup 2000) formalizes the idea of temporally ex-
tended actions. A Markovian option ω ∈ Ω is a triple
(Iω, πω, βω) in which Iω ⊆ S is an initiation set, πω is
an intra-option policy, and βω : S → [0, 1] is a termi-
nation function. We also assume that ∀s ∈ S, ∀ω ∈ Ω :
s ∈ Iω (i.e., all options are available everywhere), an as-
sumption made in the majority of option discovery algo-
rithms. We will discuss how to dispense with this assump-
tion in the final section. (Sutton, Precup, and Singh 1999;
Precup 2000) show that an MDP endowed with a set of
options becomes a Semi-Markov Decision Process (Puter-
man 1994, chapter 11), which has a corresponding optimal
value function over options VΩ(s) and option-value function
QΩ(s, ω). Learning and planning algorithms for MDPs have
their counterparts in this setting. However, the existence of
the underlying MDP offers the possibility of learning about
many different options in parallel : this is the idea of intra-
option learning, which we leverage in our work.

Learning Options

We adopt a continual perspective on the problem of learn-
ing options. At any time, we would like to distill all of the
available experience into every component of our system:
value function and policy over options, intra-option policies
and termination functions. To achieve this goal, we focus on
learning option policies and termination functions, assum-
ing they are represented using differentiable parameterized
function approximators.

We consider the call-and-return option execution model,
in which an agent picks option ω according to its policy over
options πΩ , then follows the intra-option policy πω until ter-
mination (as dictated by βω), at which point this procedure

is repeated. Let πω,θ denote the intra-option policy of option
ω parametrized by θ and βω,ϑ, the termination function of
ω parameterized by ϑ. We present two new results for learn-
ing options, obtained using as blueprint the policy gradient
theorem (Sutton et al. 2000). Both results are derived under
the assumption that the goal is to learn options that maxi-
mize the expected return in the current task. However, if one
wanted to add extra information to the objective function,
this could readily be done so long as it comes in the form of
an additive differentiable function.

Suppose we aim to optimize directly the discounted re-
turn, expected over all the trajectories starting at a des-
ignated state s0 and option ω0, then: ρ(Ω, θ, ϑ, s0, ω0) =
EΩ,θ,ω [

∑∞
t=0 γ

trt+1 | s0, ω0]. Note that this return depends
on the policy over options, as well as the parameters of the
option policies and termination functions. We will take gra-
dients of this objective with respect to θ and ϑ. In order to
do this, we will manipulate equations similar to those used in
intra-option learning (Sutton, Precup, and Singh 1999, sec-
tion 8). Specifically, the definition of the option-value func-
tion can be written as:

QΩ(s, ω) =
∑
a

πω,θ (a | s)QU (s, ω, a) , (1)

where QU : S × Ω × A → R is the value of executing an
action in the context of a state-option pair:

QU (s, ω, a) = r(s, a) + γ
∑
s′

P (s′ | s, a)U(ω, s′) . (2)

Note that the (s, ω) pairs lead to an augmented state space,
cf. (Levy and Shimkin 2011). However, we will not work ex-
plicitly with this space; it is used only to simplify the deriva-
tion. The function U : Ω×S → R is called the option-value
function upon arrival, (Sutton, Precup, and Singh 1999,
equation 20). The value of executing ω upon entering a state
s′ is given by:

U(ω, s′) = (1− βω,ϑ(s
′))QΩ(s

′, ω) + βω,ϑ(s
′)VΩ(s

′) (3)

Note that QU and U both depend on θ and ϑ, but we do
not include these in the notation for clarity. The last ingredi-
ent required to derive policy gradients is the Markov chain
along which the performance measure is estimated. The nat-
ural approach is to consider the chain defined in the aug-
mented state space, because state-option pairs now play the
role of regular states in a usual Markov chain. If option ωt

has been initiated or is executing at time t in state st, then
the probability of transitioning to (st+1, ωt+1) in one step
is:

P (st+1, ωt+1 | st, ωt) =
∑
a

πωt,θ (a | st) P(st+1| st, a)(

(1− βωt,ϑ(st+1))1ωt=ωt+1
+ βωt,ϑ(st+1)πΩ(ωt+1| st+1))

(4)

Clearly, the process given by (4) is homogeneous. Under
mild conditions, and with options available everywhere, it
is in fact ergodic, and a unique stationary distribution over
state-option pairs exists.
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We will now compute the gradient of the expected dis-
counted return with respect to the parameters θ of the intra-
option policies, assuming that they are stochastic and differ-
entiable. From (1 , 2), it follows that:

∂QΩ(s, ω)

∂θ
=

(∑
a

∂πω,θ (a | s)
∂θ

QU (s, ω, a)

)

+
∑
a

πω,θ (a | s)
∑
s′

γ P (s′ | s, a) ∂U(ω, s′)
∂θ

.

We can further expand the right hand side using (3) and (4),
which yields the following theorem:
Theorem 1 (Intra-Option Policy Gradient Theorem). Given
a set of Markov options with stochastic intra-option poli-
cies differentiable in their parameters θ, the gradient of the
expected discounted return with respect to θ and initial con-
dition (s0, ω0) is:∑

s,ω

μΩ (s, ω | s0, ω0)
∑
a

∂πω,θ (a | s)
∂θ

QU (s, ω, a) ,

where μΩ (s, ω | s0, ω0) is a discounted weighting of state-
option pairs along trajectories starting from (s0, ω0):
μΩ (s, ω | s0, ω0) =

∑∞
t=0 γ

t P (st = s, ωt = ω | s0, ω0).
The proof is in the appendix. This gradient describes the

effect of a local change at the primitive level on the global
expected discounted return. In contrast, subgoal or pseudo-
reward methods assume the objective of an option is simply
to optimize its own reward function, ignoring how a pro-
posed change would propagate in the overall objective.

We now turn our attention to computing gradients for the
termination functions, assumed this time to be stochastic and
differentiable in ϑ. From (1, 2, 3), we have:

∂QΩ(s, ω)

∂ϑ
=

∑
a

πω,θ (a | s)
∑
s′

γ P (s′ | s, a) ∂U(ω, s′)
∂ϑ

.

Hence, the key quantity is the gradient of U . This is a natural
consequence of the call-and-return execution, in which the
“goodness” of termination functions can only be evaluated
upon entering the next state. The relevant gradient can be
further expanded as:

∂U(ω, s′)
∂ϑ

= −∂βω,ϑ(s
′)

∂ϑ
AΩ(s

′, ω)+

γ
∑
ω′

∑
s′′

P (s′′, ω′ | s′, ω) ∂U(ω′, s′′)
∂ϑ

, (5)

where AΩ is the advantage function (Baird 1993) over
options AΩ(s

′, ω) = QΩ(s
′, ω) − VΩ(s

′). Expanding
∂U(ω′,s′′)

∂ϑ recursively leads to a similar form as in theo-
rem (1) but where the weighting of state-option pairs is
now according to a Markov chain shifted by one time step:
μΩ (st+1, ωt | st, ωt−1) (details are in the appendix).
Theorem 2 (Termination Gradient Theorem). Given a set of
Markov options with stochastic termination functions differ-
entiable in their parameters ϑ, the gradient of the expected

discounted return objective with respect to ϑ and the initial
condition (s1, ω0) is:

−
∑
s′,ω

μΩ (s′, ω | s1, ω0)
∂βω,ϑ(s

′)
∂ϑ

AΩ(s
′, ω) ,

where μΩ (s′, ω | s1, ω0) is a discounted weighting of
state-option pairs from (s1, ω0): μΩ (s, ω | s1, ω0) =∑∞

t=0 γ
t P (st+1 = s, ωt = ω | s1, ω0).

The advantage function often appears in policy gradient
methods (Sutton et al. 2000) when forming a baseline to re-
duce the variance in the gradient estimates. Its presence in
that context has to do mostly with algorithm design. It is in-
teresting that in our case, it follows as a direct consequence
of the derivation and gives the theorem an intuitive interpre-
tation: when the option choice is suboptimal with respect to
the expected value over all options, the advantage function is
negative and it drives the gradient corrections up, which in-
creases the odds of terminating. After termination, the agent
has the opportunity to pick a better option using πΩ. A sim-
ilar idea also underlies the interrupting execution model of
options (Sutton, Precup, and Singh 1999) in which termina-
tion is forced whenever the value of QΩ(s

′, ω) for the cur-
rent option ω is less than VΩ(s

′). (Mann, Mankowitz, and
Mannor 2014) recently studied interrupting options through
the lens of an interrupting Bellman Operator in a value-
iteration setting. The termination gradient theorem can be
interpreted as providing a gradient-based interrupting Bell-
man operator.

Algorithms and Architecture

πΩ

QU , AΩ

Environment

atst

πω, βω

rt

Gradients

Critic
TD error

ωt

Options

Policy over options

Figure 1: Diagram of the option-critic architecture. The op-
tion execution model is depicted by a switch ⊥ over the
contacts �. A new option is selected according to πΩ only
when the current option terminates.

Based on theorems 1 and 2, we can now design a stochas-
tic gradient descent algorithm for learning options. Using a
two-timescale framework (Konda and Tsitsiklis 2000), we
propose to learn the values at a fast timescale while updat-
ing the intra-option policies and termination functions at a
slower rate.
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We refer to the resulting system as an option-critic archi-
tecture, in reference to the actor-critic architectures (Sutton
1984). The intra-option policies, termination functions and
policy over options belong to the actor part of the system
while the critic consists of QU and AΩ. The option-critic
architecture does not prescribe how to obtain πΩ since a va-
riety of existing approaches would apply: using policy gra-
dient methods at the SMDP level, with a planner over the
options models, or using temporal difference updates. If πΩ

is the greedy policy over options, it follows from (2) that the
corresponding one-step off-policy update target g(1)t is:

g
(1)
t = rt+1+

γ
(
(1− βωt,ϑ(st+1))

∑
a

πωt,θ (a | st+1)QU (st+1, ωt, a)

+ βωt,ϑ(st+1)max
ω

∑
a

πω,θ (a | st+1)QU (st+1, ω, a)
)

,

which is also the update target of the intra-option Q-learning
algorithm of (Sutton, Precup, and Singh 1999). A prototyp-
ical implementation of option-critic which uses intra-option
Q-learning is shown in Algorithm 1. The tabular setting is
assumed only for clarity of presentation. We write α, αθ and
αϑ for the learning rates of the critic, intra-option policies
and termination functions respectively.

Algorithm 1: Option-critic with tabular intra-option Q-
learning
s ← s0
Choose ω according to an ε-soft policy over options
πΩ(s)

repeat
Choose a according to πω,θ (a | s)
Take action a in s, observe s′, r

1. Options evaluation:
δ ← r −QU (s, ω, a)
if s′ is non-terminal then

δ ← δ + γ(1− βω,ϑ(s
′))QΩ(s

′, ω) +
γβω,ϑ(s

′)max
ω̄

QΩ(s
′, ω̄)

end
QU (s, ω, a) ← QU (s, ω, a) + αδ

2. Options improvement:

θ ← θ + αθ
∂ log πω,θ(a | s)

∂θ QU (s, ω, a)

ϑ ← ϑ− αϑ
∂βω,ϑ(s

′)
∂ϑ (QΩ(s

′, ω)− VΩ(s
′))

if βω,ϑ terminates in s′ then
choose new ω according to ε-soft(πΩ(s

′))
s ← s′

until s′ is terminal

Learning QU in addition to QΩ is computationally waste-
ful both in terms of the number of parameters and samples.
A practical solution is to only learn QΩ and derive an esti-
mate of QU from it. Because QU is an expectation over next

states, QU (s, ω, a) = Es′∼P [r(s, a) + γU(ω, s′) | s, ω, a],
it follows that g(1)t is an appropriate estimator. We chose this
approach for our experiment with deep neural networks in
the Arcade Learning Environment.

Experiments

We first consider a navigation task in the four-rooms do-
main (Sutton, Precup, and Singh 1999). Our goal is to evalu-
ate the ability of a set of options learned fully autonomously
to recover from a sudden change in the environment. (Sut-
ton, Precup, and Singh 1999) presented a similar experiment
for a set of pre-specified options; the options in our results
have not been specified a priori.

Initially the goal is located in the east doorway and the
initial state is drawn uniformly from all the other cells. After
1000 episodes, the goal moves to a random location in the
lower right room. Primitive movements can fail with proba-
bility 1/3, in which case the agent transitions randomly to
one of the empty adjacent cells. The discount factor was
0.99, and the reward was +1 at the goal and 0 otherwise.
We chose to parametrize the intra-option policies with Boltz-
mann distributions and the terminations with sigmoid func-
tions. The policy over options was learned using intra-option
Q-learning. We also implemented primitive actor-critic (de-
noted AC-PG) using a Boltzmann policy. We also compared
option-critic to a primitive SARSA agent using Boltzmann
exploration and no eligibility traces. For all Boltzmann poli-
cies, we set the temperature parameter to 0.001. All the
weights were initialized to zero.

100

200

300

400

500

0
0 500 1000 1500

Episodes

St
ep

s

SARSA(0)
AC-PG
OC 4 options
OC 8 options

Figure 2: After a 1000 episodes, the goal location in the four-
rooms domain is moved randomly. Option-critic (“OC”) re-
covers faster than the primitive actor-critic (“AC-PG”) and
SARSA(0). Each line is averaged over 350 runs.

As can be seen in Figure 2, when the goal suddenly
changes, the option-critic agent recovers faster. Further-
more, the initial set of options is learned from scratch at a
rate comparable to primitive methods. Despite the simplic-
ity of the domain, we are not aware of other methods which
could have solved this task without incurring a cost much
larger than when using primitive actions alone (McGovern
and Barto 2001; Şimşek and Barto 2009).
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Figure 3: Termination probabilities for the option-critic
agent learning with 4 options. The darkest color represents
the walls in the environment while lighter colors encode
higher termination probabilities.

In the two temporally extended settings, with 4 options
and 8 options, termination events are more likely to occur
near the doorways (Figure 3), agreeing with the intuition
that they would be good subgoals. As opposed to (Sutton,
Precup, and Singh 1999), we did not encode this knowledge
ourselves but simply let the agents find options that would
maximize the expected discounted return.

Pinball Domain

Figure 4: Pinball: Sample trajectory of the solution found
after 250 episodes of training using 4 options All options
(color-coded) are used by the policy over options in success-
ful trajectories. The initial state is in the top left corner and
the goal is in the bottom right one (red circle).

In the Pinball domain (Konidaris and Barto 2009), a ball
must be guided through a maze of arbitrarily shaped poly-
gons to a designated target location. The state space is con-
tinuous over the position and velocity of the ball in the x-
y plane. At every step, the agent must choose among five
discrete primitive actions: move the ball faster or slower, in
the vertical or horizontal direction, or take the null action.
Collisions with obstacles are elastic and can be used to the
advantage of the agent. In this domain, a drag coefficient of
0.995 effectively stops ball movements after a finite num-
ber of steps when the null action is chosen repeatedly. Each
thrust action incurs a penalty of −5 while taking no action
costs −1. The episode terminates with +10000 reward when
the agent reaches the target. We interrupted any episode tak-
ing more than 10000 steps and set the discount factor to 0.99.

We used intra-option Q-learning in the critic with linear
function approximation over Fourier bases (Konidaris et al.

2011) of order 3. We experimented with 2, 3 or 4 options.
We used Boltzmann policies for the intra-option policies and
linear-sigmoid functions for the termination functions. The
learning rates were set to 0.01 for the critic and 0.001 for
both the intra and termination gradients. We used an epsilon-
greedy policy over options with ε = 0.01.

0 25 50 100 150 200 250
Episodes

-5000

0

5000

7500
8500

U
nd

is
co

un
te

d
R

et
ur

n

4 options
3 options
2 options

Figure 5: Learning curves in the Pinball domain.

In (Konidaris and Barto 2009), an option can only be
used and updated after a gestation period of 10 episodes. As
learning is fully integrated in option-critic, by 40 episodes a
near optimal set of options had already been learned in all
settings. From a qualitative point of view, the options ex-
hibit temporal extension and specialization (fig. 4). We also
observed that across many successful trajectories the red op-
tion would consistently be used in the vicinity of the goal.

Arcade Learning Environment

We applied the option-critic architecture in the Arcade
Learning Environment (ALE) (Bellemare et al. 2013) using
a deep neural network to approximate the critic and repre-
sent the intra-option policies and termination functions. We
used the same configuration as (Mnih et al. 2013) for the
first 3 convolutional layers of the network. We used 32 con-
volutional filters of size 8×8 and stride of 4 in the first layer,
64 filters of size 4 × 4 with a stride of 2 in the second and
64 3 × 3 filters with a stride of 1 in the third layer. We then
fed the output of the third layer into a dense shared layer of
512 neurons, as depicted in Figure 6. We fixed the learning
rate for the intra-option policies and termination gradient to
0.00025 and used RMSProp for the critic.

πΩ(·|s)
{βω(s)}
{πω(·|s)}

Figure 6: Deep neural network architecture. A concatenation
of the last 4 images is fed through the convolutional layers,
producing a dense representation shared across intra-option
policies, termination functions and policy over options.

We represented the intra-option policies as linear-softmax
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of the fourth (dense) layer, so as to output a probability dis-
tribution over actions conditioned on the current observa-
tion. The termination functions were similarly defined using
sigmoid functions, with one output neuron per termination.

The critic network was trained using intra-option Q-
learning with experience replay. Option policies and termi-
nations were updated on-line. We used an ε-greedy policy
over options with ε = 0.05 during the test phase (Mnih et al.
2013).

As a consequence of optimizing for the return, the ter-
mination gradient tends to shrink options over time. This is
expected since in theory primitive actions are sufficient for
solving any MDP. We tackled this issue by adding a small
ξ = 0.01 term to the advantage function, used by the termi-
nation gradient: AΩ(s, ω)+ξ = QΩ(s, ω)−VΩ(s)+ξ. This
term has a regularization effect, by imposing an ξ-margin
between the value estimate of an option and that of the “op-
timal” one reflected in VΩ. This makes the advantage func-
tion positive if the value of an option is near the optimal one,
thereby stretching it. A similar regularizer was proposed in
(Mann, Mankowitz, and Mannor 2014).

As in (Mnih et al. 2016), we observed that the intra-option
policies would quickly become deterministic. This problem
seems to pertain to the use of policy gradient methods with
deep neural networks in general, and not from option-critic
itself. We applied the regularizer prescribed by (Mnih et al.
2016), by penalizing for low-entropy intra-option policies.
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Figure 7: Seaquest: Using a baseline in the gradient estima-
tors improves the distribution over actions in the intra-option
policies, making them less deterministic. Each column rep-
resents one of the options learned in Seaquest. The vertical
axis spans the 18 primitive actions of ALE. The empirical
action frequencies are coded by intensity.

Finally, the baseline QΩ was added to the intra-option pol-
icy gradient estimator to reduce its variance. This change
provided substantial improvements (Harb 2016) in the qual-
ity of the intra-option policy distributions and the overall
agent performance as explained in Figure 7.

We evaluated option-critic in Asterisk, Ms. Pacman,

Seaquest and Zaxxon. For comparison, we allowed the sys-
tem to learn for the same number of episodes as (Mnih et al.
2013) and fixed the parameters to the same values in all four
domains. Despite having more parameters to learn, option-
critic was capable of learning options that would achieve the
goal in all games, from the ground up, within 200 episodes
(Figure 8). In Asterisk, Seaquest and Zaxxon, option-critic
surpassed the performance of the original DQN architecture
based on primitive actions. The eight options learned in each
game are learned fully end-to-end, in tandem with the fea-
ture representation, with no prior specification of a subgoal
or pseudo-reward structure.

The solution found by option-critic was easy to interpret
in the game of Seaquest when learning with only two op-
tions. We found that each option specialized in a behavior
sequence which would include either the up or the down but-
ton. Figure 9 shows a typical transition from one option to
the other, first going upward with option 0 then switching
to option 1 downward. Options with a similar structure were
also found in this game by (Krishnamurthy et al. 2016) using
an option discovery algorithm based on graph partitioning.

Related Work
As option discovery has received a lot of attention recently,
we now discuss in more detail the place of our approach
with respect to others. (Comanici and Precup 2010) used a
gradient-based approach for improving only the termination
function of semi-Markov options; termination was modeled
by a logistic distribution over a cumulative measure of the
features observed since initiation. (Levy and Shimkin 2011)
also built on policy gradient methods by constructing explic-
itly the augmented state space and treating stopping events
as additional control actions. In contrast, we do not need to
construct this (very large) space directly. (Silver and Ciosek
2012) dynamically chained options into longer temporal se-
quences by relying on compositionality properties. Earlier
work on linear options (Sorg and Singh 2010) also used
compositionality to plan using linear expectation models for
options. Our approach also relies on the Bellman equations
and compositionality, but in conjunction with policy gradi-
ent methods.

Several very recent papers also attempt to formulate op-
tion discovery as an optimization problem with solutions
that are compatible with function approximation. (Daniel
et al. 2016) learn return-optimizing options by treating the
termination functions as hidden variables, and using EM to
learn them. (Vezhnevets et al. 2016) consider the problem
of learning options that have open-loop intra-option poli-
cies, also called macro-actions. As in classical planning, ac-
tion sequences that are more frequent are cached. A map-
ping from states to action sequences is learned along with a
commitment module, which triggers re-planning when nec-
essary. In contrast, we use closed-loop policies throughout,
which are reactive to state information and can provide bet-
ter solutions. (Mankowitz, Mann, and Mannor 2016) pro-
pose a gradient-based option learning algorithm, assuming
a particular structure for the initiation sets and termination
functions. Under this framework, exactly one option is ac-
tive in any partition of the state space. (Kulkarni et al. 2016)
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Figure 8: Learning curves in the Arcade Learning Environment. The same set of parameters was used across all four games: 8
options, 0.01 termination regularization, 0.01 entropy regularization, and a baseline for the intra-option policy gradients.
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Figure 9: Up/down specialization in the solution found by option-critic when learning with 2 options in Seaquest. The top bar
shows a trajectory in the game, with “white” representing a segment during which option 1 was active and “black” for option 2.

use the DQN framework to implement a gradient-based op-
tion learner, which uses intrinsic rewards to learn the internal
policies of options, and extrinsic rewards to learn the pol-
icy over options. As opposed to our framework, descriptions
of the subgoals are given as inputs to the option learners.
Option-critic is conceptually general and does not require
intrinsic motivation for learning the options.

Discussion

We developed a general gradient-based approach for learn-
ing simultaneously the intra-option policies and termination
functions, as well as the policy over options, in order to opti-
mize a performance objective for the task at hand. Our ALE
experiments demonstrate successful end-to-end learning of
options in the presence of nonlinear function approxima-
tion. As noted, our approach only requires specifying the
number of options. However, if one wanted to use additional
pseudo-rewards, the option-critic framework would easily
accommodate it. In this case, the internal policies and ter-
mination function gradients would simply need to be taken
with respect to the pseudo-rewards instead of the task re-
ward. A simple instance of this idea, which we used in some
of the experiments, is to use additional rewards to encour-
age options that are indeed temporally extended by adding
a penalty whenever a switching event occurs. Our approach
can work seamlessly with any other heuristic for biasing the
set of options towards some desirable property (e.g. compo-
sitionality or sparsity), as long as it can be expressed as an
additive reward structure. However, as seen in the results,
such biasing is not necessary to produce good results.

The option-critic architecture relies on the policy gradient

theorem, and as discussed in (Thomas 2014), the gradient
estimators can be biased in the discounted case. By intro-
ducing factors of the form γt

∏t
i=1(1 − βi) in our updates

(Thomas 2014, eq (3)), it would be possible to obtain un-
biased estimates. However, we do not recommend this ap-
proach since the sample complexity of the unbiased esti-
mators is generally too high and the biased estimators per-
formed well in our experiments.

Perhaps the biggest remaining limitation of our work is
the assumption that all options apply everywhere. In the case
of function approximation, a natural extension to initiation
sets is to use a classifier over features, or some other form of
function approximation. As a result, determining which op-
tions are allowed may have similar cost to evaluating a pol-
icy over options (unlike in the tabular setting, where options
with sparse initiation sets lead to faster decisions). This is
akin to eligibility traces, which are more expensive than us-
ing no trace in the tabular case, but have the same complex-
ity with function approximation. If initiation sets are to be
learned, the main constraint that needs to be added is that the
options and the policy over them lead to an ergodic chain in
the augmented state-option space. This can be expressed as
a flow condition that links initiation sets with terminations.
The precise description of this condition, as well as sparsity
regularization for initiation sets, is left for future work.
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Appendix

Augmented Process

If ωt has been initiated or is executing at time t, then the
discounted probability of transitioning to (st+1, ωt+1) is:

P(1)
γ (st+1, ωt+1| st, ωt) =

∑
a

πωt
(a| st) γ P(st+1| st, a)

(
(1− βωt(st+1))1ωt=ωt+1 + βωt(st+1)πΩ (ωt+1 | st+1)

)
.

When conditioning the process from (st, ωt−1), the dis-
counted probability of transitioning to st+1, ωt is:

P(1)
γ (st+1, ωt | st, ωt−1) =

(
(1− βωt−1

(st))1ωt=ωt−1
+

βωt−1(st)πΩ (ωt | st)
)∑

a

πωt (a | st) γ P (st+1 | st, a) .

More generally, the k-steps discounted probabilities can be
expressed recursively as follows:

P(k)
γ (st+k, ωt+k | st, ωt) =

∑
st+1

∑
ωt+1

(
P(1)
γ (st+1, ωt+1 | st, ωt) P

(k−1)
γ (st+k, ωt+k | st+1, ωt+1)

)
,

P(k)
γ (st+k, ωt+k−1 | st, ωt−1) =

∑
st+1

∑
ωt

(
P(1)
γ (st+1, ωt | st, ωt−1) P

(k−1)
γ (st+k, ωt+k−1 | st+1, ωt)

)
.

Proof of the Intra-Option Policy Gradient Theorem

Taking the gradient of the option-value function:

∂QΩ(s, ω)

∂θ
=

∂

∂θ

∑
a

πω,θ (a | s)QU (s, ω, a)

=
∑
a

(
∂πω,θ (a|s)

∂θ
QU (s, ω, a)+

πω,θ (a|s) ∂QU (s, ω, a)

∂θ

)

=
∑
a

(
∂πω,θ (a | s)

∂θ
QU (s, ω, a)+

πω,θ (a | s)
∑
s′

γ P (s′ | s, a) ∂U(ω, s′)
∂θ

)
, (6)

∂U(ω, s′)
∂θ

=

(1− βω,ϑ(s
′))

∂QΩ(s
′, ω)

∂θ
+ βω,ϑ(s

′)
∂VΩ(s

′)
∂θ

= (1− βω,ϑ(s
′))

∂QΩ(s
′, ω)

∂θ
+

βω,ϑ(s
′)
∑
ω′

πΩ (ω′ | s′) ∂QΩ(s
′, ω′)

∂θ

=
∑
ω′

(
(1− βω,ϑ(s

′))1ω′=ω+

βω,ϑ(s
′)πΩ (ω′ | s′) ) ∂QΩ(s

′, ω′)
∂θ

. (7)

where (7) follows from the assumption that θ only appears in
the intra-option policies. Substituting (7) into (6) yields a re-
cursion which, using the previous remarks about augmented
process can be transformed into:
∂QΩ(s, ω)

∂θ
=

∑
a

∂πω,θ (a | s)
∂θ

QU (s, ω, a)+

∑
a

πω,θ (a | s)
∑
s′

γ P (s′ | s, a)
∑
ω′

(
βω,ϑ(s

′)πΩ (ω′ | s′)

+ (1− βω,ϑ(s
′))1ω′=ω

)∂QΩ(s
′, ω′)

∂θ

=
∑
a

∂πω,θ (a | s)
∂θ

QU (s, ω, a)+

∑
s′

∑
ω′

P(1)
γ (s′, ω′ | s, ω) ∂QΩ(s

′, ω′)
∂θ

=

∞∑
k=0

∑
s′,ω′

P(k)
γ (s′, ω′|s, ω)

∑
a

∂πω′,θ (a|s′)
∂θ

QU (s
′, ω′, a).

The gradient of the expected discounted return with respect
to θ is then:
∂QΩ(s0, ω0)

∂θ
=

∑
s,ω

∞∑
k=0

P(k)
γ (s, ω | s0, ω0)

∑
a

∂πω,θ (a | s)
∂θ

QU (s, ω, a)

=
∑
s,ω

μΩ(s, ω|s0, ω0)
∑
a

∂πω,θ (a | s)
∂θ

QU (s, ω, a) .

Proof of the Termination Gradient Theorem

The expected sum of discounted rewards starting from
(s1, ω0) is given by:

U(ω0, s1) = E

[ ∞∑
t=1

γt−1rt

∣∣∣∣∣ s1, ω0

]
.

We start by expanding U as follows:
U(ω, s′) = (1− βω,ϑ(s

′))QΩ(s
′, ω) + βω,ϑ(s

′)VΩ(s
′)

= (1− βω,ϑ(s
′))

∑
a

πω,θ (a | s′)
(

r(s′, a) +
∑
s′′

γ P (s′′ | s′, a)U(ω, s′′)
)

+ βω,ϑ(s
′)
∑
ω′

πΩ (ω′ | s′)
∑
a

πω′,θ (a | s′)
(

r(s′, a) +
∑
s′′

γ P (s′′ | s′, a)U(ω′, s′′)
)

.

The gradient of U is then:
∂U(ω, s′)

∂ϑ
=

∂βω,ϑ(s
′)

∂ϑ
(VΩ(s

′)−QΩ(s
′, ω))︸ ︷︷ ︸

−AΩ(s′,ω)

+

(1− βω,ϑ(s
′))

∑
a

πω,θ (a|s′)
∑
s′′

γ P (s′′|s′, a) ∂U(ω, s′′)
∂ϑ

.
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Using the structure of the augmented process:

∂U(ω, s′)
∂ϑ

= −∂βω,ϑ(s
′)

∂ϑ
AΩ(s

′, ω)+∑
ω′

∑
s′′

P(1)
γ (s′′, ω′ | s′, ω) ∂U(ω′, s′′)

∂ϑ

= −
∑
ω′,s′′

∞∑
k=0

P(k)
γ (s′′, ω′ | s′, ω) ∂βω′,ϑ(s

′′)
∂ϑ

AΩ(s
′′, ω′) .

We finally obtain:

∂U(ω0, s1)

∂ϑ
=

−
∑
ω,s′

∞∑
k=0

P(k)
γ (s′, ω | s1, ω0)

∂βω,ϑ(s
′)

∂ϑ
AΩ(s

′, ω)

= −
∑
ω,s′

μΩ(s
′, ω|s1, ω0)

∂βω,ϑ(s
′)

∂ϑ
AΩ(s

′, ω) .
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Şimşek, O., and Barto, A. G. 2009. Skill characterization
based on betweenness. In NIPS 21, 1497–1504.
Daniel, C.; van Hoof, H.; Peters, J.; and Neumann, G.
2016. Probabilistic inference for determining options in
reinforcement learning. Machine Learning, Special Issue
104(2):337–357.
Harb, J. 2016. Learning options in deep reinforcement learn-
ing. Master’s thesis, McGill University.
Konda, V. R., and Tsitsiklis, J. N. 2000. Actor-critic algo-
rithms. In NIPS 12, 1008–1014.
Konidaris, G., and Barto, A. 2009. Skill discovery in contin-
uous reinforcement learning domains using skill chaining.
In NIPS 22, 1015–1023.
Konidaris, G.; Kuindersma, S.; Grupen, R. A.; and Barto,
A. G. 2011. Autonomous skill acquisition on a mobile ma-
nipulator. In AAAI.
Krishnamurthy, R.; Lakshminarayanan, A. S.; Kumar, P.;
and Ravindran, B. 2016. Hierarchical reinforcement learn-
ing using spatio-temporal abstractions and deep neural net-
works. CoRR abs/1605.05359.
Kulkarni, T.; Narasimhan, K.; Saeedi, A.; and Tenenbaum, J.
2016. Hierarchical deep reinforcement learning: Integrating
temporal abstraction and intrinsic motivation. In NIPS 29.
Levy, K. Y., and Shimkin, N. 2011. Unified inter and intra
options learning using policy gradient methods. In EWRL,
153–164.

Mankowitz, D. J.; Mann, T. A.; and Mannor, S. 2016. Adap-
tive skills, adaptive partitions (ASAP). In NIPS 29.
Mann, T. A.; Mankowitz, D. J.; and Mannor, S. 2014. Time-
regularized interrupting options (TRIO). In ICML, 1350–
1358.
Mann, T. A.; Mannor, S.; and Precup, D. 2015. Approximate
value iteration with temporally extended actions. Journal of
Artificial Intelligence Research 53:375–438.
McGovern, A., and Barto, A. G. 2001. Automatic discovery
of subgoals in reinforcement learning using diverse density.
In ICML, 361–368.
Menache, I.; Mannor, S.; and Shimkin, N. 2002. Q-cut -
dynamic discovery of sub-goals in reinforcement learning.
In ECML, 295–306.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. A. 2013.
Playing atari with deep reinforcement learning. CoRR
abs/1312.5602.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap,
T. P.; Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016.
Asynchronous methods for deep reinforcement learning. In
ICML.
Niekum, S. 2013. Semantically Grounded Learning from
Unstructured Demonstrations. Ph.D. Dissertation, Univer-
sity of Massachusetts, Amherst.
Precup, D. 2000. Temporal abstraction in reinforcement
learning. Ph.D. Dissertation, University of Massachusetts,
Amherst.
Puterman, M. L. 1994. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. John Wiley &
Sons, Inc.
Silver, D., and Ciosek, K. 2012. Compositional planning
using optimal option models. In ICML.
Sorg, J., and Singh, S. P. 2010. Linear options. In AAMAS,
31–38.
Stolle, M., and Precup, D. 2002. Learning options in rein-
forcement learning. In Abstraction, Reformulation and Ap-
proximation, 5th International Symposium, SARA Proceed-
ings, 212–223.
Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and Mansour,
Y. 2000. Policy gradient methods for reinforcement learning
with function approximation. In NIPS 12. 1057–1063.
Sutton, R. S.; Precup, D.; and Singh, S. P. 1999. Between
mdps and semi-mdps: A framework for temporal abstrac-
tion in reinforcement learning. Artificial Intelligence 112(1-
2):181–211.
Sutton, R. S. 1984. Temporal Credit Assignment in Rein-
forcement Learning. Ph.D. Dissertation.
Thomas, P. 2014. Bias in natural actor-critic algorithms. In
ICML, 441–448.
Vezhnevets, A. S.; Mnih, V.; Agapiou, J.; Osindero, S.;
Graves, A.; Vinyals, O.; and Kavukcuoglu, K. 2016. Strate-
gic attentive writer for learning macro-actions. In NIPS 29.

1734




