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Abstract

While the universal approximation property holds both for hi-
erarchical and shallow networks, deep networks can approxi-
mate the class of compositional functions as well as shallow
networks but with exponentially lower number of training pa-
rameters and sample complexity. Compositional functions are
obtained as a hierarchy of local constituent functions, where
“local functions” are functions with low dimensionality. This
theorem proves an old conjecture by Bengio on the role of
depth in networks, characterizing precisely the conditions un-
der which it holds. It also suggests possible answers to the
the puzzle of why high-dimensional deep networks trained
on large training sets often do not seem to show overfit.

1 Introduction
Here are three main open questions about Deep Neural Net-
works. The first question is about the power of the architec-
ture – which classes of functions can it approximate well?
The second question is about generalization capability: why
large deep networks trained with SGD often appear to be im-
mune to overfitting? The third question is about learning the
unknown coefficients from the data: why is SGD so unrea-
sonably efficient, at least in appearance? Are good minima
easier to find in deep rather than in shallow networks? In this
paper we describe a set of approximation theory results that
include an answer to why and when deep networks are bet-
ter than shallow – the first question – and suggest a possible
answer to the second one. We formulate our results by us-
ing the idealized model of a deep network as a binary tree.
As we discuss here our main results described for the binary
tree model also apply (apart from different constants) to the
very deep convolutional networks of the ResNet type which
have only a few stages of pooling and subsampling.

This paper compares shallow (one-hidden layer) networks
with deep networks (see for example Figure 1). Both types
of networks use the same small set of operations – dot prod-
ucts, linear combinations, a fixed nonlinear function of one
variable, possibly convolution and pooling. The logic of the
paper is as follows.
• Both shallow (a) and deep (b) networks are universal, that

is they can approximate arbitrarily well any continuous
function of d variables on a compact domain.
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• We show that the approximation of functions with a
compositional structure – such as f(x1, · · · , xd) =
h1(h2 · · · (hj(hi1(x1, x2), hi2(x3, x4)), · · · )) – can be
achieved with the same degree of accuracy by deep and
shallow networks but that the number of parameters, the
VC-dimension and the fat-shattering dimension are much
smaller for the deep networks than for the shallow net-
work with equivalent approximation accuracy. It is intu-
itive that a hierarchical network matching the structure of
a compositional function should be “better” at approxi-
mating it than a generic shallow network but universality
of shallow networks asks for the non-obvious character-
ization of “better”. Our result makes clear that the intu-
ition is indeed correct and provides a formal framework
and quantitative bounds. From the point of view of ma-
chine learning shallow networks cannot exploit the prior
of compositionality and the much smaller associated com-
plexity. From the point of view of approximation theory
see (Poggio et al. 2016) for references on lower bounds.

• The most interesting deep networks to which our results
apply are the deep convolutional networks. Interestingly,
the weight sharing property though helpful is not the key
property: locality of the functions approximated at each
stage is key.

• Why do compositional functions appear in so many prob-
lems in vision, text and speech? We argue that the basic
properties of locality at different scales and shift invari-
ance in many natural signals such as images and text im-
plies that many (but not all) tasks on such inputs can be
solved by compositional algorithms. Of course, there are
many signals or problems that cannot be solved by shift
invariant, scalable algorithms. Thus for the many prob-
lems that are not compositional we do not expect any ad-
vantage of deep convolutional networks.

2 Previous work

The success of Deep Learning poses again an old theory
question: why are multi-layer networks better than one-
hidden-layer networks? Under which conditions? The ques-
tion is relevant in several related fields from machine learn-
ing to function approximation and has appeared many times
before.

Most Deep Learning references these days start with
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Hinton’s backpropagation and with LeCun’s convolutional
networks (see for a nice review (LeCun, Bengio, and G.
2015)). Of course, multilayer convolutional networks have
been around at least as far back as the optical process-
ing era of the 70s. The Neocognitron (Fukushima 1980)
was a convolutional neural network that was trained to rec-
ognize characters. The property of compositionality was
a main motivation for hierarchical models of visual cor-
tex such as HMAX which can be regarded as a pyramid
of AND and OR layers (Riesenhuber and Poggio 1999),
that is a sequence of conjunctions and disjunctions. There
are several recent papers addressing the question of why
hierarchies. Sum-Product networks, which are equivalent
to polynomial networks (see (B. Moore and Poggio 1998;
Livni, Shalev-Shwartz, and Shamir 2013)), are a simple case
of a hierarchy that can be analyzed (Delalleau and Bengio
2011). (Montufar, Cho, and Bengio 2014) provided an esti-
mation of the number of linear regions that a network with
ReLU nonlinearities can synthesize in principle but leaves
open the question of whether they can be used for learning
and which conditions. Examples of functions that cannot be
represented efficiently by shallow networks have been given
very recently by (Telgarsky 2015). Most relevant to this pa-
per is the work on hierarchical quadratic networks (Livni,
Shalev-Shwartz, and Shamir 2013), together with function
approximation results (Pinkus 1999; Mhaskar 1993). This
paper extends and explains recent results that appeared in
online publications (Poggio, Anselmi, and Rosasco 2015;
Mhaskar, Liao, and Poggio 2016; Mhaskar and Poggio 2016;
Poggio et al. 2015a).

3 Compositional functions

We assume that the shallow networks do not have any struc-
tural information on the function to be learned (here its hi-
erarchically local structure), because they cannot represent
it directly. Deep networks with standard architectures on the
other hand do represent compositionality and can be adapted
to such prior information. Thus, it is natural to conjecture
that hierarchical compositions of functions such as

f(x1, · · · , x8) = h3(h21(h11(x1, x2), h12(x3, x4)),

h22(h13(x5, x6), h14(x7, x8))) (1)

are approximated more efficiently by deep than by shallow
networks. The structure of the function in equation 1 is a
graph of the binary tree type, which is one of the simplest ex-
ample of compositional functions (see later for even simpler
cases of one-dimensional functions), reflecting dimension-
ality d = 2 for the constituent functions h. In general, d is
arbitrary but fixed and independent of the dimensionality n
of the compositional function f . In particular, d corresponds
to the support of the convolutional kernel in deep convolu-
tional networks.

In addition, both shallow and deep representations may or
may not reflect invariance to group transformations of the
inputs of the function ( (Soatto 2011; Anselmi et al. 2015)).
Invariance is expected to decrease the complexity of the net-
work, for instance its VC-dimension. Since we are interested
in the comparison of shallow vs deep architectures, here we

consider the generic case of networks (and functions) for
which invariance is not assumed. In the real world of appli-
cations the networks corresponding to our deep architectures
are deep convolutional networks, in which there is locality at
each level in the architecture and in addition shift invariance,
that is weight sharing.

We approximate functions of n variables of the form of
Equation (1) with networks in which the activation nonlin-
earity is a smoothed version of the so called ReLU, origi-
nally called ramp by Breiman and given by σ(x) = x+ =
max(0, x) . The architecture of the deep networks reflects
Equation (1) with each node hi being a ridge function, com-
prising one or more neurons.

It is important to emphasize that our results described
in terms of binary trees apply to state-of-art Deep Learn-
ing Neural Networks (DLNNs), for instance of the ResNet
type (He et al. 2015), with small kernel size and many lay-
ers. Visual cortex has a similar compositional architecture
with receptive fields becoming larger and larger in higher
and higher visual areas, with each area corresponding to a
recurrent layer in a deep neural network (Liao and Poggio
2016).

4 Degree of approximation

In this section, we describe the approximation properties of
the shallow and deep networks in the case of ReLU non-
linearities. Similar and even stronger results hold for deep
Gaussian networks (Mhaskar, Liao, and Poggio 2016). The
general paradigm is as follows. We are interested in deter-
mining how complex a network ought to be to theoretically
guarantee approximation of an unknown target function f
up to a given accuracy ε > 0. To measure the accuracy, we
need a norm ‖ · ‖ on some normed linear space X. As we
will see the norm used in the results of this paper is the sup
norm. Let VN be the be set of all networks of a given kind
with complexity N which we take here to be the total num-
ber of units in the network (e.g., all shallow networks with N
units in the hidden layer). It is assumed that the class of net-
works with a higher complexity include those with a lower
complexity; i.e., VN ⊆ VN+1. The degree of approximation
is defined by

dist(f, VN ) = inf
P∈VN

‖f − P‖. (2)

For example, if dist(f, VN ) = O(N−γ) for some γ > 0,
then a network with complexity N = O(ε−

1
γ ) will be suffi-

cient to guarantee an approximation with accuracy at least ε.
Since f is unknown, in order to obtain theoretically proved
upper bounds, we need to make some assumptions on the
class of functions from which the unknown target function
is chosen. This a priori information is codified by the state-
ment that f ∈ W for some subspace W ⊆ X. This subspace
is usually a smoothness class characterized by a smoothness
parameter r. Here it will be generalized to a smoothness and
compositional class, characterized by the parameters r and d
(d = 2 in the example of the deep network corresponding to
the right hand side of Figure 1). In general, a deep network
architecture (in this paper, we restrict ourselves to the binary
tree structure as in (1)) has an advantage over the shallow
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x1 x2 x3 x4 x5 x6 x7 x8 x1 x2 x3 x4 x5 x6 x7 x8
Figure 1: On the left a shallow universal network in 8 variables and N units which can approximate a generic function
f(x1, · · · , x8). On the right, a binary tree hierarchical network in n = 8 variables, which approximates well functions of
the form f(x1, · · · , x8) = h3(h21(h11(x1, x2), h12(x3, x4)), h22(h13(x5, x6), h14(x7, x8))). Each of the n− 1 nodes consists
of Q smoothed ReLU units with Q(n− 1) = N and computes the ridge function (Pinkus 1999)

∑Q
i=1 ai(〈vi,x〉+ ti)+, with

vi,x ∈ R
2, ai, ti ∈ R. Each term, that is each unit in the node, corresponds to a “channel”. In a binary tree with n inputs, there

are log2n levels and a total of n − 1 nodes. Similar to the shallow network, a hierarchical network can approximate any con-
tinuous function; the text proves how it approximates a compositional functions better than a shallow network. No invariance
is assumed here.

networks when the target function itself has the same hier-
archical, compositional structure, e.g., (1) or, as we will see
later, a structure that is part of the network structure.

4.1 Main results

Let In = [−1, 1]n, X = C(In) be the space of all continu-
ous functions on In, with ‖f‖ = maxx∈In |f(x)|. Let SN,n

denote the class of all shallow networks with N units and n
inputs of the form

x �→
N∑

k=1

akσ(wk · x+ bk),

where wk ∈ R
n, bk, ak ∈ R. The number of trainable pa-

rameters here is (n + 2)N ∼ N . Let r ≥ 1 be an inte-
ger, and Wn

r be the set of all functions of n variables with
continuous partial derivatives of orders up to r such that
‖f‖+∑

1≤|k|1≤r ‖Dkf‖ ≤ 1, whereDk denotes the partial
derivative indicated by the multi–integer k ≥ 1, and |k|1 is
the sum of the components of k.
For the hierarchical binary tree network, the analogous

spaces are defined by considering the compact set Wn,2
r to

be the class of all compositional functions f of n variables
with a binary tree architecture and constituent functions h
in W 2

r . We define the corresponding class of deep networks
DN,2 to be the set of all deep networks with N units and a
binary tree architecture, where each of the n− 1 constituent
nodes contains Q units (with (n− 1)Q = N is in SQ,2. We
note that in the case when n is an integer power of 2, the total
number of parameters involved in a deep network in DN,2 –
that is, weights and biases – is 4N ∼ N .
The following two theorems estimate the degree of ap-

proximation for shallow and deep networks. Two observa-
tions are critical to understand the meaning of our results:
• compositional functions of n variables are a subset of

functions of n variables, that is Wn
r ⊃ Wn,2

r . Deep net-
works can exploit in their architecture the special structure

of compositional functions, whereas shallow networks are
blind to it. Thus from the point of view of shallow net-
works, functions inWn,2

r are just functions inWn
r ; this is

not the case for deep networks.

• a deep network does not need to have exactly the same
compositional architecture as the compositional function
to be approximated. It is sufficient that the acyclic graph
representing the structure of the function (see (Mhaskar
and Poggio 2016)) is a subgraph of the graph representing
the structure of the deep network. The degree of approx-
imation estimates depend on the graph associated with
the network and are an upper bound on what could be
achieved by a network exactly matched to the function ar-
chitecture.

The first theorem is about shallow networks and is a clas-
sical result.

Theorem 1. Let σ : R → R be infinitely differentiable, and
not a polynomial on any subinterval of R.
For f ∈ Wn

r the complexity of shallow networks that pro-
vide accuracy at least ε is

N = O(ε−n/r) and is the best possible. (3)

Notes The proof in (Mhaskar 1996) relies on the fact that
when σ satisfies the conditions of the theorem, the algebraic
polynomials in n variables of (total or coordinatewise) de-
gree < q are in the uniform closure of the span of O(qn)
functions of the form x �→ σ(w · x + b). The estimate it-
self is an upper bound on the degree of approximation by
such polynomials. Since it is based on the approximation
of the polynomial space contained in the ridge functions
implemented by shallow networks, one may ask whether
it could be improved by using a different approach. The
answer relies on the concept of nonlinear n–width of the
compact setWn

r (cf. (DeVore, Howard, and Micchelli 1989;
Mhaskar, Liao, and Poggio 2016)). The n-width results im-
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ply that the estimate in Theorem (1) is the best possi-
ble among all reasonable (DeVore, Howard, and Micchelli
1989) methods of approximating arbitrary functions inWn

r .
�
The second theorem is about deep networks and is new

(preliminary versions appeared in (Poggio, Anselmi, and
Rosasco 2015; Poggio et al. 2015b; Mhaskar, Liao, and Pog-
gio 2016)). We formulate it in the binary tree case for sim-
plicity but it extends immediately to functions that are com-
positions of functions of d variables instead than of 2 vari-
ables as in the theorem.
Theorem 2. For f ∈ Wn,2

r the complexity of a deep net-
work (with the same compositional architecture) that pro-
vide approximation with accuracy at least ε is

N = O((n− 1)ε−2/r). (4)

Proof To prove Theorem 2, we observe that each of the con-
stituent functions being in W 2

r , (1) applied with n = 2
implies that each of these functions can be approximated
from SN,2 up to accuracy ε = cN−r/2. Our assumption that
f ∈ WN,2

r implies that each of these constituent functions
is Lipschitz continuous. Hence, one infers that, for exam-
ple, if P , P1, P2 are approximations to the constituent func-
tions h, h1, h2, respectively within an accuracy of ε, then
since ‖h − P‖ ≤ ε, ‖h1 − P1‖ ≤ ε and ‖h2 − P2‖ ≤ ε,
then ‖h(h1, h2)−P (P1, P2)‖ = ‖h(h1, h2)− h(P1, P2) +
h(P1, P2) − P (P1, P2)‖ ≤ ‖h(h1, h2) − h(P1, P2)‖ +
‖h(P1, P2) − P (P1, P2)‖ ≤ cε by Minkowski inequality.
Thus

‖h(h1, h2)− P (P1, P2)‖ ≤ cε,

for some constant c > 0 independent of the functions in-
volved. This, together with the fact that there are (n − 1)
nodes, leads to (4). �

Remarks

1. In the statement of the theorem we assume that the di-
mensionality of the functions h, that together compose f ,
is fixed (in the theorem equal to 2 and more in general
to d, whereas the dimensionality n of f can increase and
with it the depth and the number of nodes of the graph
associated with f .

2. The constants involved inO in the theorems depend upon
the norms of the derivatives of f as well as σ. Thus, when
the only a priori assumption on the target function is about
the number of derivatives, then to guarantee an accuracy
of ε, we need a shallow network with O(ε−n/r) train-
able parameters. If we assume a hierarchical structure on
the target function as in Theorem 2, then the correspond-
ing deep network yields a guaranteed accuracy of ε with
O(ε−2/r) trainable parameters.

3. Theorem 2 applies to all f with a compositional architec-
ture given by a graph which correspond to, or is a sub-
graph of, the graph associated with Wn,d

r .
4. The assumptions on σ in the theorems are not satisfied

by the ReLU function x �→ x+, but they are satisfied
by smoothing the function in an arbitrarily small inter-
val around the origin, which will not change any of the

empirical results testing deep networks reported in the lit-
erature. This strongly suggests that the result of the the-
orem should be valid also for the non-smooth ReLU. In
fact, such a proof, technically more involved, is now avail-
able (Mhaskar and Poggio 2016) (see also (Poggio et al.
2016)).

5. Similar – actually stronger – results (see (Mhaskar and
Poggio 2016)) hold for networks where each channel
evaluates a Gaussian non–linearity; i.e., Gaussian net-
works of the form

G(x) =
N∑

k=1

ak exp(−|x− xk|2), x ∈ R
d (5)

where the approximation is on the entire Euclidean space.
6. The estimates on the n–width imply that there is some

function in either Wn
r (theorem 1) or Wn,2

r (theorem 2)
for which the approximation cannot be better than that
suggested by the theorems above. This is of course the
guarantee we want but it would also be interesting to
know whether these functions are somewhat pathological.
In the case of Gaussian networks, it is proved in (Mhaskar
and Poggio 2016) that even for individual functions, it is
not possible to achieve the degree of approximation unless
the function is smooth as indicated by the above theorems.

7. Compositional functions with an associated binary tree
graph are the simplest example of hierarchically local
compositional functions(Poggio et al. 2016). They are
also a good model for deep convolutional networks, for
example of the ResNet type. According to our theory,
weight sharing is not their key advantage but hierarchi-
cal locality is. In fact simple ConvNets with and without
weight sharing perform similarly on CIFAR-10 (see (Pog-
gio et al. 2016)).

8. Remark: Function Composition There are compositional
functions of n variables such as f(x) = h3(h2(h1(x))),
where f : Rn �→ R

m, h3 : Rq �→ R
m, h2 : Rd �→ R

q ,
h1 : R

n �→ R
d, that may be approximated more effi-

ciently by deep than shallow networks. The intuition is
that sometime the constituent functions can be approxi-
mated by simpler polynomials (either degree or number
of variables or both) than the full function. For instance,
in the case of one variable consider that the proof of the
theorems in Section 4.1 implies that a hierarchical net-
work can approximate more efficiently than a shallow net-
work a high degree polynomial P in the input variables
x1, · · · , xd, that can be written as a hierarchical composi-
tion of lower degree polynomials. For example, let

P (x, y) = (Ax2y2 +Bx2y + I)2
10

.

Since P is nominally a polynomial of coordinatewise de-
gree 211, (Mhaskar 1996, Lemma 3.2) shows that a shal-
low network with 211 + 1 units is able to approximate
P arbitrarily well on Id. However, because of the hierar-
chical structure of P , (Mhaskar 1996, Lemma 3.2) shows
also that a hierarchical network with 9 units is more than
sufficient to approximate the quadratic expression, and 10
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further layers, each with 3 units can approximate the suc-
cessive powers. Thus, a hierarchical network with 11 lay-
ers and 39 units can approximate P arbitrarily well. We
note that even if P is nominally of degree 211, each of
the monomial coefficients in P is a function of only 9
variables, A, · · · , I . A much simpler example was tested
using standard DLNN software and is shown in Figure 2.
In (Poggio et al. 2016) we extend Theorem 4 to deal with
the general compositional case and, in particular, with the
example above.
On the other hand it is easy to construct counterexamples
where the composition of relatively simple functions h is
more complex than the full function f , in which case the
shallow network will be more efficient than the deep one
in learning and approximating it. Compositionality by it-
self – defined just as a hierarchy of functions – cannot
avoid the curse of dimensionality but locality in the hi-
erarchy does as our theorems show. Thus : hierarchical
locality is sufficient to avoid the curse of dimensionality.

4.2 Generalization bounds

Our estimate of the number of units and parameters needed
for a deep network to approximate compositional functions
with an error εG allow the use of one of several available
bounds for the generalization error of the network. For in-
stance theorem 16.2 in (Anthony and Bartlett 2002) provides
the following sample bound for a generalization error εG
with probability at least 1 − δ in a network in which the
W parameters (weights and biases) are expressed in terms
of k bits:

m(εG, δ) ≤ 2

ε2G
(kW log 2 + log(

2

δ
)) (6)

This suggests the following comparison between shallow
and deep compositional (here binary tree-like networks).
Assume networks size that ensure the same training error
ε . Then in order to achieve the same generalization error
εG, the sample size mshallow of the shallow network must
be much larger than the sample size mdeep of the deep net-
work:

mdeep

mshallow
≈ εn. (7)

This implies that for large n there is a (large) range of
training set sizes between mdeep and mshallow for which
deep networks will not overfit (corresponding to small εG)
but shallow networks will (for dimensionality n ≈ 104 and
ε ≈ 0.1 Equation 7 yields mshallow ≈ 1010

4

mdeep). This
observation holds under the assumption that the optimiza-
tion process during training finds optimum values of the pa-
rameters for both deep and shallow networks. For stochastic
gradient descent – which, depending on adaptive step size,
may increase with iteration number the number of effective
parametersWeffective towardsW while maintaining a well
conditioned behavior (L. Rosasco, pers. com.) – the situa-
tion is likely to be more complicated but the overall conclu-
sion about relative overfitting for deep vs. shallow networks
should still hold true.

5 Discussion

• The simplest compositional function – addition – is trivial
in the sense that it offers no approximation advantage to
deep networks. A key function is multiplication which is
the prototypical compositional functions. It is not an acci-
dent that in the case of Boolean variables the parity func-
tion f(x1, ...xn) = x1 · · ·xn is at the core of a classical
result on Boolean circuits (Hastad 1987).

• It has been often argued that not only text and speech are
compositional but so are images. There are many phe-
nomena in nature that have descriptions along a range of
rather different scales. An extreme case consists of frac-
tals which are infinitely self-similar, iterated mathemati-
cal constructs. As a reminder, a self-similar object is sim-
ilar to a part of itself (i.e. the whole is similar to one or
more of the parts). Many objects in the real world are sta-
tistically self-similar, showing the same statistical proper-
ties at many scales: clouds, river networks, snow flakes,
crystals and neurons branching. A relevant point is that
the shift-invariant scalability of image statistics follows
from the fact that objects contain smaller clusters of sim-
ilar surfaces in a selfsimilar fractal way. Ruderman (Rud-
erman 1997) analysis shows that image statistics reflects
what has been known as the property of compositional-
ity of objects and parts: parts are themselves objects, that
is selfsimilar clusters of similar surfaces in the physical
world. Notice however that, from the point of view of this
paper, it is misleading to say that an image is composi-
tional: in our terminology a function on an image may be
compositional but not its argument. In fact, functions to be
learned may or may not be compositional even if their in-
put is an image since they depend on the input but also on
the task (for instance in the supervised case of deep learn-
ing networks all weights depend on x and y). Conversely,
a network may be given a function which can be writ-
ten in a compositional form, independently of the nature
of the input vector such as the function “multiplication
of all scalar inputs’ components”. Thus a more reason-
able statement is that “many natural questions on images
correspond to algorithms which are compositional”. Why
this is the case is an interesting open question. A possible
answer is inspired by our theorems and by the empirical
success of deep convolutional networks. It seems likely
that in the natural sciences– physics, chemistry, biology
– many phenomena may be described by processes that
that take place at a sequence of increasing scales and are
local at each scale in the sense that they can be described
well by neighbor-to-neighbor interactions.
Notice that this is a much less stringent requirement than
renormalizable physical processes (Lin 2016) where the
same Hamiltonian (apart from a scale factor) is required
to describe the process at each scale. Tegmark and Lin
(Lin 2016) have also suggested that a sequence of gen-
erative processes can be regarded as a Markov sequence
that can be inverted to provide an inference problem with
a similar compositional structure. The resulting composi-
tionality they describe does not, however, correspond to
our notion of hierarchical locality and thus our theorems
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Figure 2: A sparse (because it has only a few of the possible terms) trigonometric polynomial f(x) = 2(2 cos2(x) − 1)2 − 1
(shown on the top of the figure) with one input variable is learned in a regression set-up using standard deep networks with 1,
2 or 3 hidden layers. In the 1 hidden layer setting, 24, 48, 72, 128 and 256 hidden units were tried. With 2 hidden layers, 12, 24
and 36 units per layer were tried. With 3 hidden layers, 8, 16 and 24 units per layer were tried. Each of the above settings was
repeated 5 times, reporting the lowest test error. Mean squared error (MSE) was used as the objective function; the y axes in the
above figures are the square root of the testing MSE. For the experiments with 2 and 3 hidden layers, batch normalization (Ioffe
and Szegedy 2015) was used between every two hidden layers. 60k training and 60k testing samples were drawn from a uniform
distribution over [−2π, 2π]. The training process consisted of 2000 passes through the entire training data with mini batches
of size 3000. Stochastic gradient descent with momentum 0.9 and learning rate 0.0001 was used. Implementations were based
on MatConvNet (Vedaldi and Lenc 2015). Same data points are plotted in 2 sub-figures with x axes being number of units and
parameters, respectively. Note that with the input being 1-D, the number of parameters of a shallow network scales slowly with
respect to the number of units, giving a shallow network some advantages in the right sub-figure. Although not shown here,
the training errors are very similar to those of testing. The advantage of deep networks is expected to increase with increasing
dimensionality of the function. Even in this simple case the solution found by SGD are almost certain to be suboptimal. Thus
the figure cannot be taken as fully reflecting the theoretical results of this paper.

cannot be used to support their claims. As discussed pre-
viously (Poggio, Anselmi, and Rosasco 2015) hierarchi-
cal locality may be related to properties of basic physics
that imply local interactions at each level in a sequence
of scales, possibly different at each level. To complete the
argument one would have then to assume that several dif-
ferent questions on sets of natural images may share some
of the initial inference steps (first layers in the associated
deep network) and thus share some of features computed
by intermediate layers of a deep network. In any case, at
least two open questions remain that require formal theo-
retical results in order to explain the connection between
hierarchical, local functions and physics:

– can hierarchical locality be derived from the Hamiltoni-
ans of physics? In other words, under which conditions
does coarse graining lead to local Hamiltonians?

– is it possible to formalize how and when the local hier-
archical structure of computations on images is related
to the hierarchy of local physical process that describe
the physical world represented in the image?

• We recall that several properties of certain Boolean func-
tions can be “read out” from the terms of their Fourier ex-
pansion corresponding to “large” coefficients, that is from
a polynomial that represents the function (see (Poggio,
Anselmi, and Rosasco 2015)).

Classical results (Hastad 1987) about the depth-breadth
tradeoff in circuits design show that deep circuits are more
efficient in representing certain Boolean functions than
shallow circuits. These results have been often quoted in
support of the claim that deep neural networks can rep-
resent functions that shallow networks cannot. For in-
stance (Bengio and LeCun 2007) write “We claim that
most functions that can be represented compactly by deep
architectures cannot be represented by a compact shallow
architecture”. The results reported here should settle the
issue, justifying the original conjecture by restricting it to
a class of functions and providing an approach connect-
ing results on Boolean functions with real valued neural
networks.
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