
Scalable Algorithm for Higher-Order
Co-Clustering via Random Sampling

Daisuke Hatano,† Takuro Fukunaga,† Takanori Maehara,‡ Ken-ichi Kawarabayashi†
†National Institute of Informatics, Japan, JST, ERATO, Kawarabayashi Large Graph Project, Japan

{hatano, takuro, k keniti}@nii.ac.jp
‡Shizuoka University, Japan

maehara.takanori@shizuoka.ac.jp

Abstract

We propose a scalable and efficient algorithm for co-
clustering a higher-order tensor. Viewing tensors with hyper-
graphs, we propose formulating the co-clustering of a tensor
as a problem of partitioning the corresponding hypergraph.
Our algorithm is based on the random sampling technique,
which has been successfully applied to graph cut problems.
We extend a random sampling algorithm for the graph multi-
way cut problem to hypergraphs, and design a co-clustering
algorithm based on it. Each iteration of our algorithm runs in
polynomial on the size of hypergraphs, and thus it performs
well even for higher-order tensors, which are difficult to deal
with for state-of-the-art algorithm.

1 Introduction

Clustering is the task of grouping together similar objects,
and it is one of the main tasks in machine learning and data
mining. It is also considered to be an important technique
in statistics, bioinformatics, database, pattern recognition,
among others. A starting point for a clustering algorithm
would apply to “matrix,” because the most basic setting of
data is represented by a matrix (e.g., words and documents,
click and query in a search engine).

In a matrix, it is sometimes convenient to allow simul-
taneous clustering of rows and columns. Consider a matrix
with the rows corresponding to words and the columns cor-
responding to documents. It has been observed that words
appearing in two documents on similar topics should have
similar concepts. Conversely, documents including words of
similar concepts should cover similar topics. Therefore, it is
useful for precise clustering to group both words and docu-
ments simultaneously. This clustering is called biclustering
and was originally introduced by Hartigan (1972). Formally,
given a set of n1 rows in n2 columns of a matrix, biclustering
is the task of generating a subset of rows with similar behav-
iors across a subset of columns, or vice versa. Biclustering
has several equivalent names in different areas, including co-
clustering, two-order clustering, and block clustering.

Recently, data analysis has developed to need not only
two-dimensional data but also higher-dimensional data.
These higher-dimensional structures are often encoded in

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tensors, i.e., multi-dimensional matrices, which are becom-
ing increasingly important in machine learning and data
mining. The main challenges are the following: most of the
problems for tensor computations are significantly harder
than their matrix counterparts. For example, eigenvectors are
a key concept for spectral clustering and it is not hard to find
them for matrices. However, finding tensor eigenvectors is
NP-hard (Hillar and Lim 2013).

A matrix can be viewed as a bipartite graph with the
bipartition (V1, V2) of the vertex set, where V1 and V2

correspond to rows and columns, respectively. Therefore,
it makes sense to apply some graph algorithms to matri-
ces for biclustering. Indeed, several works have adapted
this approach (Dhillon 2001; Wieling and Nerbonne 2011;
Zha et al. 2001).

Viewing order-m tensors with m-uniform hypergraphs,
we propose a hypergraph-based approach for co-clustering1.
We formulate the co-clustering of a tensor as a problem of
partitioning the corresponding hypergraph. Then, we find a
k-way cut of the hypergraph by an algorithm based on ran-
dom sampling (or random contraction) technique, which was
introduced by Karger (1993) for the minimum cut problem
of graphs, and was extended by Karger and Stein (1996)
for the k-way cut problem. A k-way cut is an edge set
that partitions a given (hyper)graph into k parts. Karger and
Stein (1996) introduced a random sampling technique for a
minimum cut computation of a given undirected graph. Si-
multaneously, they show that this technique can also be ap-
plied for computing a minimum k-way cut of a graph. Their
algorithm iteratively contracts randomly sampled edges un-
til only k vertices remain. These k vertices represent a k-
way cut in the original graph. Karger and Stein proved that
this random sampling approach leads to finding a mini-
mum k-way cut with high probability, provided that we take
O(n2k−1) trials from this graph with n vertices. Karger and
Stein’s technique demonstrates the power of randomized al-
gorithms, and their algorithm leads to an important building
block for development of numerous randomize algorithms.

Karger and Stein’s algorithm only deals with graphs, but
this is not enough for our purpose. Thus, we extend their

1Biclustering is meant for only two dimensional structures
(i.e., matrix). For higher dimensional structures, we shall use “co-
clustering.”

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1992

algorithm to hypergraphs. Based on this algorithm, we pro-
pose a new algorithm for co-clustering higher-order tensors.
In summary, our contributions can be summarized as fol-
lows:

1. We consider the co-clustering problem for m-uniform hy-
pergraphs (and hence, order-m tensors) as a problem of
finding a hypergraph k-way cut.

2. We generalize the applicability of Karger and Stein’s al-
gorithm from graphs to hypergraphs.

3. We then present our co-clustering algorithm, which is
based on Karger and Stein’s algorithm for hypergraphs.

4. We adapt a few heuristics, which provides better perfor-
mance for experiments.

5. We empirically show that our algorithm provides a better
partition as the one given by state-of-the-art algorithms.

6. Finally, we empirically show that our algorithm is quite
fast and scales for a large tensor.

For the computational issues, let us observe that each it-
eration of our algorithm samples O(n) hyperedges, where
n is the number of vertices (total number of dimensions in
the corresponding tensor). As a theoretical result, we prove
that O(nmk) iterations suffice for computing a minimum k-
way cut of a m-uniform hypergraph. However, we believe
that Ω(nmk) iterations are not required in practice; in exper-
iments, we observed that 1000-10000 iterations are enough
for achieving enough quality, even for large hypergraphs.
Since iterations of our algorithm can be executed indepen-
dently, we can adjust the number of iterations when the com-
putation time is restricted. Moreover, it is easy to parallelize
our algorithm. These are useful features in practice. The run-
time of state-of-the-art algorithms is an exponential of m for
order-m tensors. In contrast, the runtime of each iteration in
our algorithm is O(nmp) for order-m tensors with n dimen-
sions and p non-zero elements, and thus it performs well
even for higher-order tensors. Therefore, our algorithm is
much faster than any other state-of-the-art algorithms when
we co-clustering higher-order tensors. This allows our al-
gorithm to scale up to tensors with 0.2 billion nonzero ele-
ments, a feature not previously handled by any other algo-
rithm.

The rest of this paper is organized as follows. Section 2
surveys related work, and Section 3 defines notations. Sec-
tion 4 introduces Karger and Stein’s algorithm for hy-
pergraph k-way cut problem, and analyzes it. Section 5
presents our co-clustering algorithm, and Section 6 evalu-
ates it through computational experiments.

2 Related work

Biclustering of data represented by a matrix has been stud-
ied since the 1970s (Hartigan 1972). There has been a
huge number of algorithms proposed so far, and we name
a few of them (Zha et al. 2001; Dhillon, Mallela, and
Modha 2003; Shan and Banerjee 2008; O’Connor and Feizi
2014). These algorithms have been successfully applied to
numerous unsupervised learning tasks (Dao et al. 2010;
Zhu, Yang, and He 2015; Chen et al. 2015). In particular,

clustering on gene expression data (Cheng and Church 2000;
Madeira et al. 2010; Hussain 2011) and document classifi-
cation (Dhillon 2001; Bisson and Hussain 2008; Hussain,
Bisson, and Grimal 2010) are studied actively.

Compared with the biclustering of matrix data, co-
clustering of higher-order tensors has not been extensively
studied so far. Zhao and Zaki (2005) considered bicluster-
ing on three-dimensional microarray data, and proposed a
graph-based algorithm. Other previous studies depend on
tensor factorizations. Zhou et al. (2009) applied PARAFAC
tensor decomposition for biclustering a data representing the
records of web page visitors by a three-dimensional tensor.
Peng and Li (2011) proposed PARATUCKER factorization,
which combines the PARAFAC and Tucker factorizations,
and applied it to biclustering. Papalexakis et al. (2013) for-
mulated biclustering as a constrained multilinear decompo-
sition problem and proposed an algorithm based on it.

As mentioned in Section 1, we formulate the co-clustering
problem as a k-way cut problem in a hypergraph and ap-
ply the random sampling technique. The random sampling
technique was introduced by Karger (1993) for the mini-
mum cut problem of graphs, and was extended by Karger
and Stein (1996) for the k-way cut problem for graphs.
Later, Karger (2000) speeded up the minimum cut algo-
rithm by combining random sampling and a tree-packing
approach. Thorup (2008) presented an algorithm for the k-
way cut problem. His algorithm is deterministic and is based
on tree-packing. Thorup’s algorithm was extended by Fuku-
naga (2013) for hypergraphs.

3 Preliminary

For an integer i, let [i] be a set {1, 2, ..., i}. Let A ∈
R

n1×n2×···×nm be an order-m tensor. In other words, each
element of A is specified by m indices j1, . . . , jm, and
the i-th index ji ranges from 1 to ni for each i ∈ [m].
A(j1, . . . , jm) denotes the element of A specified by the in-
dices j1, . . . , jm. In this study, we assume that each element
is non-negative.

Let G = (V,E) be the hypergraph with a vertex set V
and a hyperedge set E. Each hyperedge consists of at least
two vertices. The size of a hyperedge is called its rank. The
rank of a hypergraph G is defined as the maximum rank of
hyperedges in G. We denote the rank of a hypergraph G by
mG.

For a set F of hyperedges, we let G−F and G\F respec-
tively denote the hypergraphs obtained from G by deleting
and contracting hyperedges in F . Here, contracting a hyper-
edge e stands for an operation whereby all vertices included
in e are identified with a single new node.

A k-partition of the vertex set V denotes the set U :=
{U1, . . . , Uk} of k nonempty subsets of V such that⋃k

i=1 Ui = V and Ui ∩ Uj = ∅ for 1 ≤ i < j ≤ k. For
a k-partition U , let δ(U) denote the set of hyperedges in E
that intersect at least two members of U .

A k-way cut of a hypergraph G = (V,E) is a subset F of
E such that G−F has at least k connected components. If U
is a k-partition of the vertex set V , then δ(U) is an inclusion-
wise minimal k-way cut of the hypergraph G. Conversely,

1993

Algorithm 1 Hypergraph version of Karger and Stein’s al-
gorithm
Input: a hypergraph G = (V,E), nonnegative hyperedge

weights w : E → �, and an integer k
Output: a k′-way cut of G for some k′ ∈ {k, . . . , k+mG−

1}
1: while |V | ≥ k +mG do
2: pick a hyperedge e in G with the probability

w(e)/
∑

e′∈E(G) w(e
′)

3: G ←− G\e, and remove all hyperedges of rank one
from G

4: end while
5: output the set of hyperedges remaining in G

for any inclusion-wise minimal k-way cut F of G, there ex-
ists a k-partition U of V such that F = δ(U). Thus, when we
discuss the problem of finding a minimum weight k-way cut
of a hypergraph, k-way cuts and k-partitions of the vertex
set can be identified.

4 Random sampling algorithm for

hypergraph k-way cut

In our co-clustering algorithm, co-clustering of a tensor is
identified with a k-way cut (or equivalently a k-partition of
the vertex set) of the hypergraph constructed from the tensor
in a certain way. To find an appropriate co-clustering, our al-
gorithm adopts the random sampling technique, which was
originally proposed by Karger and Stein (1996) for comput-
ing a minimum k-way cut of a graph. In this section, we
show that their algorithm can be extended to k-way cuts in
hypergraphs.

Algorithm

In the hypergraph k-way cut problem, we are given a hy-
pergraph G = (V,E) with a nonnegative weight w(e) of
each hyperedge e ∈ E. The problem seeks a k-way cut F of
G that minimizes

∑
e∈F w(e). By the equivalence between

an inclusion-wise minimal k-way cut and a k-partition of V
mentioned in Section 3, the problem is equivalent to finding
a k-partition U of V that minimizes

∑
e∈δ(U) w(e).

In the setting discussed below, we allow an algorithm to
output a partition of size between k and k + mG − 1. This
gives no issue because the size of the co-clustering is not
known precisely in practice.

Hypergraph version of Karger and Stein’s k-way cut algo-
rithm iterates sampling a hyperedge in a given hypergraph.
The probability that a hyperedge e is sampled is defined
as w(e)/

∑
e′∈E w(e′). If hyperedge e is sampled, the al-

gorithm contracts it and proceeds to the next iteration. The
algorithm repeats this until the number of vertices becomes
smaller than k + mG. The precise description of the algo-
rithm can be found in Algorithm 1.

Contracting a single hyperedge decreases the number of
vertices by at least one and at most mG − 1. Therefore, Al-
gorithm 1 has at most O(|V | − k) iterations.

Success probability of Algorithm 1

Algorithm 1 is a randomized Monte Carlo algorithm. In the
rest of this section, we show that Algorithm 1 outputs a k′-
way cut of small weight with a high probability. Throughout
this subsection, we let G = (V,E) be the input hypergraph
with hyperedge weights w, and denote |V | and

∑
e∈E w(e)

by n and W , respectively. Moreover, let W ∗ denote the min-
imum weight of the k-way cuts of G.

First, we analyze the minimum weight of k-way cuts.

Lemma 1.

W ∗ ≤
(
1−

(
n−mG

k−1

)
(

n
k−1

)
)
W.

Proof. Choose k − 1 vertices v1, v2, . . . , vk−1 uniformly at
random from V . Then U := {{v1}, {v2}, . . . , {vk−1}, V \
{v1, v2, . . . , vk−1}} is a k-partition of V . A hyperedge e is
contained by δ(U) if and only if e ∩ {v1, v2, . . . , vk−1}
=
∅. Hence, we have Pr[e
∈ δ(U)] ≥ (

n−|e|
k−1

)
/
(

n
k−1

) ≥(
n−mG

k−1

)
/
(

n
k−1

)
. Thus,

Pr[e ∈ δ(U)] ≤ 1−
(
n−mG

k−1

)
(

n
k−1

) .

It follows from this that

E

⎡
⎣ ∑
e∈δ(U)

w(e)

⎤
⎦ =

∑
e∈E

w(e) Pr[e ∈ δ(U)]

≤
∑
e∈E

w(e)

(
1−

(
n−mG

k−1

)
(

n
k−1

)
)

=

(
1−

(
n−mG

k−1

)
(

n
k−1

)
)
W.

U may not be a minimum k-way cut, but its weight∑
e∈δ(U) w(e) is an upper bound on W ∗. Therefore, the

proof is completed.

For notational convenience, we denote
(
n−m
k−1

)
/
(

n
k−1

)
by

εn,m. We say that, for α ≥ 1, a k-way cut is α-minimum
if its weight is at most αW ∗. Note that a minimum k-way
cut is 1-minimum. We say that a k-way cut F survives if
Algorithm 1 outputs a k′-way cut F ′ such that F ⊆ F ′. In
the following theorem, we analyze the probability that an
α-minimum k-way cut survives.

For α ≥ 1, define g(α) as

α− α− 1

εmG+k,mG

= α− α− 1

k

(
mG + k

k

)
.

Since εn,mG
is increasing as n increases, g(α) is at most

α− (α− 1)/εn,mG
for any n ≥ mG + k.

Theorem 1. Let F be a minimal k-way cut. Let α be a real
number at least 1 such that g(α) defined from α is positive.
If F is α-minimum for some α ≥ 1, the probability that F
survives is at least Ω(g(α)n−mG(k−1)).

1994

Proof. Below, we assume that mG ≤ |V |−k+1 holds. This
condition can be assumed without loss of generality because
if the rank of a hyperedge e is larger than |V |−k+1, then e
belongs to any k-way cuts, and hence it suffices to choose e
into a solution and solve the problem in the sub-hypergraph
obtained by deleting e. Let W̃ denote the weight of F . Let
n′ denote the number of vertices in G′, and let W ′ denote
the total weight of hyperedges remaining in G′.

For notational convenience, we let m denote mG. Notice
that mG′ ≤ m. Hence the weight of the minimum k-way
cuts of G′ is at most (1 − εn′mG′)W

′ ≤ (1 − εn′m)W ′ by
Lemma 1. If all hyperedges in F remain in G′, then F is an
α-minimum k-way cut of G′. Hence, W̃ ≤ α(1− εn′m)W ′
in this case. Provided that all edges in F remain in G′, the
probability that Algorithm 1 chooses a hyperedge outside F
in this iteration is at least

1− W̃

W ′ ≥ αεn′m − (α− 1) ≥ g(α)εn′m.

Hence, the probability that Algorithm 1 chooses no hyper-
edge in F in any iteration is at least

g(α)

n∏
n′=k+m

(
n′−m
k−1

)
(

n′
k−1

) = Ω(g(α)n−m(k−1)).

By Theorem 1, if we apply the algorithm
Ω(nmG(k−1)/g(α)) times, the α-minimum k-way cut
F survives in at least one trial with a constant probability.
g(α) may seem a mysterious number, but it is a small con-

stant in many cases. For example, let us consider the case
with α = 1.05, mG = 3, and k = 5; as we see in the fol-
lowing section, this corresponds to the co-clustering of an
order-3 tensor into 5 co-clusters with allowing 5% fitting er-
ror. In this case, g(α) = 1.05−(1.05−1)/5×(

5+3
3

)
= 0.49.

5 Proposed co-clustering algorithm

Co-clustering as a hypergraph k-way cut

We define a hypergraph from a given tensor A ∈
R

n1×n2×···×nm as follows. For each i ∈ [m], let Vi be
a set of ni vertices, each of which corresponds to a di-
mension of the i-th order of A. We denote by vj the ver-
tex corresponding to the dimension j. The hypergraph is
defined over the vertex set V :=

⋃
i∈[m] Vi. It contains

a hyperedge for each non-zero element of A; if an ele-
ment A(j1, . . . , jm) is non-zero, the corresponding hyper-
edge consists of vj1 , . . . , vjm , and the weight associated
with it is defined as A(j1, . . . , jm). For example, Figure 1
illustrates the transformation of a tensor to a hypergraph.
Here, the (j1, j2, j3)-th element of the order-3 tensor is re-
garded as a hyperedge (denoted by the orange line) includ-
ing vertices j1, j2, and j3. In the rest of this paper, we let
G = (V,E) denote the resulting hypergraph and w denote
the weights associated with the hyperedges. We note that G
is an m-uniform hypergraph over

∑
i∈[m] ni vertices, and

the number of hyperedges in it is equal to the number of
non-zero elements of A.

Order 1 Order 2 Order 3

(a) Order-3 tensor (b) 3-uniform hypergraph

Figure 1: Definition of the 3-uniform hypergraph from an
order-3 tensor

A partition of the vertex set of hypergraph G can be iden-
tified with the co-clustering of a tensor A. Namely, if U is
a partition of V , then the clustering of the i-th order dimen-
sions is defined from U as Ui := {U ∩ Vi : U ∈ U}. Thus,
we formulate the co-clustering problem as the problem of
finding a k-partition of a hypergraph.

For an integer k, let Pk be the family of all k-
partitions of the vertex set V . We define two loss functions
fcut, fequal : Pk → R+. Roughly speaking, fcut represents
how the co-clustering represented by the k-partition fits into
the given tensor data; as fcut(U) is smaller, the k-partition
U represents a co-clustering fitting into the tensor better.
However, a k-partition minimizing fcut is often unbalanced,
which is not desirable in practice. Hence we use the other
loss function fequal, which represents how balanced the k-
partition is. Then, for a parameter θ ≥ 0, we formulate the
co-clustering problem as

minimize fequal(U)
subject to fcut(U) ≤ θ,

U ∈ Pk.
(1)

In what follows, we introduce the functions fcut and fequal.

Cut function The cut function denoted by fcut returns
the total weight of hyperedges in δ(U) for a k-partition U .
Namely, fcut(U) =

∑
e∈δ(U) w(e) holds for all U ∈ Pk.

Let us explain an intuition behind this loss function. Let
U = {U1, . . . , Uk} be a k-partition. As mentioned above,
we view U as a co-clustering of tensor A. We observe that
each hyperedge in δ(U) corresponds to a non-zero element
whose indices belong to more than one cluster of U . If U
is the ground truth co-clustering, each Ui ∈ U consists of
vertices whose corresponding dimensions are highly corre-
lated. We represent this by the condition that tensor A has
many large-value elements whose indices are included in
single clusters, and the values of elements whose indices are
included in more than one cluster are relatively small. We
note that fcut(U) is equal to the sum of the values of the lat-
ter elements. Therefore, a k-partition minimizing fcut can be
expected to be a good co-clustering.

By the equivalence between the k-partitions and the
inclusion-wise minimal k-way cuts, the optimization prob-
lem (1) with the loss function fcut is equivalent to the hy-

1995

Algorithm 2 Co-clustering algorithm
Input: a hypergraph G = (V,E) with nonnegative hyper-

edge weights w : E → R, an integer k, the number of
iterations l, and a positive threshold θ ∈ R.

Output: a k-partition U
1: initialize U∗ by an arbitrary k-partition
2: for i = 1 to l do
3: U ← KS(G,w, k)
4: if fcut(U∗) > θ ≥ fcut(U) or fequal(U∗) > fequal(U)

then
5: U∗ ←− U
6: end if
7: end for
8: return U∗

pergraph k-way cut problem. Therefore, Algorithm 1 can be
used for finding a k-partition minimizing fcut.

Equal-size function Although minimizing fcut makes
each cluster correlated well, it often gives many meaning-
less clusters. For example, when a hypergraph is dense, the
minimizer of fcut is likely to be a partition mostly made up
of singletons.

To avoid this phenomenon, we consider another loss func-
tion, fequal, which balances the sizes of clusters. Here, fequal

is defined by fequal(U) =
∑

i∈[k] |Ui|2 for each U ∈ Pk. We
note that if a k-partition U = {U1, . . . , Uk} is a minimizer
of fequal and n mod k ≡ 0, then |U1| = · · · = |Uk|.
Algorithm

Our algorithm is based on the Karger and Stein’s random
sampling algorithm given in Algorithm 1. As shown in The-
orem 1, Algorithm 1 outputs a k-partition U with small
fcut(U) with high probability. Hence, our algorithm applies
Algorithm 1 a certain number of times to sample a set of k-
partitions. If at least one k-partition U such that fcut(U) ≤ θ
is sampled, our algorithm outputs the one minimizing fequal
among such k-partitions. If Algorithm 1 samples no such
a k-partition, the proposed algorithm outputs the one with
minimum fequal value among all sampled k-partitions. See
Algorithm 2 for precise description of the proposed algo-
rithm. Here, KS(G,w, k) denotes the output of Algorithm 1
when a hypergraph G, hyperedge weights w, and a positive
integer k are given.

The following analysis on Algorithm 2 is an easy corol-
lary of Theorem 1. The notations n, mG, W ∗, and g(α) are
defined as in Section 4.
Theorem 2. Let α be a real number at least 1 such that
g(α) defined from α is positive. If θ ≤ αW ∗ and l =
Ω(nmG(k−1)/g(α)), then Algorithm 2 outputs an optimal
solution of (1) with a constant probability.

In addition, for obtaining more reasonable co-clusterings,
we introduce heuristics, so-called the distorted sampling
heuristic and the balancing merge heuristic, into Algo-
rithm 1. We explain these heuristics below. In these modi-
fied versions, KS(G,w, k) in Algorithm 2 is replaced by the
output of Algorithm 1 with these heuristics.

Distorted sampling heuristic In sampling a hyperedge
e ∈ E, we wish to prohibit the case where two large-size co-
clusters in the current partition U are merged by the contrac-
tion of e. To this end, depending on the size of co-clusters
intersected by e, we cancel contracting e, and then resample
another hyperedge in the same manner of Step 2 of Algo-
rithm 1. Let Ue denote {U ∈ U : e∩U
= ∅}. When we can-
cel a hyperedge e, we define the probability pca(e) to cancel
the hyperedge e so that it is proportional to

1− 1

|Ue|
∑
U∈Ue

1

log(|U |+max{1, |U | − |V |/k}) .

This cancellation is recursively applied to a resampled hy-
peredge. This definition implies that a hyperedge e is can-
celed in higher probability as the average size of co-clusters
in Ue is larger. Due to this heuristic, Algorithm 2 tends to
produce a partition U∗ minimizing the function fequal.

Balancing merge heuristic In Algorithm 1, a particular k-
way cut survives with higher probability in earlier iterations.
Hence, we introduce a new parameter γ ≥ k+mG, and stop
the iterations (Steps 1–4) of Algorithm 1 when the number
of vertices becomes smaller than γ. Let U = {U1, . . . , Uk′}
be the partition when iterations of Algorithm 1 terminate.
Then we convert U into a k-partition as follows. Sort the
members of U so that |U1| ≥ |U2| ≥ · · · ≥ |Uk′ |. We merge
each Ui ∈ {Uk+1, · · · , Uk′} with a co-cluster chosen from
{U1, · · · , Uk} uniformly at random. This heuristic balances
the size of co-clusters in the k-partition output by the algo-
rithm.

6 Experiments

In this section, we evaluate the performance of the proposal
algorithms through experiments.

We conducted experiments on an Ubuntu server with an
Intel Xeon E5-2690, 2.9GHz processor and 512GB memory,
and implemented our algorithm in Java 1.7.0 79.

We verify the clustering qualities of the proposal algo-
rithms through synthetic data, which is created as follows.
This data set consists of tensors A, which has n dimensions
in each order, and includes k ground truth co-clusters for
some integers k, n, and m. A tensor A is created as follows.
For all pairs of i ∈ [m] and j ∈ [n], we first choose an inte-
ger randomly from [k], and denote it by ci,j . This indicates
that the j-th dimension j of the i-th order belongs to the
ci,j-th co-cluster in the ground truth co-clustering. For each
(j1, . . . , jm) ∈ [n]m, we set A(j1, . . . , jm) to 1 with prob-
ability 0.5 if all of {j1, . . . , jm} belong to the same ground
truth co-cluster, and change the probability for the others so
that the number of δ(U) is accounted for 5% of all non-zero
elements.

As for the threshold θ in Algorithm 2, we compute the
minimum weight W ∗ of k-way cuts computed by iterating
KS(G,w, k) 1000 times, and define θ as αW ∗ for some pa-
rameter α ≥ 1. We denote the proposed algorithm without
heuristics by Prop. If it is combined with the distorted sam-
pling heuristic and the balancing merge heuristic, we repre-
sent by adding “+D” and “+B,” respectively.

1996

(a) Input (b) Output

Figure 2: An order-3 tensor and its clustering result

Figure 2 represents an example of input and its cluster-
ing result computed by our algorithm. In Figure 2(a), ele-
ments colored by white represent those associated with pos-
itive values. In Figure 2(b), we rearrange dimensions so that
dimensions in each cluster appear consecutively. Blue- and
green-colored elements are those whose dimensions belong
to the same clusters.

We evaluate the clustering quality by the normalized
mutual information (NMI for short) (Lancichinetti, Fortu-
nato, and Kertész 2009). NMI is defined as follows. Let
U t = {U t

i : i ∈ [k]} be a ground truth co-clustering, and
let U a = {U a

j : j ∈ [k′]} be a co-clustering obtained by an
algorithm. We denote the mutual information and the en-

tropy by I(U a;U t) =
∑k

i=1

∑k′

j=1

|U a
i∪U t

j |
|V | log

|V ||U a
i∪U t

j |
|U a

i ||U t
j |

and H(U∗) = −∑k
i=1

|U∗
i |
|V | log

|U∗
i |
|V | for each ∗ ∈ {a, t}, re-

spectively. Then, NMI of co-clustering U t and U a is defined
as NMI(U a, U t) = I(U a;U t)

(H(U a)+H(U t))/2 .
We compare the proposed algorithms with existing algo-

rithms proposed by Papalexakis et al. (2013), from which
we can define three variants of the algorithm: (1) standard
PARAFAC decomposition (PARAFAC), (2) PARAFAC de-
composition with nonnegative latent factors (PARAFAC-N),
and (3) PARAFAC decomposition with sparse latent factors
(PARAFAC-S). We downloaded a Matlab implementation of
the algorithms from https://www.cs.cmu.edu/∼epapalex/.
m,n, k in Table 1 indicate the number of order, dimen-

sion, and ground truth co-clustering, respectively. Table 1 in-
dicates NMI and the runtime in seconds of the proposed and
the existing algorithms over the synthetic data. The number
of iterations l of the proposed algorithms set to 1000 and
α = 1.00, and k is fixed to the number of co-clusters in the
ground truth co-clustering. In the table, type of “e” repre-
sents that the dimensions in the same order are evenly dis-
tributed to k ground truth co-clusters, while the dimensions
are unevenly distributed in the type of “u”.

From the results described in Table 1, we can observe that
the proposal algorithms with the distorted sampling heuristic
achieves better clustering quality than the algorithms with
other heuristics in the type of “e”. The algorithm with the
both heuristics is better in the last two instances of the type
“u”. The reason behind this is clear because the balancing
merge heuristic balances the sizes of co-clusters.

Compared with the existing algorithms, the proposed al-

gorithm is competitive for lower-order tensors, and outper-
forms for higher-order tensors, with respect to both the clus-
tering quality and the runtime. This is clearly a benefit of our
algorithm, in which the runtime of each iteration is polyno-
mial on the size of the corresponding hypergraph while the
runtime of the existing algorithms exponentially increases in
the order of a tensor.

In addition, we assess the scalability of proposed algo-
rithm using real-world data generated from Amazon review
data. Table 2 shows profiles of real-world data and the run-
time of the algorithms. The runtime of the proposed algo-
rithm is obtained by setting l = 1 and k = 3. We ex-
ploited Amazon review data which list over 30 millions of
reviews including product’s ID, name, price, reviewers ID,
score, time stamp, and review text. From this data set, we
created the following order-3 tensor. The tensor is the word
co-occurrence tensors A ∈ R

n1×n2×n3 where A(j1, j2, j3)
is the number of review texts that contains word j1, j2, j3
simultaneously. Decomposing co-occurrence tensor is well
studied in natural language processing (Pennington, Socher,
and Manning 2014). We generated seven tensors in this class
by using the first 10, 20, 50, 100, 200, 500, and 1000 review
data in the data set.

To confirm the quality of co-clusterings produced by the
proposed algorithm, we applied it to a tensor generated from
data of sharing bike system in New York City available at
https://www.citibikenyc.com/system-data. The data consists
of over 28 millions of trip data, each of which has 11 at-
tributes including trip duration, start time and date, stop time
and date, start station name, end station name, and so on.
From this data, we created a tensor A ∈ R

n1×n2×n3 where
A(j1, j2, j3) is the number of trips that starts at station j1
and reaches at station j2 at time of j3. The time j3 is com-
bined with the day of week t1 ∈ {Mon., Tue.,Wed., Thu.,
Fri., Sat., Sun.}, starting hour t2 = {0, 1, . . . , 23}, and the
trip length in minutes t3 = {0-10, 10-20, . . . , 50-60, >60}.
This results in a tensor with n1 = 527, n2 = 551, n3 =
1176. As a preprocessing, we omitted elements (j1, j2, j3)
whose weight A(j1, j2, j3) is less than 50, that is we reduce
the weight of the elements to 0. Then, the number of non-
zero elements is 18228. The result described in Table 3 and
Figure 3 is obtained by setting l = 1000 and k = 25. Ta-
ble 3 shows the most frequent three trips of the top five clus-
ters where the clusters are sorted by the number of included
trips. Its last column represents the days and the hours when
the trips start and the length of trips in minutes. In Figure 3,
we plotted the number of trips over the starting time in those
five clusters. We can observe that most of the trips in clus-
ters 1 and 2 start in the evening, while those in clusters 3
and 4 start in the morning. In cluster 5, we can find no char-
acterization from the starting time, but most of the trips use
a station at Central Park.

7 Conclusion
In this paper, we proposed a new co-clustering algorithm of
tensors. Our algorithm is based on a formulation of the co-
clustering problem as a problem of computing a k-way cut
of a hypergraph. We extended Karger and Stein’s random
sampling algorithm for the k-way cut problem from graphs

1997

Table 1: Clustering quality and the runtime in seconds for synthetic tensors
Instance Prop Prop+D Prop+B Prop+D+B PARAFAC PARAFAC-N PARAFAC-S

type,m, n, k NMI time NMI time NMI time NMI time NMI time NMI time NMI time
e, 3, 100, 3 0.06 4.8 0.77 5.0 0.09 4.8 0.87 5.1 1.00 1.7 0.91 1.5 0.08 2.1
e, 3, 100, 4 0.63 2.7 0.98 3.0 0.82 2.7 0.85 3.0 1.00 0.3 1.00 0.8 0.11 2.0
e, 3, 100, 5 0.11 2.1 0.98 2.4 0.55 2.1 0.91 2.4 0.59 1.1 0.77 1.8 0.02 2.0
e, 4, 50, 3 0.98 10.6 0.95 10.6 0.97 10.7 0.90 10.9 0.90 13.2 0.54 10.3 0.56 9.8

e, 4, 50, 4 0.63 4.1 0.95 5.0 0.81 4.9 0.95 5.1 0.70 10.0 0.72 13.2 0.67 11.9
e, 4, 50, 5 0.05 2.1 0.04 2.6 0.70 2.4 0.90 2.7 0.55 14.2 0.74 5.5 0.53 13.7
e, 5, 50, 3 0.99 216 0.99 214 0.96 214 0.93 211 1.00 246 1.00 287 0.95 320
e, 5, 50, 4 0.06 74 1.00 78 0.96 79 0.97 76 0.71 282 0.40 333 0.97 278
e, 5, 50, 5 0.03 27 0.78 28 0.14 28 0.79 29 0.79 292 0.60 273 0.52 317

u, 3, 100, 3 0.05 7.0 0.97 7.6 0.77 7.0 0.93 8.0 1.00 1.6 0.87 2.4 0.02 2.2
u, 3, 100, 4 0.60 3.3 0.07 3.9 0.57 3.3 0.93 3.7 0.81 0.3 0.97 1.4 0.02 2.0
u, 3, 100, 5 0.04 2.6 1.00 3.0 0.17 2.6 0.89 3.0 0.78 0.7 0.75 1.4 0.03 2.1

Table 2: Details of amazon review data and the runtime in seconds. MLE means that the memory limitation is exceeded.
Instance profile Prop+D+B PARAFAC PARAFAC-N PARAFAC-S

|E| n1, n2, n3 time time time time
9351985 778, 778, 778 11.5 1039 1116 >3600

10073914 996, 996, 996 12.9 2155 2046 >3600
17252294 1589, 1589, 1589 25.4 >3600 >3600 >3600
34009370 2888, 2888, 2888 71.3 >3600 >3600 >3600
66280817 4595, 4595, 4595 147.1 MLE MLE MLE
138246119 7882, 7882, 7882 371.0 MLE MLE MLE
269751185 11965, 11965, 11965 996.2 MLE MLE MLE

Table 3: Top 3 trips that are frequently used
No. Start station Goal station Starting time & length

Willoughby St & Fleet St Adelphi St & Myrtle Ave Mon., 0-10, 18
1 Broad St & Bridge St Barclay St & Church St Mon., 0-10, 17

Willoughby St & Fleet St Adelphi St & Myrtle Ave Mon., 0-10, 17
Greenwich St & N Moore St Vesey Pl & River Terrace Wed., 0-10, 17

2 Greenwich St & N Moore St Vesey Pl & River Terrace Tue., 0-10, 17
Greenwich St & N Moore St Vesey Pl & River Terrace Wed., 0-10, 16

E 32 St & Park Ave 1 Ave & E 30 St Wed., 0-10, 09
3 E 32 St & Park Ave 1 Ave & E 30 St Mon., 0-10, 09

8 Ave & W 31 St 9 Ave & W 18 St Wed., 0-10, 09
Adelphi St & Myrtle Ave DeKalb Ave & Hudson Ave Fri., 0-10, 08

4 Barclay St & Church St 6 Ave & Canal St Thu., 0-10, 09
Adelphi St & Myrtle Ave DeKalb Ave & Hudson Ave Tue., 0-10, 08

Central Park S & 6 Ave Central Park S & 6 Ave Sun., >60, 12
5 Central Park S & 6 Ave Central Park S & 6 Ave Sun., >60, 13

Central Park S & 6 Ave Central Park S & 6 Ave Sun., >60, 15

to hypergraphs, and applied it to the co-clustering of tensors.
In our algorithm, the runtime of each iteration is polynomial
on the size of the hypergraph. Hence it performs well partic-
ularly for higher-order tensors.

References

Bisson, G., and Hussain, S. F. 2008. Chi-sim: A new simi-
larity measure for the co-clustering task. In Proceedings of
the Seventh International Conference on Machine Learning
and Applications, ICMLA 2008, 211–217.
Chen, X.; Ritter, A.; Gupta, A.; and Mitchell, T. M. 2015.
Sense discovery via co-clustering on images and text. In
Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2015, 5298–5306.

0 5 10 15 20
0

5,000

10,000

15,000

Starting time

T
h
e
n
u
m
b
er

of
tr
ip
s

1

2

3

4

5

Figure 3: The number of trips when changing the starting
time

Cheng, Y., and Church, G. M. 2000. Biclustering of ex-
pression data. In Proceedings of the Eighth International
Conference on Intelligent Systems for Molecular Biology,
93–103.

Dao, P.; Colak, R.; Salari, R.; Moser, F.; Davicioni, E.;
Schönhuth, A.; and Ester, M. 2010. Inferring cancer subnet-
work markers using density-constrained biclustering. Bioin-
formatics 26(18).

Dhillon, I. S.; Mallela, S.; and Modha, D. S. 2003.
Information-theoretic co-clustering. In Proceedings of the
Ninth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 89–98.

Dhillon, I. S. 2001. Co-clustering documents and words
using bipartite spectral graph partitioning. In Proceedings
of the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 269–274.

1998

Fukunaga, T. 2013. Computing minimum multiway cuts in
hypergraphs. Discrete Optimization 10(4):371–382.
Hartigan, J. A. 1972. Direct clustering of a data ma-
trix. Journal of the American Statistical Association
67(337):123–129.
Hillar, C. J., and Lim, L. 2013. Most tensor problems are
np-hard. Journal of the ACM 60(6):45.
Hussain, S. F.; Bisson, G.; and Grimal, C. 2010. An im-
proved co-similarity measure for document clustering. In
Proceedings of the Ninth International Conference on Ma-
chine Learning and Applications, ICMLA 2010, 190–197.
Hussain, S. F. 2011. Bi-clustering gene expression data
using co-similarity. In Advanced Data Mining and Applica-
tions - 7th International Conference, ADMA 2011, Proceed-
ings, Part I, 190–200.
Karger, D. R., and Stein, C. 1996. A new approach to the
minimum cut problem. Journal of the ACM 43(4):601–640.
Karger, D. R. 1993. Global min-cuts in RNC, and other
ramifications of a simple min-cut algorithm. In Proceed-
ings of the Fourth Annual ACM/SIGACT-SIAM Symposium
on Discrete Algorithms, 21–30.
Karger, D. R. 2000. Minimum cuts in near-linear time. Jour-
nal of the ACM 47(1):46–76.
Lancichinetti, A.; Fortunato, S.; and Kertész, J. 2009. De-
tecting the overlapping and hierarchical community struc-
ture in complex networks. New Journal of Physics
11(3):033015.
Madeira, S. C.; Teixeira, M. C.; Sá-Correia, I.; and Oliveira,
A. L. 2010. Identification of regulatory modules in time
series gene expression data using a linear time biclustering
algorithm. IEEE/ACM Transactions on Computational Bi-
ology and Bioinformatics 7(1):153–165.
O’Connor, L., and Feizi, S. 2014. Biclustering usinig mes-
sage passing. In Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information Pro-
cessing Systems 2014, 3617–3625.
Papalexakis, E. E.; Sidiropoulos, N. D.; and Bro, R. 2013.
From K-means to higher-way co-clustering: Multilinear de-
composition with sparse latent factors. IEEE Transactions
on Signal Processing 61(2):493–506.
Peng, W., and Li, T. 2011. Temporal relation co-clustering
on directional social network and author-topic evolution.
Knowledge Information Systems 26(3):467–486.
Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global vectors for word representation. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, 1532–1543.
Shan, H., and Banerjee, A. 2008. Bayesian co-clustering.
In Proceedings of the 8th IEEE International Conference on
Data Mining, ICDM 2008, 530–539.
Thorup, M. 2008. Minimum k-way cuts via deterministic
greedy tree packing. In Proceedings of the Fortieth Annual
ACM Symposium on Theory of Computing, STOC ’08, 159–
166.

Wieling, M., and Nerbonne, J. 2011. Bipartite spectral
graph partitioning for clustering dialect varieties and detect-
ing their linguistic features. Computer Speech & Language
25(3):700–715.
Zha, H.; He, X.; Ding, C. H. Q.; Gu, M.; and Simon, H. D.
2001. Bipartite graph partitioning and data clustering. In
Proceedings of the 2001 ACM CIKM International Confer-
ence on Information and Knowledge Management, 25–32.
Zhao, L., and Zaki, M. J. 2005. Tricluster: An effective algo-
rithm for mining coherent clusters in 3d microarray data. In
Proceedings of the ACM SIGMOD International Conference
on Management of Data, 694–705.
Zhou, Q.; Xu, G.; and Zong, Y. 2009. Web co-clustering
of usage network using tensor decomposition. In Proceed-
ings of the 2009 IEEE/WIC/ACM International Conference
on Web Intelligence and International Conference on Intel-
ligent Agent Technology — Workshops, 311–314.
Zhu, Y.; Yang, H.; and He, J. 2015. Co-clustering based
dual prediction for cargo pricing optimization. In Proceed-
ings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 1583–1592.

1999

