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Abstract

We present a new perspective on the popular multi-class al-
gorithmic techniques of one-vs-all and error correcting out-
put codes. Rather than studying the behavior of these tech-
niques for supervised learning, we establish a connection be-
tween the success of these methods and the existence of label-
efficient learning procedures. We show that in both the re-
alizable and agnostic cases, if output codes are successful
at learning from labeled data, they implicitly assume struc-
ture on how the classes are related. By making that struc-
ture explicit, we design learning algorithms to recover the
classes with low label complexity. We provide results for the
commonly studied cases of one-vs-all learning and when the
codewords of the classes are well separated. We additionally
consider the more challenging case where the codewords are
not well separated, but satisfy a boundary features condition
that captures the natural intuition that every bit of the code-
words should be significant.

1 Introduction

Motivation: Large scale multi-class learning problems with
an abundance of unlabeled data are ubiquitous in modern
machine learning. For example, an in-home assistive robot
needs to learn to recognize common household objects, fa-
miliar faces, facial expressions, gestures, and so on in or-
der to be useful. Such a robot can acquire large amounts
of unlabeled training data simply by observing its surround-
ings, but it would be prohibitively time consuming (and frus-
trating) to ask its owner to annotate any significant portion
of this raw data. More generally, in many modern learn-
ing problems we often have easy and cheap access to large
quantities of unlabeled training data (e.g., on the internet)
but obtaining high-quality labeled examples is relatively ex-
pensive. More examples include text understanding, recom-
mendation systems, or wearable computing (Thrun 1996;
Thrun and Mitchell 1995b; 1995a; Mitchell et al. 2015). The
scarcity of labeled data is especially pronounced in problems
with many classes, since supervised learning algorithms re-
quire labeled examples from every class. In such settings,
algorithms should make the best use of unlabeled data in or-
der to minimize the need for expensive labeled examples.
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Overview: We approach label-efficient learning by mak-
ing the implicit assumptions of popular multi-class learn-
ing algorithms explicit and showing that they can also be
exploited when learning from limited labeled data. We fo-
cus on a family of techniques called output codes that work
by decomposing a given multi-class problem into a collec-
tion of binary classification tasks (Mohri, Rostamizadeh, and
Talwalkar 2012; Dietterich and Bakiri 1995; Langford and
Beygelzimer 2005; Beygelzimer, Langford, and Ravikumar
2009). The novelty of our results is to show that the existence
of various low-error output codes constrains the distribution
of unlabeled data in ways that can be exploited to reduce the
label complexity of learning. We consider both the consis-
tent setting, where the output code achieves zero error, and
the agnostic setting, where the goal is to compete with the
best output code. The most well known output code tech-
nique is one-vs-all learning, where we learn one binary clas-
sifier for distinguishing each class from the union of the rest.
When output codes are successful at learning from labeled
data, it often implies geometric structure in the underlying
problem. For example, if it is possible to learn an accurate
one-vs-all classifier with linear separators, it implies that no
three classes can be collinear, since then it would be impos-
sible for a single linear separator to distinguish the middle
class from the union of the others. In this work, we exploit
this implicitly assumed structure to design label-efficient al-
gorithms for the commonly assumed cases of one-vs-all and
error correcting output codes, as well as a novel boundary
features condition that captures the intuition that every bit of
the codewords should be significant.

Our results: Before discussing our results, we briefly re-
view the output code methodology. For a problem with
L classes, a domain expert designs a code matrix C ∈
{±1}L×m where each column partitions the classes into two
meaningful groups. The number of columns m is chosen by
the domain expert. For example, when recognizing house-
hold objects we could use the following true/false ques-
tions to define the partitions: “is it made of wood?”, “is
it sharp?”, “does it have legs?”, “should I sit on it?”, and
so on. Each row of the code matrix describes one of the
classes in terms of these partitions (or semantic features).
For example, the class “table” could be described by the
vector (+1,−1,+1,−1), which is called the class’ code-
word. Once the code matrix has been designed, we train an
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output code by learning a binary classifier for each of the
binary partitions (e.g., predicting whether an object is made
of wood or not). To predict the class of a new example, we
predict its codeword in {±1}m and output the class with the
nearest codeword under the Hamming distance. Two popular
special cases of output codes are one-vs-all learning, where
C is the identity matrix (with -1 in the off-diagonal entries),
and error correcting output codes, where the Hamming dis-
tance between the codewords is large.

In each of our results we assume that there exists a con-
sistent or low-error linear output code classifier and we im-
pose constraints on the code matrix and the distribution that
generates the data. We present algorithms and analysis tech-
niques for a wide range of different conditions on the code
matrix and data distribution to showcase the variety of im-
plicit structures that can be exploited. For the code matrix,
we consider the case when the codewords are well separated
(i.e., the output code is error correcting), the case of one-
vs-all (where the code matrix is the identity), and a natural
boundary features condition. These conditions can loosely
be compared in terms of the Hamming distance between
codewords. In the case of error correcting output codes, the
distance between codewords is large (at least d + 1 when
the data is d-dimensional), in one-vs-all the distance is al-
ways exactly 2, and finally in the boundary features condi-
tion the distance can be as small as 1. In the latter cases, the
lower Hamming distance requirement is balanced by other
structure in the code matrix. For the distribution, we either
assume that the data density function satisfies a thick level
set condition or that the density is upper and lower bounded
on its support. Both regularity conditions are used to ensure
that the geometric structure implied by the consistent output
code will be recoverable based on a sample of data.
Error correcting output codes: We first showcase how
to exploit the implicit structure assumed by the commonly
used and natural case of linear output codes where the Ham-
ming distance between codewords is large. In practice, out-
put codes are designed to have this property in order to be
robust to prediction errors for the binary classification tasks
(Dietterich and Bakiri 1995). We suppose that the output
code makes at most β errors when predicting codewords and
has codewords with Hamming distance at least 2β + d + 1
in a d-dimensional problem. The key insight is that when
the code words are well separated, this implies that points
belonging to different classes must be geometrically sepa-
rated as well. This suggests that tight clusters of data will
be label-homogeneous, so we should be able to learn an ac-
curate classifier using only a small number of label queries
per cluster. The main technical challenge is to show that our
clustering algorithm will not produce too many clusters (in
order to keep the label complexity controlled), and that with
high probability, a new sample from the distribution will
have the same label as its nearest cluster. We show that when
the data density satisfies a thick-level set condition (requir-
ing that its level sets do not have bridges or cusps that are too
thin), then a single-linkage clustering algorithm can be used
to recover a small number of label-homogeneous clusters.
One-vs-all: Next, we consider the classic one-vs-all setting
for data in the unit ball. This is an interesting setting because

of the popularity of one-vs-all classification and because it
significantly relaxes the assumption that the codewords are
well separated (in a one-vs-all classifier, the Hamming dis-
tance between codewords is exactly 2). The main challenge
in this setting is that there need not be a margin between
classes and a simple single-linkage style clustering might
group multiple classes into the same cluster. To overcome
this challenge, we show that the classes are probabilistically
separated in the following sense: after projecting onto the
surface of the unit ball, the level sets of the projected den-
sity are label-homogeneous. Equivalently, the high-density
regions belonging to different classes must be separated by
low-density regions. We exploit this structure by estimating
the connected components of the ε level set using a robust
single-linkage clustering algorithm.
The boundary features condition: We introduce an inter-
esting and natural condition on the code matrix capturing
the intuition that every binary learning task should be sig-
nificant. This condition has the weakest separation require-
ment, allowing the codewords to have a Hamming distance
of only 1. This setting is our most challenging, since it al-
lows for the classes to be very well connected to one another,
which prevents clustering or level set estimation from being
used to find a small number of label-homogeneous clusters.
Nevertheless, we show that the implicit geometric structure
implied by the output code can be exploited to learn using a
small number of label queries. In this case, rather than clus-
tering the unlabeled sample, we apply a novel hyperplane-
detection algorithm that uses the absence of data to learn
local information about the boundaries between classes. We
then use the implicit structure of the output code to extend
these local boundaries into a globally accurate classifier.
Agnostic Setting: Finally, we show that our results for all
three settings can be extended to an agnostic learning sce-
narios, where we do not assume that there exists a consistent
output code classifier and the goal is to compete with the
best linear output code.

Our results show an interesting trend: when linear out-
put codes are able to learn from labeled data, it is possible
to exploit the same underlying structure in the problem to
learn using a small number of label requests. Our results
hold under several natural assumptions on the output code
and general conditions on the data distribution, and employ
both clustering and hyperplane detection strategies to reduce
the label complexity of learning.

Full proofs of all our results can be found in the full ver-
sion of the paper (Balcan, Dick, and Mansour 2016), while
we present the modeling and technical flow of ideas here.

2 Related Work

Reduction to binary classification is one of the most widely
used techniques in applied machine learning for multi-class
problems. Indeed, the one-vs-all, one-vs-one, and the error
correcting output code approaches (Dietterich and Bakiri
1995) all follow this structure (Mohri, Rostamizadeh, and
Talwalkar 2012; Langford and Beygelzimer 2005; Beygelz-
imer, Langford, and Ravikumar 2009; Daniely, Schapira,
and Shahaf 2012; Allwein, Schapire, and Singer 2000).
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There is no prior work providing error bounds for out-
put codes using unlabeled data and interaction. There has
been a long line of work for providing provable bounds for
semi-supervised learning (Balcan, Blum, and Yang 2004;
Balcan and Blum 2010; Blum and Mitchell 1998; Chapelle,
Schlkopf, and Zien 2010) and active learning (Balcan,
Beygelzimer, and Lanford 2006; Dasgupta 2011; Balcan and
Urner 2015; Hanneke 2014). These works provide bounds
on the benefits of unlabeled data and interaction for signif-
icantly different semi-supervised and active learning meth-
ods that are based different assumptions, often focusing on
binary classification, thus the results are largely incompara-
ble. Another line of recent work considers the multi-class
setting and uses unlabeled data to consistently estimate the
risk of classifiers when the data is generated from a known
family of models (Donmez, Lebanon, and Balasubrama-
nian 2010; Balasubramanian, Donmez, and Lebanon 2011a;
2011b). Their results do not immediately imply learning al-
gorithms and they consider generative assumptions, while
in contrast our work explicitly designs learning algorithms
under commonly used discriminative assumptions.

Another work related to ours is that of Balcan, Blum, and
Mansour (2013), where labels are recovered from unlabeled
data. The main tool that they use in order to recover the la-
bels is the assumption that there are multiple views and an
underlying ontology that are known, and restrict the possi-
ble labeling. Similarly, Steinhardt and Liang (2016) show
how to use the method of moments to estimate the risk of
a model from unlabeled data under the assumption that the
data has three independent views. Our work is more widely
applicable, since it applies when we have only a single view.

The output-code formalism is also used by Palatucci et al.
(2009) for the purpose of zero shot learning. They demon-
strate that it is possible to exploit the semantic relationships
encoded in the code matrix to learn a classifier from labeled
data that can predict accurately even classes that did not ap-
pear in the training set. These techniques make very similar
assumptions to our work but require that the code matrix C
is known and the problem that they solve is different.

3 Preliminaries

We consider multiclass learning problems over an instance
space X ⊂ R

d where each point is labeled by f∗ : X →
{1, . . . , L} to one out of L classes and the probability of
observing each outcome x ∈ X is determined by a data dis-
tribution P on X . The density function of P is denoted by
p : X → [0,∞). In all of our results we assume that there
exists a consistent (but unknown) linear output-code classi-
fier defined by a code matrix C ∈ {±1}L×m and m linear
separators h1, . . . , hm. We denote class i’s code word by
Ci and define h(x) = (sign(h1(x)), . . . , sign(hm(x))) to
be the code word for point x. We let dHam(c, c

′) denote the
Hamming distance between any codewords c, c′ ∈ {±1}m.
To simplify notation, we assume that X has diameter ≤ 1.

Our goal is to learn a hypothesis f̂ : X → {1, . . . , L}
minimizing errP (f̂) = PrX∼P (f̂(x) �= f∗(x)) from an un-
labeled sample drawn from the data distribution P together
with a small set of actively queried labeled examples.

Finally, we use the following notation throughout the pa-
per: for any set A in a metric space (X , d), the σ-interior
of A is the set intσ(A) = {x ∈ A : B(x, σ) ⊂ A}. The
notation Õ(·) suppresses logarithmic terms.

4 Error Correcting Output Codes

We first consider the implicit structure when there exists a
consistent linear error correcting output code classifier:

Assumption 1. There exists a code matrix C ∈ {±1}L×m

and linear functions h1, . . . , hm such that: (1) there ex-
ists β ≥ 0 such that any point x from class y satisfies
dHam(h(x), Cy) ≤ β, (2) The Hamming distance between
the codewords of C is at least 2β + d+1; and (3) at most d
of the separators h1, . . . , hm intersect at any point.

Part (1) of this condition is a bound on the number of lin-
ear separators that can make a mistake when the output code
predicts the codeword of a new example, part (2) formal-
izes the requirement of having well separated codewords,
and part (3) requires that the hyperplanes be in general posi-
tion, a very mild condition that can be satisfied by adding an
arbitrarily small perturbation to the linear separators.

Despite being very natural, Assumption 1 conveniently
implies that there is a margin between classes.

Lemma 1. Under Assumption 1, there exists g > 0 s.t. any
points x and x′ with different labels satisfy ‖x− x′‖ > g.

Lemma 1 suggests a clustering based approach. Any
single-linkage style clustering algorithm that only merges
clusters closer than distance g will produce label-
homogeneous clusters, so we can query the label of a single
point per cluster. See Algorithm 1 for pseudocode.

Input: Sample S = {x1, . . . , xn}, rc > 0, ε > 0.
1. Let {Â1}Ni=1 be the connected components of the

graph G with vertex set S and an edge between xi

and xj if ‖xi − xj‖ ≤ rc.
2. In decreasing order of size, query the label of each

Âi until ≤ ε
4n points belong to unlabeled clusters.

3. Output f̂(x) = label of nearest labeled cluster to x.

Algorithm 1: Single-linkage learning.

In order to get a meaningful reduction in label complex-
ity, we need to ensure that most of the samples belong to a
small number of clusters. For this purpose, we borrow the
following very general and interesting thick level set con-
dition from Steinwart (2015): a density function p has C-
thick level sets if there exists a level λ0 > 0 and a ra-
dius σ0 > 0 such that for every level λ ≤ λ0 and radius
σ < σ0, (1) the σ-interior of {p ≥ λ} is non-empty and (2)
every point in {p ≥ λ} is at most distance Cσ from the σ-
interior. This condition elegantly characterizes a large family
of distributions for which single-linkage style clustering al-
gorithms succeed at recovering the high-density clusters and
only rules out distributions whose level sets have bridges or

1737



cusps that are too thin. The thickness parameter C measures
how pointed the boundary of the level sets of p can be. For
example, in R

d if the level set of p is a ball then C = 1,
while if the level set is a cube, then C =

√
d.

Using the thick level set condition to guarantee that our
clustering algorithm will not subdivide the high-density
clusters of p, we obtain the following result for Algorithm 1.
Theorem 1. Suppose that Assumption 1 holds and that the
data distribution has C-thick level sets. For any target error
ε > 0, let N be the number of connected components of
{p ≥ ε/(2Vol(K))}. With probability at least 1−δ, running
Algorithm 1 with parameter rc = g on an unlabeled sample
of size n = Õ( 1

ε2 ((4C)2ddd+1/r2dc +N)) will query at most
N labels and output a classifier with error at most ε.

The exponential dependence on the dimension in Theo-
rem 1 is needed to ensure the sample S will be a fine cov-
ering of the level set of p w.h.p, which guarantees that Al-
gorithm 1 will not subdivide its connected components into
smaller clusters. When the data has low intrinsic dimension-
ality, the unlabeled sample complexity is only exponential
in the intrinsic dimension. In particular, under the common
assumption that the distribution is a doubling measure, the
unlabeled sample complexity is exponential only in the dou-
bling dimension. A probability measure P has doubling di-
mension D if for all points x in the support of P and every
radius r > 0, we have that P (B(x, 2r)) ≤ 2DP (B(x, r))
(see, for example, (Dasgupta and Sinha 2013)).
Theorem 2. Suppose that Assumption 1 holds the data dis-
tribution P has doubling dimension D, and the support of P
has N connected components. With probability at least 1−δ,
running Algorithm 1 with parameter rc = g on a sample of
size n = Õ

(
d/r2Dc +N/ε2

)
will query at most N labels and

have error at most ε.
The unlabeled sample complexity and parameter settings

in Theorem 1 depend on the gap g. Such a scale parame-
ter must appear in our results, since Assumption 1 is scale-
invariant, yet our algorithm exploits scale-dependent geo-
metric properties of the problem. If we have a conservatively
small estimate ĝ ≤ g, then the conclusion of Theorem 1 and
Theorem 2 continue to hold if the connection radius and un-
labeled sample complexity are set using the estimate ĝ. Nev-
ertheless, in some cases we may not have an estimate of g.
The following result shows that if we have an estimate of
the number of high-density clusters, and these clusters have
roughly balanced probability mass, then we are still able to
take advantage of the geometric structure even when the dis-
tance g is unknown. The idea is to construct a hierarchical
clustering of S using single linkage, and then to use a small
number of label queries to find a good pruning. See Algo-
rithm 2 for pseudocode.
Theorem 3. Suppose Assumption 1 holds and the density
p has C-thick level sets. For any 0 < ε ≤ 1/2, sup-
pose that {Ai}Ni=1 are the connected components of {p ≥
ε/(2Vol(K))} and for some α ≥ 1 we have P (Ai) ≤
αP (Aj) for all i, j. With probability ≥ 1 − δ, running Al-
gorithm 2 with t = Õ(αN) on an unlabeled sample of size
n = Õ( 1

ε2 (C
2ddd+1/g2d +N)) will have error ≤ ε.

Input: Sample S = {x1, . . . , xn}, t ∈ N.
1. Let T be the hierarchical clustering of S obtained by

single-linkage.
2. Query the labels of a random subset of S of size t.
3. Let {B̂i}Mi=1 be the coarsest pruning of T such that

each B̂i contains labels from one class.
4. Output f̂(x) = label of nearest B̂i to x.

Algorithm 2: Hierarchical single-linkage learning.

θ

q(θ)
K1

K2

K3

Figure 1: An example problem satisfying Assumption 2 and
the projected density q when the density p is uniform on K.

In this section we showed that when there exists linear
error correcting correcting output code with low error, then
it is possible to reduce the label complexity of learning to
the number of high-density clusters, which are the connected
components of {p ≥ ε}.

5 One-Versus-All on the Unit Ball

In this section we show that even when the codewords are
not well separated, we can still exploit the implicit structure
of output codes to reduce the label complexity of learning
by clustering the data. Specifically, we consider the implicit
structure of a linear one-vs-all classifier over the unit ball:
Assumption 2. The instance space X is the unit ball and
there exist L linear separators h1, . . . , hL such that: (1)
point x belongs to class i iff hi(x) > 0, and (2) for all i,
hi(x) = w�

i x− bi with ‖wi‖ = 1 and bi ≥ bmin > 0.
See Figure 1 for an example problem satisfying this con-

dition. Since a one-vs-all classifier is an output code where
the code matrix is the identity, the Hamming distance be-
tween any pair of codewords is exactly 2. In this setting we
do not have a result similar to Lemma 1 ensuring geometric
separation of the classes. Instead, we exploit the one-vs-all
structure to show the classes are probabilistically separated
and use a robust clustering algorithm.

As before, we study this problem under a mild constraint
on the data distribution. For each class i, denote the set of
points in class i by Ki = {x : ‖x‖ ≤ 1, hi(x) > 0} and let
K =

⋃L
i=1 Ki. In this section, we assume that the density p

is supported on K with upper and lower bounds:
Assumption 3. There exist constants 0 < clb ≤ cub s.t. for
x ∈ K we have clb ≤ p(x) ≤ cub and otherwise p(x) = 0.

This distributional constraint is quite general: it only re-
quires that the density is supported on examples for which
exactly one linear separators claim the point is positive and
the density does not take extreme values.
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Our algorithm for this setting projects the data onto the
unit sphere Sd−1 = {x ∈ R

d : ‖x‖ = 1} followed by a ro-
bust clustering algorithm. The projection does not introduce
errors, since each linear separator carves out a spherical cap
for its class, and no two class caps overlap. Given that no
class contains the origin, an examples label depends only
on its projection to the sphere. We show that projecting to
the sphere has the useful property that the projected density
goes to zero at the boundary of the classes, leading to proba-
bilistic separation. Algorithm 3 gives pseudocode, using the
notation θ(u, v) for the angle between u and v and V d(r) for
the probability that a uniformly random sample from Sd−1

lands in a given spherical cap of angular radius r.

Input: Sample S = {x1, . . . , xn}, rc > 0, ε > 0.
1. Define ra = rc/2 and τ = clb

2cub
V d(ra)ε.

2. Let vi = xi

‖xi‖ be the projection of xi to the sphere.
3. Mark vi active if |{vj : θ(vi, vj) ≤ ra}| ≥ τn and

inactive otherwise for i ∈ [n].
4. Let Â1, . . . , ÂN be the connected components of

the graph G whose vertices are the active vi with an
edge between vi and vj if θ(vi, vj) < rc.

5. In decreasing order of size, query the label of each
Âi until ≤ ε

4n points belong to unlabeled clusters.
6. Output f̂(x) = label of nearest cluster to x/‖x‖.

Algorithm 3: Robust single-linkage learning.

Our first result characterizes the density of the projected
data (defined relative to the uniform distribution on Sd−1).
Lemma 2. Suppose Assumptions 2 and 3 hold and let q :
Sd−1 → [0,∞) be the density function of the data projected
onto the unit sphere. Then qlb(v) ≤ q(v) ≤ qub(v), where

qlb(v) =

{
clbdvd(1− (bi/w

�
i v)

d) if v ∈ Ki

0 otherwise,

and qub(v) = cub/clb · qlb(v), where vd is the volume of the
unit ball in d dimensions.

Both bounds are defined piecewise with one piece for
each class. Restricted to class i, both qlb(v) and qub(v) are
decreasing functions of θ(wi, v), which implies that their
λ-level sets are spherical caps. Therefore, each class con-
tributes one large connected component to the level set of q
that is roughly a spherical cap centered at the point wi and
the density of q goes to zero at the boundary of each class.
Our main result is as follows:
Theorem 4. Suppose Assumptions 2 and 3 hold and
that f∗ is consistent. There exists an rc satisfying rc =
Ω(εclb/(c

2
ubbmin)) such that with probability at least 1− δ,

running Algorithm 3 with parameter rc on an unlabeled
sample of size n = Õ((c4ubd/(ε

2c2lbb
2
min))

d) will query at
most L labels and output a classifier with error at most ε.

If the scale parameter bmin is unknown, Theorem 4 con-
tinues to hold if we use an underestimate b̂min ≤ bmin.

h1

h2h3

K1 K2

K3

K4

Figure 2: Left: An example boundary features problem. The
shaded regions correspond to the four classes. Right: Exam-
ple half-balls that pass or fail the test in step (2b) of Algo-
rithm 4. The four innermost half-balls are accepted.

There are two main differences between the sample com-
plexity of Theorem 4 and the results from Section 4. First,
the unlabeled sample complexity now has an ε−2d depen-
dence, rather than only ε−2. This is because the distance be-
tween the connected components of {p ≥ ε} goes to zero
(in the worst case) as ε → 0, so our algorithm must be
able to detect low-density regions of small width. In con-
trast, Lemma 1 allowed us to establish a non-diminishing
gap g > 0 between the classes when the codewords were
well separated. On the other hand, the label complexity in
this setting is better, scaling with L instead of N , since we
are able to establish that each class will have one very large
cluster containing nearly all of its data.

6 The Boundary Features Condition

In this section we introduce a novel condition on the code
matrix called the boundary features condition that captures
the intuition that every binary classification task should be
significant. Assumption 4 formalizes this intuition.
Assumption 4. There exists a code matrix C ∈ {±1}L×m,
linear functions h1, . . . , hm, and a scale parameter R > 0
so that: (1) for any point x in class y, we have h(x) = Cy;
(2) for each hj , there exists a class i such that negating the
jth entry of Ci produces a codeword C ′

i not in C and there
exists a point x on the hyperplane hj = 0 such that every
point in B(x,R) has either code word Ci or C ′

i; and (3) any
pair of points x, x′ ∈ X such that h(x) and h(x′) are not
codewords in C and h(x) �= h(x′) must have ‖x−x′‖ ≥ R.

Part (1) requires that the output code classifier is consis-
tent, part (2) guarantees that every linear separator hj sep-
arates at least one class i from a region of space that does
not belong to any class, and part (3) requires that points with
codewords not in the code matrix must either have the same
codeword or be separated by distance R. Part (3) simplifies
both our algorithm and analysis and is trivially satisfied in
cases where all points in X that do not belong to any class
have the same codeword, as in the one-vs-all setting.

This setting is more challenging than in the previous sec-
tions because we are unable to apply clustering-based learn-
ing strategies. For example, if the Hamming distance be-
tween a pair of codewords is one, then one of the linear sep-
arators hj forms a shared boundary between those classes,
potentially allowing them to be well connected.

Instead, our algorithm uses the absence of data to directly
learn the linear separators h1, . . . , hm. It searches for balls of
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radius r whose centers are sample points such that one half
of the ball contains very few samples. If a half-ball contains
few sample points, then it must be mostly disjoint from the
set K. But since its center belongs to the set K, this means
that the hyperplane defining the half-ball is a good approxi-
mation one of the true hyperplanes. See Figure 2 for exam-
ples of half-balls that would pass and fail this test. The col-
lection H of hyperplanes obtained in this way partition the
space into cells. Our algorithm queries the labels of the cells
containing the most sample points and classifies test points
based on the label of their cell in the partition (and if the la-
bel is unknown, we output a random label). Pseudocode is
given in Algorithm 4 using the following notation: for any
center x ∈ X , radius r ≥ 0, and direction w ∈ Sd−1, let
B1/2(x, r, w) = {y ∈ B(x, r) : w�(y − x) > 0} and
define p1/2(r) = 1

2clbr
dvd.

Input: Sample S = {x1, . . . , xn}, r > 0, τ > 0.
1. Initialize set of candidate hyperplanes H = ∅.
2. For all samples x̂ ∈ S with B(x̂, r) ⊂ X :

(a) Let ŵ = argminw∈Sd−1 |B1/2(x̂, r, w) ∩ S|.
(b) If |B1/2(x̂, r, ŵ) ∩ S|/n < τ , add (x̂, ŵ) to H .

3. Let {Ĉi}Ni=1 be the partitioning of X induced by H .
4. Query the label of the L cells with the most samples.
5. Output f̂(x) = label of Ci containing x.

Algorithm 4: Plane-detection algorithm.

Theorem 5. Suppose Assumptions 3 and 4 hold. For any
desired error ε > 0, with probability at least 1 − δ, run-
ning Algorithm 4 with parameters r = R/2 and τ =
αp1/2(r)/2 for a known constant α on on a sample of size
n = Õ(dm2c2ubR

d/(c2lbε
4)) will have error at most ε.

If the scale parameter R is unknown, the conclusions of
Theorem 5 still hold if we use an underestimate R̂ ≤ R.

7 Extensions to the Agnostic Setting

Most of our algorithms have two phases: first, we extract a
partitioning of the unlabeled data into groups that are likely
label-homogeneous, and second, we query the label of the
largest groups. We can extend our results for these algo-
rithms to the agnostic setting by querying multiple labels
from each group and using the majority label.

Specifically, suppose that the data is generated according
to a distribution P over X × [L] and there exists a labeling
function f∗ such that Pr(x,y)∼P (f

∗(x) �= y) ≤ η and our
assumptions hold when the unlabeled data is drawn from the
marginal PX but the labels are assigned by f∗. That is, there
is a function f∗ satisfying our assumptions such that the true
label disagrees with f∗ with probability at most η. In this set-
ting, the first phase of our algorithms, which deals with only
unlabeled data, behaves exactly as in the realizable setting.
The only difference is that we will need to query multiple la-
bels from each group of data to ensure that the majority label
is the label predicted by f∗. Suppose that the training data is

(x1, y1), . . . , (xn, yn) drawn from P (where the labels yi are
initially unobserved). For n = Õ(1/η2), we are guaranteed
that yi �= f∗(xi) for at most 2ηn points w.h.p. Moreover,
if we only need to guess the label of large groups of sam-
ples, say those containing at least 8ηn points, then we are
guaranteed that within each group at least 1/4 of the sample
points will have labels that agree with f∗. Therefore, after
querying O(log(1/δ)) labeled examples from each group,
the majority label will agree with f∗. If we use these labels
in the second phase of the algorithm, we would be guaran-
teed that the error of our algorithm would be at most ε had
the labels been produced by f∗, and therefore the error un-
der the distribution P is at most η+ε. The full version of the
paper contains agnostic versions of Theorems 1, 4, and 5.

Similarly, modifying Algorithm 2 to require that the each
cluster in the pruning have a majority label that accounts for
at least 3/4 of the cluster’s data can be used to extend the
corresponding result to the agnostic setting.

8 Conclusion and Discussion

In this work we showed how to exploit the implicit geomet-
ric assumptions made by output code techniques under the
well studied cases of one-vs-all and well separated code-
words, and for a novel boundary features condition that cap-
tures the intuition that every binary learning task should be
significant. We provide label-efficient learning algorithms
for both the consistent and agnostic learning settings with
guarantees when the data density has thick level sets or up-
per and lower bounds. In all cases, our algorithms show that
the implicit assumptions of output code learning can be used
to learn from very limited labeled data.

In this work we focused on linear output codes, which
have been used in several practical works. For example
Palatucci et al. (2009) use linear output codes to decode
thoughts from fMRI data, Berger (1999) used them for text
classification, and Crammer and Singer (2000) show that
they perform well on MNIST and several UCI datasets.
Many other works use non-linear output codes, and it is an
interesting direction to extend our results to these cases.

The unlabeled sample complexity of our algorithms is ex-
ponential in the dimension because our algorithms require
the samples to cover high-density regions. It is common for
semi-supervised algorithms to require exponentially more
unlabeled data than labeled, e.g. (Singh, Zhu, and Nowak
2008; Castelli and Cover 1995). Our results also show that
the unlabeled sample complexity only scales exponentially
with the intrinsic dimension, which may be significantly
lower than the ambient dimension for real-world problems.
An interesting direction for future work is to determine fur-
ther conditions under which the unlabeled sample complex-
ity can be drastically reduced.
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