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Abstract

Regularized empirical risk minimization (R-ERM) is an im-
portant branch of machine learning, since it constrains the
capacity of the hypothesis space and guarantees the general-
ization ability of the learning algorithm. Two classic proximal
optimization algorithms, i.e., proximal stochastic gradient de-
scent (ProxSGD) and proximal stochastic coordinate descent
(ProxSCD) have been widely used to solve the R-ERM prob-
lem. Recently, variance reduction technique was proposed
to improve ProxSGD and ProxSCD, and the corresponding
ProxSVRG and ProxSVRCD have better convergence rate.
These proximal algorithms with variance reduction technique
have also achieved great success in applications at small and
moderate scales. However, in order to solve large-scale R-
ERM problems and make more practical impacts, the parallel
versions of these algorithms are sorely needed. In this paper,
we propose asynchronous ProxSVRG (Async-ProxSVRG)
and asynchronous ProxSVRCD (Async-ProxSVRCD) algo-
rithms, and prove that Async-ProxSVRG can achieve near
linear speedup when the training data is sparse, while Async-
ProxSVRCD can achieve near linear speedup regardless of
the sparse condition, as long as the number of block parti-
tions are appropriately set. We have conducted experiments
on a regularized logistic regression task. The results verified
our theoretical findings and demonstrated the practical effi-
ciency of the asynchronous stochastic proximal algorithms
with variance reduction.

1 Introduction

In this paper, we focus on the regularized empirical risk min-
imization (R-ERM) problem, whose objective is a finite sum
of smooth convex loss functions f;(x) plus a non-smooth
regularization term R(x), i.e.,

min P(z)
z€RA

1 n
F(z) + R(z) = — ;fz(m +R(z). (1)
In particular, in the context of machine learning, f;(x)
and R(z) are defined as follows. Suppose we are given a
collection of training data (a1,b1),...,(an, by ), where each
a; € R%is an input feature vector and b; € R is the out-
put variable. The loss function f;(x) measures the fitness
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of the model x on training data (a;,b;). Different learn-
ing tasks may use different loss functions, such as the least

square loss %(a?:ﬂ — b;)? for regression and the logistic loss

log(1 + exp(—b;al'z)) for classification. The regulariza-
tion term is used to constrain the capacity of the hypothesis
space. For example, the non-smooth L; regularization term
is widely used.

In order to solve the R-ERM problem, the proximal
stochastic gradient descent method (ProxSGD) has been
widely used, which exploits the additive nature of the em-
pirical risk function and updates the model based on the gra-
dient which is calculated at randomly sampled training data.
However, the random sampling in ProxSGD introduces non-
negligible variance, which makes that we need to use a de-
creasing step size to guarantee the algorithm’s convergence,
and the convergence rate is only sublinear (Langford, Li,
and Zhang 2009; Rakhlin, Shamir, and Sridharan 2011). To
tackle this problem, people have developed a set of new tech-
nologies. For example, in (Xiao and Zhang 2014), a variance
reduction technique was introduced to improve ProxSGD
and a new algorithm called ProxSVRG was proposed. It has
been proven that even with a constant step size, ProxSVRG
can achieve linear convergence rate.

Proximal stochastic coordinate descent (ProxSCD) is an-
other method which is used to solve the R-ERM problem
(Shalev-Shwartz and Tewari 2011). Since the variance in-
troduced by the coordinate sampling asymptotically goes to
zero, the ProxSCD attains linear convergence rate when the
objective function P(z) is strongly convex (Wright 2015).
However, ProxSCD still requires that all component func-
tions in the empirical risk are accessible in each iteration,
which is time consuming. In (Zhao et al. 2014), a new al-
gorithm called ProxSVRCD (also known as MRBCD) was
proposed to improve ProxSCD. This algorithm, in addition
to randomly samples a block of coordinates, also randomly
samples training data in each iteration and uses the variance
reduction technique. It has been proven that ProxSVRCD
can achieve linear convergence rate and outperform Prox-
SCD by a lower iteration complexity.

While the aforementioned new algorithms (i.e., Prox-
SVRG and ProxSVRCD) have both good theoretical proper-
ties and empirical performances, the investigations on them
were mainly conducted in the sequential (single-machine)
setting. In this big data era, we usually need to deal with



very large scale R-ERM problem. In this case, sequential
algorithms usually cost too much time. To tackle the chal-
lenge, parallelization of these algorithms is sorely needed.
Recently literature researches in parallel methods tend to use
asynchronous parallelization due to its high efficient in sys-
tem (Dean et al. 2012; Recht et al. 2011). We are interested
in asynchronous parallel implementations of the aforemen-
tioned stochastic proximal algorithms with variance reduc-
tion, which are, however, not well studied in the literature,
to the best of our knowledge.

For asynchronous ProxSVRG (Async-ProxSVRG), we
consider the consistent read setting, in which we ensure
the atomic pull and push of the whole parameter for
the local workers. For asynchronous ProxSVRCD (Async-
ProxSVRCD), since the updates are performed over coor-
dinate blocks, we only ensure the atomic pull and push
of a coordinate block of the parameter for local workers
for the sake of system efficiency. Comparing with Async-
ProxSVRG setting, we name it as inconsistent read setting.
We conduct theoretical analysis for the asynchronous algo-
rithms. According to our results: (1) Async-ProxSVRG can
achieve near linear speedup with respect to the number of lo-
cal workers, when the input feature vectors are sparse; (2) If
the data are non-sparse, ProxSVRCD can still achieve near
linear speedup, when the block size is small comparing to
the input dimension. The intuition of the linear speedup of
the asynchronous proximal algorithms with variance reduc-
tion can be explained as follows. Asynchronous implemen-
tation updates the master parameter based on the delayed
gradients. If the data are sparse for asynchronous ProxSVRG
or the coordinate block size is small comparing to the in-
put dimension for ProxSVRCD, the influence of the delayed
gradients can be bounded, and the asynchronous implemen-
tations are roughly equivalent to the sequential version.

In addition to the theoretical analysis, we have also con-
ducted experiments on benchmark datasets to test the per-
formances of the asynchronous stochastic proximal algo-
rithms with variance reduction. According to the experimen-
tal results, we have the following observations: (1) Async-
ProxSVRG have good speedup, especially for sparse data;
(2) Async-ProxSVRCD also have good speedup, and is
more efficient than Async-ProxSVRG when the input fea-
ture vectors are relatively dense or the coordinate block size
is small. (3) Async-ProxSVRG and Async-ProxSVRCD can
converge faster than other asynchronous algorithms reported
in literature such as Async-ProxSGD (Lian et al. 2015) and
Async-ProxSCD (Liu and Wright 2015). The results are
consistent across different datasets, indicating that our ob-
servations are general and the two asynchronous proximal
algorithms are highly efficient and scalable for practical use.

This paper is organized as follows: in Section 2, we briefly
introduce the stochastic proximal algorithms with variance
reduction including ProxSVRG and ProxSVRCD, and then
related works; in Section 3, we describe the asynchronous
parallelization of these algorithms; in Section 4, we prove
the convergence rates for Async-ProxSVRG and Async-
ProxSVRCD; in Section 5, we report the experimental re-
sults and make discussions; finally, in the last section, we
conclude the paper and present future research directions.
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2 Background

In this section, we will briefly introduce proximal algorithms
with variance reduction, and then review the existing conver-
gence analysis for asynchronous parallel algorithms.

2.1 ProxSGD and ProxSCD

At first, let us briefly introduce the standard stochastic prox-
imal gradient algorithms,i.e., ProxSGD and ProxSCD. With
ProxSGD, at iteration k, the update rule to solve the R-ERM
problem (i.e., Eqn (1)) is as follows:

Trt1 = Proxg, r{Tr — MV B, (xk))}, ()
where 7, is the step size, By is a mini-batch of randomly
selected training data, V f, (v1) = @ > ies, ViilTk)
and the proximal mapping is defined as prozg(y)

. 1 2
argmin, cga { 3o — yll3 + R(2)}.

ProxSCD exploits the block separability of the regu-
larization term R in the R-ERM problem, i.e.,R(x)
>y Rj(zc,), where z¢; is the j-th coordinate block of
z. For example for the L1-norm regularlzer {CJ,] =
1,---,m} is a partition of {1,---,d} with m = p—d——,
and R (Tc;) = Do c, |z, Where [ is the coordinaté index.

ProxSCD randomly selects a coordinate block and update
the coordinates in that block based on their gradients while
keeps the value of the other coordinates unchanged, i,e.,

— Ve, Flar1)} 3)

where C}, is the coordinate block sampled at iteration &, and
Ve, F(x) = [VF(z)]c,.

Tht1,0;, = ProTyRr;, {xk,cjk

2.2 Proximal Algorithms with Variance
Reduction

For ProxSGD, the step size 7y has to be decreasing in or-
der to mitigate the variance introduced by random sampling,
which usually leads to slow convergence. To tackle this
problem, one of the most popular variance reduction tech-
niques was proposed by Johnson and Zhang (Johnson and
Zhang 2013). Xiao and Zhang applied this variance reduc-
tion technique to improve ProxSGD, and a new algorithm
called ProxSVRG was proposed (Xiao and Zhang 2014).

The ProxSVRG algorithm divides the optimization pro-
cess into multiple stages. At the beginning of stage s, Prox-
SVRG calculates the full gradient at the current solution
Zs—1, i.e., VF(Zs_1). Then, at iteration k inside stage s,
the solution is updated as follows:

v = Vs, (xr) — VB, (Ts—1) + VF(Zs-1),

Tht1 = ProTy, r{Tk — MUK},

@
(S))

where —V f, (Z5—1) + VF(Zs—1) is the variance reduction
regularization term.

For ProxSCD, since the variance introduced by the block
selection asymptotically goes to zero, it attains linear con-
vergence rate. However, it still requires that all component
functions are accessible within every iteration. Zhao et.al.
used variance reduction technique to improve ProxSCD with
random training data sampling and a new algorithm called
ProxSVRCD was proposed (Zhao et al. 2014). !

'In (Zhao et al. 2014), this algorithm was named MRBCD. In
this paper, we call it ProxSVRCD to ease our reference.



ProxSVRCD is similar to ProxSVRG, the update formula
for iteration & inside stage s takes the following form:

v = VB, (xr) — VB, (Ts—1) + VF(Zs-1), (6)
@)

Try10\Cy, < Th\Cy, - (®)

where \C;, = {l : | € Uj#jk C;} and —V g, (Ts—1) +
V F(Zs—1) is the variance reduction regularization term.

Thy1,05, = ProZn,R;, {mk,cjk — MkVk,Cy, },

2.3 Ecxisting Convergence Analysis of
Asynchronous Parallel Algorithms

The asynchronous parallel methods have been successfully
applied to accelerate many optimization algorithms includ-
ing stochastic gradient descent (SGD)(Agarwal and Duchi
2011; Feyzmahdavian, Aytekin, and Johansson 2015; Recht
et al. 2011; Mania et al. 2015), stochastic coordinate de-
scent (SCD) (Liu et al. 2013; Liu and Wright 2015), stochas-
tic dual coordinate ascent (SDCA) (Tran et al. 2015) and
randomized Kaczmarz algorithm (Liu, Wright, and Sridhar
2014). However, to the best of our knowledge, the asyn-
chronous parallel versions of ProxSVRG and ProxSVRCD
are not well studied, as well as their theoretical properties.
We briefly review the works which are closely related to
ours as follows. Reddi et.al. studied asynchronous SVRG
and proved that, asynchronous SVRG can achieve near lin-
ear speedup under some sparse condition (Reddi et al. 2015).
Liu and Wright analyzed the asynchronous ProxSCD. They
proved that the asynchronous ProxSCD can achieve near lin-

ear speedup if the delay is bounded by O(d#), where d is the
input dimension (Liu and Wright 2015).

However, to the best of our knowledge, there is no study
on the asynchronous parallel versions of proximal algo-
rithms with variance reduction.

3 Asynchronous Proximal Algorithms with
Variance Reduction

In this section, we describe our Async-ProxSVRG and
Async-ProxSVRCD algorithms under the following asyn-
chronous parallel architecture. Suppose there are P local
workers and one master. For local workers, each of them has
full access to the training data and stores a non-overlapping
partition N, (p = 1,..., P) of the training data. Each lo-
cal worker independently communicates with the master to
pull the global parameters from the master, and it computes
the stochastic gradients locally and then push the gradients
to the master. For the master, it maintains the global model.
It updates the model parameters with the gradient pushed
by local workers and sends the model parameters to local
workers when it receives the pull request. Master can control
the access conflict based on different granularity. In Async-
ProxSVRG, the local worker will access the entire model in
every update. Therefore, we let master only respond to one
local worker’s request at one time, which means the global
model is atomic for all workers. In Async-ProxSVRCD, the
local worker will only access a coordinate block in every
update and different workers might work on different blocks
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without interfering with others. In this case, master will re-
spond to multiple local workers simultaneously if only they
are not accessing the same coordinate block, which means
the global model is atomic at coordinate block level.

With variance reduction technique, the optimization pro-
cess is divided into multiple stages (i.e., outer loop: s
1,---,5). In each stage, there are two phases: full gra-
dient computation and solution updates (i.e., inner loop:
k=1,---  K).

Full gradient computation: the workers collectively com-
pute the full gradient in parallel based on the entire training
data. Specifically, each worker pulls the master parameter
from the master, computes the gradients over one part of
the training data, and pushes the sum of the gradients to the
master. Then the master aggregates the gradients from the
workers to obtain the full gradient, and broadcasts it to the
workers.

Solution updates: the workers compute the VR-
regularized stochastic gradient in an asynchronous way and
the master makes updates according to the proximal algo-
rithms. To be specific, at iteration k, one local worker (who
just finished its local computation) pulls the master parame-
ters from the master, computes the VR-regularized stochas-
tic gradient according to Eqn (4) for ProxSVRG or Eqn(6)
for ProxSVRCD, and then pushes it to the master without
any synchronization with the other workers. After the mas-
ter receives the VR-regularized gradient from this worker, it
updates the master parameter according to Eqn (5) for Prox-
SVRG or Eqn (7)(8) for Prox SVRCD. Then the global clock
becomes k + 1, and the next iteration begins. Corresponding
details can be found in Algorithm 1.

Please note that, the gradient pushed by a local worker
to the master could be delayed. The reason is, when the
worker is working on its own local computation, other work-
ers might finish their computations and push their gradients
to the master, and the master updates the master parameter
accordingly. As aforementioned, for Async-ProxSVRG, the
whole model is atomic to each workers access. When the
worker 0 is working on its own local computation, worker 1
and worker 2 might finish their computations, pushed their
gradients to the master, and the master updates the master
parameter accordingly. Thus, when worker 0 finish its com-
putation and push it to the master, the global clock has al-
ready plus 2. Thus, the local gradients have delay=2 for the
current master parameter. We use a random variable 7 to
denote the delay of local gradients received by the master at
global clock k. The delay equals to the number of updates
that other workers have committed to the master between
one particular worker pulls the parameter from the master
and pushes gradients to the master. For asynchronous Prox-
SVRCD, multiple workers may access the master parameter
simultaneously, updating different coordinate blocks. Then
different coordinate blocks in the model could be inconsis-
tent regarding to the global update clock. To be precise, at
global clock k, the master makes update based on the gradi-
ents computed by a local worker, who read the first coordi-
nate block of the master parameter at global clock k& — 7.
We denote the finally pulled parameter as &, which can be
represented as below:

Bk = Tp—r,, + Z (h41 — zh), 9

heJ(k)



where J(k) C {k — 7,,k — 1}. The k-th update can be
described as xk_,_l,cjk = p?"O.’L’nkRjk wk,cjk 777kuk7cjk},
where u, = Vg, (Zr) — VB, (Z) + VF(Z). The delay 7
equals to the difference between the clock at which a local
worker pulls the first coordinate block from the master and
the clock at which the local worker pushes the gradients to
the master.

We conduct theoretical analysis for Async-ProxSVRG
and Async-ProxSVRCD based on the above setting in the
next section. Like other asynchronous parallel algorithms,
the delay also plays an important role in the convergence
rate of asynchronous proximal algorithms with variance re-
duction.

Algorithm 1 Async-ProxSVRG and Async-ProxSVRCD

Require: initial vector g, step size 7, number of inner
loops K, size of mini-batch B, number of coordinate
blocks m.

Ensure: g
fors=1,2,...,5 do

T = :is_l, Xo = T
For local worker p: calculate VF,(Z) = ZiENp V fi(Z)
and send it to the master.
For master: calculate VF(%)
send it to each local worker.
fork=1,..., K do
1. Async-ProxSVRG: consistent read
For local worker p: randomly select a mini-batch By,
with |By| = B.
Pull current state x;,_,, from the master.
Compute u, = Vi, (zr—r,) — V5, (&) + VF(Z).
Push uy, to the master.
For master:
Update z,1 = proz,r(zs — nuk).
2. Async-ProxSVRCD: inconsistent read
For local worker p: randomly select By, with |By| =
B, and randomly select ji € [m].
Pull current state Zj, from the master.
Compute u;, = V5, (1) — VB, (Z) + VF(T).
Push u;, to the master.
For master:
Update zy11,c; = prowyr;, {xk,cjk — Nug,c;y, };
Tr+1,\Cj, = Tk\Cj,

Ly VF,(&) and

end for

. 1 K
Ts = ¢ D ope1 Tk
end for

4 Convergence Analysis

In this section, we prove the convergence rates of the asyn-
chronous parallel proximal algorithms with variance reduc-
tion introduced in the previous section.

4.1 Async-ProxSVRG

At first, we introduce the following assumptions, which are
very common in the theoretical analysis for asynchronous
parallel algorithms (Recht et al. 2011; Reddi et al. 2015).
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Assumption 1: (Convexity) F'(z) and R(z) are convex
and R(z) is block sparable. The objective function P(z) is

p-strongly convex, i.e., Va,y € R4, we have,
P(y) > P(a) + " (y — 2) + Gy - al|*,¥¢ € 0P(a)?

Assumption 2: (Smoothness) The components { f;(z); i €
[n]} of F'(z) are differentiable and have Lipschitz continu-
ous partial gradients, i.e., 37, L. > 0, such that Vz,y € R4
with z; # y;, we have

(IVjfi(z) = Vi fi()ll < Tllx; —y;ll, Vi € [n],5 € [d].
IV fi(x) = Vfi(y)ll < Lz — yl|, Vi.

Assumption 3: (Bounded and Independent Delay) The
random delay variables 7y, 7o, ... in consistent read setting
are independent of each other and independent of B, and
their expectations are upper bounded by 7, i.e., Er, < 7.

Assumption 4: (Data Sparsity) The maximal frequency
of a feature appearing in the dataset is upper bounded by A.

Based on these assumptions, we prove that Async-
ProxSVRG has linear convergence rate.

Theorem 4.1 Suppose Assumptions 1-4 hold. If the step size
n < min{ﬁ, LT\/lm’
K is sufficiently large so that

B
= +
nuk (B — 8nL)

B . .
ﬁ}’ and the inner loop size

8nL
(B —8nL)

p <1,

then Async-ProxSVRG has linear convergence rate in expec-
tation:

EP(#,) — P(") < p'[P(30) — P(a")],
where * = argming P(z).

Due to space limitation, we only provide the proof sketch
and put the proof details into supplementary materials.
Proof Sketch of Theorem 4.1:

Firstly we introduce some notations. Let 2541 — x =
—NGk, Vi Vka (:Ek?) - Vka (i‘) + VF(‘%)’ and
ug = VB, (xk_m) - Vs, () + VF(2).

Step 1: By the sparsity assumption, we have

F(z) > F(y) — VF(@)(y - 7) - “2 |z — g2

5 10)

Step 2: By using the convexity assumption and Ineq.(10),
we have:

P(z") > P(xiy1) + (e — VF(2-7,)) " (@1 — ") +

L QATk k *
nllgell® = =T 30 llgnll® + 6k (@7 — @ien). (D)

h=k—T1

Step 3: We use Lemma 3 in (Xiao and Zhang 2014) to
bound the term Eg, (ux — VF(zk—r, )T (Th11 — %) in
Ineq.(11).

Step 4: By following the proof of ProxSVRG, and set n

; : 1 1 B
that satisfies 7 < min{ 7x-=, AR T6r }» We can get the
results.
’In this paper, if there is no specification, || - || is the La-norm.



Remark: Theorem 4.1 actually shows that, Async-
ProxSVRG can achieve linear speedup when A is small
and 7 < +/8/B2?A. L/u = +/n(Shamir, Srebro, and
Zhang 2014). For sequential ProxSVRG, with step size n =
0.1B/L, the inner loop size K should be in the same order
of O(L/Bu) to make p < 1. The computation complexity
(number of gradients need to calculate) for the inner loop
is in the same order of O(L/u). For the Async-ProxSVRG,

with ) = min{ 7%=, Ln/lsﬁ’ 00583 'the inner loop size K

should be in the same order of O(AT?L/pu + 7vV8BAL/pu +
L/By) to make p < 1.
For the case 7 < min{,/50/B%A, /5/BA} (i.e., %038

is smaller than the other two), by setting = %928 the
order of inner loop size K is O(L/B) and the correspond-
ing computation complexity is O(L/u), which is the same
as the sequential ProxSVRG. Therefore, Async-ProxSVRG
can achieve nearly the same performance as the sequential
version, but 7 times faster since we are running the algorithm
asynchronously, and thus we achieve “linear speedup”.

For the case 7 > min{,/50/B3A, /5/BA}, the inner
loop size K should be in the same order of O((BAT +
Bv8BA)TL/Bu). Compared with the sequential Prox-
SVRG, Async-ProxSVRG can not obtain linear speedup but
still have a theoretical speedup of 1/(BAT + BV8BA) if
BAT+ BvV8BA < 1.

According to Theorem 4.1 and the above discussions, we
provide the following corollary for a setup of the parameters
in Async-ProxSVRG which can achieve near linear speedup.

Corollary 4.2 Suppose Assumptions 1-4 hold. If we set B =

1 1 1
1\% 1 __ 0.05A%6 _ 200LA%
(A) , T < 4/B5/A2, n = 2522 and K = , then

Async-ProxSVRG has the following linear convergence rate:

where ©* = argmin, P(x).

4.2 Async-ProxSVRCD

In this section, we present Theorem 4.3, which states the
convergence rate of Async-ProxSVRCD, as well as the con-
ditions for them to achieve near linear speedup.
Assumption 3’:(Bounded and Independent Delay) The
random delay variables 71, 75, ... in inconsistent read setting
in Eqn 9 are independent of each other and independent of
B, and their expectations are upper bounded by 7.
Theorem 4.3 Suppose Assumptions 1, 2, and 3' hold. In
addition, we assume that the mini-batch size B > L/T,
the step size n and the coordinate block number m satis-

Hy/m

3
1 m?2 —T1 1
5’ 8T 2T

fiesn < min < %

}, and the inner loop

3
m243mt+T1

size K is sufficiently large so that

_ m INT(K +1) <1
nuK (1 — F —4nT) (1 — 2 — dnT)K ’

then Async-ProxSVRCD has linear convergence in expecta-
tion:

EP(Zs) — P(z%) < p*[P(Zo) — P(z7)],

where ©* = argming P(x).
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Proof Sketch of Theorem 4.3:

We still use the notations gg, ug, vy, defined before. Let
Trp1 = argmingcpa { 2|z — xx — nusl|> + nR(z)} . Recall-
ing the update rule for z; in Alg.1 and taking expectation
with respect to 53, we have

1

—(@rt1 — k)

Ejk(‘r’ﬁq —:vk) = (12)

1
Ejplloess — okl* = —[lzess —aul”. (13)
Step 1: By using Assumption 1, Eq.(12), Eq.(13), we have
P(z*) >
T 2
- )mE;, lgell”
+(vw = VF(zi))" (@1 — 27) + mEj, (gr)" (27 — z1)

+(vf5k (jk) - vak (-Tk))T(CEk-H — :r*)

mE;, P(zx4+1) — (m — 1)P(ax) + (n —

Step 2: We decompose the term —(Vfg,(&x) —
V f5,, ()T (Zx+1 —=*) and show that this term can be upper
bounded by:

k—1

(Izat1 — zall[Zhs1 — 2kl + Tat1 — zall[lza — 7))
a=k—T1

k—1

ko
[

Jr

a=k—T1

[Za+1 = zalll|lzp+1 = 2o]l.

=a

(S

By taking expectation w.r.t ji,-- -, ji gradually and using
Eq.(12),Eq.(13), we can bound the three terms by consider-
ing the independent property (Assumption 3'). This is a key
step for the proof and please see the details in the supple-
mentary materials.

Step 3: Under the condition about 7, and following the
proof of ProxSVRCD, we can get the results.

Remark: Theorem 4.3 actually shows that when m
is large (or equivalent the block size is small) and
T < min{\/ﬁ, 4p\/7n,m%/2T}, Async-ProxSVRCD can
achieve linear speedup. For the sequential ProxSVRCD,
Corollary 4.3 in (Zhao et al. 2014) set n 1/16T,
B L/T and the inner loop size K in the same
order of O(mT/u) to make p < 1. For Async-
ProxSVRCD, if m is sufficiently large so that the de-

lay satisfies 7 < min{dmAudm,mg/QT}, we can

set = 1/24T which guarantees the condition n <
3
min {%M, o *;‘T/? . Thus, the inner loop size K

m%+3mﬂ'+‘rz
should be O(mT'/u) to make p < 1, which is the same
as sequential ProxSVRCD. Therefore, Async-ProxSVRCD
can achieve near linear speedup. If we consider the in-
dicative case (Shamir, Srebro, and Zhang 2014) in which
L/p=+/n, L =0(1)and p = O(y/1/n). The condition
for the linear speedup can be simplified to 7 < 4/m/n.
Even if 4/m/n < 7 < y/m, Async-ProxSVRCD still have

. N
a speedug of O(y/m/n) by setting n < 55 = 777,
since—22 =17 2@.

m?2+3mr+72



According to Theorem 4.3 and the above discussions, we
provide the following corollary for a setup of the parameters
in Async-ProxSVRCD which achieves near linear speedup.

Corollary 4.4 Suppose Assumptions 1,2, and 3' hold and
the delay bound satisfies T < min {\/ﬁ, 4p/m, m%/ZT}.

Letn =1/24T, B = L/T and K = %, then Async-
ProxSVRCD has the following linear convergence rate:

BP(5) - Ple’) < (3) 1Pan) - Pl
where x* = argmin, P(x).

By comparing the conditions of the linear speedup for
asynchronous Proximal algorithms, we have the following
findings: (1) Async-ProxSVRG relies on the data sparsity to
alleviate the negative impact of communication delay 7; (2)
Async-ProxSVRCD does not rely on the sparsity condition,
however, it requires the block size is small or the input di-
mension is large, since in this way, the block-wise updates
will become frequent and can also alleviate the delay of the
whole parameter vector.

To sum up, based on a few widely used assumptions, we
have proven the convergence properties of the asynchronous
parallel implementations of ProxSVRG, and ProxSVRCD,
and discussed the conditions for them to achieve near linear
speedups as compared to their sequential (single-machine)
counterparts. In the next section, we will report the results
of our experiments to verify these theoretical findings.

S Experiments

In this section, we report our experimental results on the ef-
ficiency of the asynchronous proximal algorithms with vari-
ance reduction. In particular, we conducted binary classifi-
cations on three benchmark datasets: rcvi, real-sim, news20
(Reddi et al. 2015), new20 is the densest one with a much
higher dimension and rcv! is the sparsest one. The detailed
information about the three data sets is given in Table 1. We
use the logistic loss function with both L; and L, regular-
izations with weight A\; and A, respectively.

Table 1: Experimental Datasets

Dataset revl real-sim news20
Data size n 20242 72309 19996
Feature size d 47236 20958 1355191
A1, Ao 1075,107* 107%*,107* 107°,107*

Following the practices in (Xiao and Zhang 2014), we
normalized the input vector of each data set before feeding
it into the classifier, which leads to an upper bound of 0.25
for the Lipschitz constant L. The stopping criterion for all
the algorithms under investigation is the optimization error
smaller than 10719 (i.e.,, P(Zg) — P(z*) < 10719). For
Async-ProxSVRG, we set step size n = 0.04, the mini-
batch size B = 200, and the inner loop size K = 2n, where
n is the data size. For Async-ProxSVRCD, we set step size
1 = 0.04, the number of block partitions m = —4-, the mini-

100°
batch size B = 200, and a larger inner loop size K = 2nm.
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Figure 1: Results for the speedups of asynchronous algo-
rithms

We implement Async-ProxSVRG and Async-ProxSVRCD
in the consistent read setting and the inconsistent read set-
ting, respectively.

Figures 1(a) and 1(b) show the speedups of Async-
ProxSVRG and Async-ProxSVRCD, respectively. From the
figures, we have the following observations. (1) On all the
three datasets, Async-ProxSVRG has near linear speedup
compared to its sequential counterpart. The speedup on rcvi
is the largest, while that on news20 is the smallest. This
observation is consistent with our theoretical findings that
Async-ProxSVRG has better performance on sparser data.
(2) Async-ProxSVRCD also achieves nice speedup. The
speedup is more significant for news20 than that for the
other two data sets. This is consistent with our theoretical
discussions - the sufficient condition for the linear speedup
of Async-ProxSVRCD is easier to be satisfied for high-
dimensional datasets. As literature also reported other asyn-
chronous algorithms, such as Async-ProxSGD and Async-
ProxSCD, we also compare with them to test the perfor-
mance of our algorithms. For saving space, we put the de-
tailed results in the supplementary materials.

In summary, our experimental results well validate our
theoretical findings, and indicate that the asynchronous
proximal algorithms with variance reduction are very effi-
cient and could have good applications in practice.

6 Conclusion

In this paper, we have studied the asynchronous paral-
lelization of two widely used proximal gradient algorithms
with variance reduction, i.e., ProxSVRG and ProxSVRCD.
We have proved their convergence rates, discussed their
speedups, and verified our theoretical findings through ex-
periments. Overall speaking, these asynchronous proximal
algorithms can achieve linear speedup under certain condi-
tions, and can be highly efficient when being used to solve
large scale R-ERM problems. As for future work, we plan
to make the following explorations. First, we will extend the
study in this paper to the non-convex case, both theoretically
and experimentally. Second, we will study the asynchronous
parallelization of more proximal algorithms.
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