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Abstract

Domain adaptation addresses learning tasks where training is
performed on data from one domain whereas testing is per-
formed on data belonging to a different but related domain.
Assumptions about the relationship between the source and
target domains should lead to tractable solutions on the one
hand, and be realistic on the other hand. Here we propose
a generative domain adaptation model that allows for mod-
elling different assumptions about this relationship, among
which is a newly introduced assumption that replaces covariate
shift with a possibly more realistic assumption without losing
tractability due to the efficient variational inference procedure
developed. In addition to the ability to model less restrictive
relationships between source and target, modelling can be per-
formed without any target labeled data (unsupervised domain
adaptation). We also provide a Rademacher complexity bound
of the proposed algorithm. We evaluate the model on the Ama-
zon reviews and the CVC pedestrian detection datasets.

Introduction

Domain adaptation focuses on modelling problems where the
training and test distributions are different but related. The
training and test domains are commonly referred to in the
domain adaptation literature as the source and target domains,
respectively. Domain diversity can emerge as a result of the
scarcity of available labeled data from the target domain. It
can as well be innate in the problem itself due to, for exam-
ple, an ongoing change occurring to the source domain like
in cases where the original source domain keeps changing
over time. Domain adaptation aims at finding solutions for
this kind of problem, where the training (source) data are
generated from a distribution different from that of the test
(target) data, by leveraging the available labeled data from
the similar source domain (Ben-David et al. 2007).

More details about seminal works in the domain adaptation
literature can be found in Section 1 in the supplementary.

The principal metric of a domain adaptation algorithm is
the performance of the target learning hypothesis, which as a
matter of fact depends on the labeled source data, (primarily
unlabeled) target data and the relationship between the source
and target domains. There can be multiple source domains
to learn from (Mansour, Mohri, and Rostamizadeh 2009b),
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but the default setting is one source and one target domain.
Regarding target data, several frameworks have access to a
target sample containing labeled data instances, and a larger
target unlabeled sample , e.g. Blitzer et al.; Oquab et al.
(2008; 2014). In other frameworks, like Huang et al. (2006),
referred to as unsupervised domain adaptation, the target data
is fully unlabeled. The proposed model is an unsupervised
domain adaptation framework, although it can incorporate
target labeled data, if available, in a forthright manner.

The manner by which source labeled data are utilized
in learning the target distribution and consequently the all-
important target labels heavily depends on the relation-
ship between the source and target domains. Such rela-
tionship is depicted by the learner’s assumptions about
the similarities/differences between source and target do-
mains. In this regard, covariate shift represents one of the
most widely used domain adaptation assumptions (Sugiyama
and Mueller 2005), on which much of the domain adapta-
tion research is based. Covariate shift states that the condi-
tional labeling distributions of both the source and target
domains are the same, while their respective marginal data
distributions can be different (Storkey and Sugiyama 2006;
Ben-David and Urner 2012; 2014). Covariate shift is a valid
assumption in some problems, but it can as well be quite
unrealistic for many other domain adaptation tasks where the
conditional label distributions are not (or, more precisely, not
guaranteed to be) identical. The simplification resulting from
assuming identical labeling distributions facilitates the quest
for a tractable learning algorithm, albeit possibly at the cost
of reducing the expressiveness power of the representation,
and consequently the accuracy of the resulting hypothesis.

We propose a probabilistic relaxation of the covariate shift
assumption where the more uncertain a learner is about the
source labeling of an instance, the more uncertain it is that
its target conditional labeling probability has a value similar
to the corresponding source conditional labeling probabil-
ity (the more uncertain it is that the label remains the same
across domains), and vice versa. We formalize this notion
in a generative model that learns a representation from both
the target unlabeled data and a probabilistic prospect of the
change in their labels across domains, and we use such rep-
resentation to learn the target labels. The proposed model
incorporates a tractable inference procedure for a broad
range of problems by exploiting the recent advances in vari-
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ational inference (Rezende, Mohamed, and Wierstra 2014;
Stuhlmuller, Taylor, and Goodman 2013). We focus on pro-
moting the proposed domain adaptation model for the intro-
duced assumption, but the model is generic enough to sub-
stantiate other adaptation assumptions, and to be considered
a generalization of some other adaptation frameworks. The
proposed algorithm can be seen as a Bayesian, more generic
and more scalable extension of Adel and Wong (2015).

Our main contributions are as follows:
• We propose a generalized generative modelling framework

for unsupervised domain adaptation, which does not re-
quire any target labeled data.

• We develop a scalable learning algorithm that broadens
the range of solution tractability with less restrictive and
possibly more realistic domain adaptation assumptions
than covariate shift.

• We propose a relaxed probabilistic version of covariate
shift and exploit the proposed model in substantiating this
assumption.

• Scalability and tractability of the model are achieved by
developing a variational inference procedure tailored to
domain adaptation, which is based on recent advances in
variational Bayesian procedures, namely approximating
the posterior via a recognition model (Rezende, Mohamed,
and Wierstra 2014; Stuhlmuller, Taylor, and Goodman
2013; Kingma and Welling 2014; Kingma et al. 2014). We
provide a lower bound on the marginal likelihood. To the
best of our knowledge, this is the first variational inference
procedure for domain adaptation.

• Our generalized domain adaptation model yields a rather
flexible association between the adaptation assumptions
and the learning solution so that conceptual modelling
details and their implementations can each be scrutinized
more easily and rather separately.

• A Rademacher complexity bound is derived for the pro-
posed algorithm.

• The model is applied to benchmark domain adaptation
datasets where its performance is demonstrated by compar-
ison with the achieved state-of-the-art results. There are
mainly two experiments: A sentiment analysis task on the
Amazon reviews dataset and a pedestrian detection task on
the CVC-02 and CVC-04 datasets.

The rest of the paper is organized as follows: The proposed
relaxed covariate shift assumption is introduced in Section ,
followed by an illustration of the proposed unsupervised do-
main adaptation model. Section describes the developed
variational inference procedure. A Rademacher generaliza-
tion bound is introduced in Section , and finally the two
experiments are presented in Section . The related work, the
proof of the Rademacher complexity bound, among other
details, can be found in the supplementary.

Generative Model for Domain Adaptation

Notation Let Y be a label set. We address classification
problems; ∀y ∈ Y, y ∈ Z, at the source and target do-
mains. Denote the number of labels by k, |Y | = k. Let

x be a data instance. Input to the domain adaptation learner
is composed of a source sample, S, consisting of n labeled
instances, (xi, yi), i ∈ {1, 2, · · · , n}, and a target sample
T of m unlabeled instances, xj , j ∈ {1, 2, · · · ,m}. Define
the loss function of two labeling hypotheses, h1 and h2, by
L(h1(x), h2(x)) : y × y → R, and the expected loss over
a distribution, P , as LP (h1, h2) = Ex∈P (L(h1(x), h2(x))).
Referring to the Bayes Optimal target labeling function as
hopt
T (x), the main goal is to develop a learning hypothe-

sis of the target domain, hT , with a maximized classifica-
tion accuracy, i.e. with a minimized expected target loss,
LPT

(hT , h
opt
T ) . We refer to the proposed model as GenDA.

We begin by describing our relaxed covariate shift-based
model for unsupervised domain adaptation. We assume one
source and one target domain. We refer to the marginal data
distributions in source and target domains as PS(x) and
PT (x), respectively. The joint data and label distributions
of the two domains are denoted by PS(x, y) and PT (x, y).
Denote by lS(x) the probability of the assigned source
label to x, i.e. the probability PS(ymax|x), with ymax =
argmaxy∈Y PS(y|x). After learning the source hypothesis,
we learn the latent feature space, z, which is assumed to gen-
erate both the unlabeled target instances, x ∈ T , and their
corresponding source labels along with the relationship be-
tween source and target domains (modelled in our algorithm
by the relaxed covariate shift assumption). We then learn the
target labels, y = argmaxy∈Y PT (y|x), of the target sample,
x ∈ T , by inferring PT (y|z). Learning target labels through
PT (y|z) is more informative than through PT (y|x) since z
conveys information about both the unlabeled target data,
x and the corresponding source labels (source labels of the
target data) mapped onto the target via the relaxed covariate
shift assumption, or more generally via the assumption(s) on
the relationship between source and target labels.

Relaxed Covariate Shift

We do not assume covariate shift, i.e. lS(x) and lT (x) do not
have to be equal for each x. Instead, we construct a model
where learning the target hypothesis is based on a nonlinear
interaction of two respects: The topology of the unlabeled
target data and their source labels along with the introduced
probabilistic domain adaptation assumption. In the proposed
model, we introduce and employ an assumption that is a
relaxation of covariate shift. Even though we focus on this
introduced assumption, the proposed model is not exclusively
tailored for a solitary particular assumption. On the contrary,
other assumptions on the relationship between source and
target domains can be modelled, as we briefly show in Section
2 in the supplementary.

Rather than rigidly assuming the standard covariate shift,
the relaxed covariate shift assumption states that the uncer-
tainty in the source label assigned to a data instance, x, mani-
fested in the source conditional labeling probability, is pro-
portionate to the value of the loss function L between its
source and target labeling functions, L(hS(x), hT (x)). In
other words, the more uncertain the source hypothesis about
a labeling decision of an instance, the higher the probability
its source and target labels are not identical. Assuming a 0-1
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loss, L(hS(x), hT (x)), the relaxed covariate shift assump-
tion is formulated as follows:

For x ∈ T, PS(x) �= 0, let L(hS(x), hT (x)) ∼
Bin(1, p(x)), a binomial distribution with a parameter p(x)
referring to the probability of success, i.e. the probability that
L(hS(x), hT (x)) = 1 (the probability that the source and
target labels of x are not identical). The value of p(x) follows
a monotonically decreasing function of |lS(x) − 1/k|, for
which we choose the exponential decay function:

p(x) = f(|lS(x)− 1/k|) (1)

= e−λ(|lS(x)−1/k|), |lS(x)− 1/k| ∈ [0,
k − 1

k
]

where |lS(x)− 1/k| signifies the uncertainty manifested
in the source labeling decision, since lS(x) = 1/k is the
minimum possible value for lS(x). Think of the binary
classification case as an example, where the closer lS(x)
to 1/k = 0.5, the more uncertain the source labeling de-
cision. The extremes in the spectrum of this uncertainty
are: i), lS(x) = 1 then |lS(x) − 1/k| = k−1

k , which de-
notes total certainty (minimum uncertainty), and ii) lS(x) =
1/k leading to |lS(x) − 1/k| = 0, denoting maximum un-
certainty. Moving on through this spectrum from case ii) to
case i), the value of p(x) keeps diminishing, correspond-
ing to a decline in the probability of having a 1 (rather
than 0) loss between the source and target hypotheses for
x, L(hS(x), hT (x)). The relaxed covariate shift is a gener-
alization of the standard covariate shift assumption, since
setting the probability of a 1 loss, L(hS(x), hT (x)) = 1, to
be always zero, p(x) = 0, for all values of |lS(x) − 1/k|
results in the standard covariate shift definition.

The measure of uncertainty developed in (1) is chosen
because it is sound and also because it well captures the
relationships between source and target domains in some
applications (demonstrated by the experiments). However,
other measures of uncertainty, such as the conditional en-
tropy, -

∑
x

∑
y PS(x)PS(y|x) logPS(y|x), can be used in-

stead. The relationship between the loss, L(hS(x), hT (x)),
and the uncertainty manifested by the source hypothesis,
|lS(x) − 1/k| for k = 2, is illustrated in Figure 1 in the
supplementary.

After learning parameters of the source hypothesis, the tar-
get sample, x ∈ T , is given as input to the source hypothesis
resulting in lS(x) and the corresponding values of p(x) from
(1). Afterwards one learns the latent representation, z, that is
assumed to generate both x ∈ T , and p(x), where x conveys
information about the topology of the target sample, and p(x)
conveys information about the corresponding source labels
along with probabilistic labeling information according to
the relaxed probabilistic covariate shift assumption. Based
on the latent representation, a grouping followed by a label
alignment technique is pursued to extract the target labels.
Extending the proposed form of the covariate shift assump-
tion to other relationships between source and target domains,
as well as to other loss functions, is not arduous.

Learning

The graphical model depicting the proposed model is dis-
played in Figure 2 in the supplementary. For clarity of presen-
tation, the variable x (whose marginals in both domains are

PS(x) and PT (x)), and y (whose conditional distributions
in both domains are PS(y|x) = PS(y,x)

PS(x) and PT (y|x) are
displayed twice in a slight abuse of notation.

To learn the parameter set, α, of the source discrimina-
tive classifier (hypothesis), the source training data, (x, y) ∈
S, |S| = n, is used to learn a discriminative classifier on the
source domain (the upper plate of Figure 2 in the supplemen-
tary). A probabilistic output for each y|x is obtained via the
learnt source discriminative classifier so that lS(x) can be
computed, followed by the computation of corresponding
values of p(x) by (1).

Now we have learnt the parameters, α, of the source hy-
pothesis. The intuition behind the target hypothesis is that we
have an unlabeled target sample, and we base the learning on
two aspects: i) topology of the unlabeled target data instances,
and ii) the corresponding source labels of the target sample,
which belong to a related (source) domain. The relationship
between these two aspects as well as their impact on the
sought target label is modelled by the latent variable, z. The
latent feature space, z, is a representation that allows for a
non-linear transformation of: i) the observed target data, and
of ii) the probabilistic labeling information through the corre-
sponding source labels and the relaxed probabilistic covariate
shift assumption. The latent feature space, z, represents such
components in a more robust and lower-dimensional (than the
original space of x and p(x)) space, which potentially makes
the target data more easily separable into their labels. The
latent variable z models the relationship between each x ∈ T
and their corresponding values of p(x) expressing probabilis-
tic information about the 0-1 loss, L(hS(x), hT (x)).

Instances of the target sample, x ∈ T , are given as in-
put to the established source hypothesis (with parameters
α) resulting in lS(x) for each x ∈ T . Based on lS(x), val-
ues of p(x) are indicated by (1). For each x ∈ T , p(x) de-
termines the probability of the target label being different
from the corresponding source label, i.e. the probability of
L(hS(x), hT (x)) = 1. There is one z per each x ∈ T . The
generative model utilized to learn the variable z correspond-
ing to each data point x, x ∈ T , is as follows (note that θ
refers to the generative parameters):

Pθ(z) = N (0, I): standard Gaussian (μ = 0, σ2 = 1) (2)

Pθ(x, p(x)|z) = f(x, p(x); z, θ) = N (μθ(z), σθ(z)) (3)

The function f(x, p(x); z, θ) is a non-linear transforma-
tion of z, modelled by a neural network. The nonlinear
relationship between z and (x, p(x)) renders the exact
posterior computation intractable. Since the exact poste-
rior, Pθ(z|x, p(x)), is intractable, the variational posterior,
qφ(z|x, p(x)) is computed via which approximate samples
of z are used in the subsequent generative process including
z and yU . The latter is a variable that groups the z vari-
ables, where each z is a representation of x, x ∈ T , and the
corresponding p(x). Regarding the variational posterior, a
recognition model (Rezende, Mohamed, and Wierstra 2014;
Stuhlmuller, Taylor, and Goodman 2013) qφ(z|x, p(x)) is de-
veloped for modelling z. Note that φ refers to the variational
parameters. More details about the variational inference pro-
cedure are given in Section . The Gaussian chosen in (2) is
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not a limitation of the domain adaptation model; assuming a
Gaussian Pθ(z) facilitates the inference procedure as will be
shown in (4).

The grouping operation (with parameters β in Figure 2
in the supplementary is applied to z, resulting in k groups,
where each group is expressed by a different value of
the grouping variable, yU , using Expectation-Maximization
(EM). By casting the resulting clusters into target labels, the
following label alignment method is pursued: i) We construct
a confusion matrix whose columns are the source labels of
data points x, x ∈ T , (identified via lS(x)), and rows are the
clusters, yU . ii) Out of values of each column, the row (clus-
ter) with the largest number of members is considered the
representative cluster of the respective column (class label),
i.e. the cluster whose members are the target members of the
source label at the column. The intuition behind this method
counts on the validity of the relaxed covariate shift assump-
tion, which considers the label change across domains to be
unlikely in case lS(x) is large, i.e. lS(x) → 1. Its intuition
also counts on the general consensus of domain adaptation
that there should still be some similarity between source and
target domains so that an overall change would not span all
data points. Both source and target domains should still be
similar enough to allow for the idea of adaptation across
domains to be brought in, in the first place. Therefore, as-
suming that a majority of the data points in each class do
not change labels across different domains is quite realis-
tic (and still much more flexible than the assumption that
no label change at all can take place across domains). Note
that the term “grouping” is performed only w.r.t. z, which
already has labeling information from p(x), and in turn from
L(hS(x), hT (x)), and for that it is not grouping (not fully
unsupervised) w.r.t. the observed data, x ∈ T . The primary
steps of the algorithm, referred to as GenDA, are shown in
Algorithm 1.

Section 2 of the supplementary explains how some of the
other domain adaptation models can be seen as special cases
of the proposed model.

Variational Inference

Evidence Lower Bound (ELBO)

Due to the non-linear dependencies between the model com-
ponents, exact computation of the posterior Pθ(z|x, p(x))
is intractable. A scalable variational inference technique is
developed and optimized here. It is based on a variational
inference approach recently introduced in Rezende, Mo-
hamed, and Wierstra; Hoffman et al. (2014; 2013), which
takes into account producing a high-fidelity as well as com-
putationally efficient variational approach to estimate pos-
teriors. The pursued variational inference approach is re-
ferred to as a recognition model (Rezende, Mohamed, and
Wierstra 2014; Stuhlmuller, Taylor, and Goodman 2013;
Kingma and Welling 2014). We derive a lower bound on
the marginal likelihood of the proposed generative domain
adaptation model and utilize it in establishing the objective
function used in computing a high-fidelity variational pos-
terior, qφ(z|x, p(x)). For a data instance x ∈ T , and its
corresponding p(x), the variational bound, L(x, p(x)) is:

Algorithm 1 Generative Domain Adaptation Algorithm
(GenDA)

Input: source (x, y) ∈ S, size n + target x ∈ T , size m,
where (xi, yi) is a data instance-label pair.
output: target label, y, of x ∈ T .
Source learning: Learn PS(y|x) from (x, y) ∈ S, by
establishing hS ; a source hypothesis.
Source labels of x ∈ T :

- For x ∈ T , learn source labels using hS(x).
- Using the resulting lS(x), compute:
p(x) = P (L(hS(x), hT (x)) = 1) by (1).

- Initialize θ and φ (generative & variational param.)
repeat

Perform minibatch stochastic gradient ascent on
L(x, p(x)) to learn θ and φ:

- zi ∼ qφ(zi|xi, p(xi)), ∀xi ∈ B, B is a random
minibatch.

- L =
∑|B|

i=1 L(xi, p(x)).
- Take derivatives of L w.r.t. θ and φ.
- Update θ and φ accordingly

until θ, φ do not change
- Learn P (yU |z) for x ∈ T by the EM algorithm.
- Learn target labels, y of x ∈ T from yU by the label
alignment procedure.

log

∫
z

Pθ(x, p(x), z) dz = logEqφ(z|x,p(x))
Pθ(z)Pθ(x, p(x)|z)

qφ(z|x, p(x))
≥

Eqφ(z|x,p(x))[logPθ(z) + logPθ(x, p(x)|z)−log qφ(z|x, p(x))] =
Eqφ(z|x,p(x))[logPθ(x, p(x)|z)]−DKL(qφ(z|x, p(x))‖Pθ(z)) =

− L(x, p(x)) (4)

which yields the objective function used in optimizing the
generative and variational parameters, θ and φ, respectively.
For the recognition model of the latent variable, z, we assume
a variational Gaussian qφ(z|x, p(x)):

qφ(z|x, p(x)) = N (μφ(x, p(x)), σφ(x, p(x))) (5)

where μφ(x, p(x)) and σφ(x, p(x)) are modelled as neu-
ral networks. The neural networks used in the generative
and variational inference models are multilayer perceptrons
(MLPs) with the softplus activation function, log(1 + ex).
Two hidden layers are used.

Back to (4), for the optimization of the objective func-
tion, we should differentiate L(x, p(x)) w.r.t. generative
and variational parameters, θ and φ, respectively. An an-
alytical computation of the second term in the third line
of (4), DKL(qφ(z|x, p(x))‖Pθ(z)), is possible since both
distributions of the KL-divergence, Pθ(z) and qφ(z|x, p(x))
(from (2) and (5)) are Gaussians. Regarding the first term
of (4), Eqφ(z|x,p(x))[logPθ(x, p(x)|z)], the workaround for
the tricky step of taking gradients w.r.t. φ is to reparame-
terize the latent variable z = gφ(x, p(x), u) (Rezende, Mo-
hamed, and Wierstra 2014), where gφ(x, p(x), u) is a de-
terministic function and all the randomness comes through
u. Since z|x, p(x) is assumed to be Gaussian, we can ap-
ply a location-scale transformation, z = gφ(x, p(x), u) =
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μφ(x, p(x)) + σφ(x, p(x))× u, u ∈ N (0, I). The first term
in (4) can then be reformulated as:

Eqφ(z|x,p(x))[logPθ(x, p(x)|z)] = (6)

Eu∼N(0,I)[logPθ(x, p(x)|μφ(x, p(x))+σφ(x, p(x))×u)]

Gradients of (6) are:

�θ,φ Eqφ(z|x,p(x))[logPθ(x, p(x)|z)] = (7)

Eu∼N(0,I)[�θ,φ(logPθ(x, p(x)|μφ(x, p(x))+σφ(x, p(x))×u))]

And they can be computed via Monte Carlo estimates of
the expectation (Kingma and Welling 2014). Gradients are
computed here by stochastic gradient descent (SGD) (Bottou
2010) and AdaGrad (Duchi, Hazan, and Singer 2010).

A Generalization Bound

Several generalization bounds for domain adaptation have
been introduced into the literature. Some of them are based
on specific notions of distance between domains like the A-
distance defined in Kifer, Ben-David, and Gehrke (2004) and
used, most notably, in Ben-David et al. (2007), and like the
discrepancy distance-based Rademacher complexity bound
introduced in Mansour, Mohri, and Rostamizadeh (2009a).
We derive a Rademacher complexity bound based on the
introduced relaxed covariate shift assumption.

Define the discrepancy distance between the source and
target domains as:

dsc-dist(S, T ) = max
h,h′∈H

|LPS
(h, h′)− LPT

(h, h′)| (8)

Theorem 1. Let h•
S ∈ H be the best hypothesis in H at the

source domain, i.e. h•
S ∈ argminh∈H LPS

(h, hopt
S ), where

hopt
S is the Bayes Optimal, and similarly define h•

T over the
target domain. For any target hypothesis, h ∈ H:

LPT
(h, hopt

T )− LPT
(h•

T , hopt
T ) ≤ (9)

1− e−λ( k−1
k

)[(λ(k − 1)/k) + 1]

λ2
+ dsc-dist(S, T ) + LPS

(h•
S , h).

Proof. The proof of Theorem 1 can be found in Section 5 of
the supplementary.

Also, we can see from Theorem 1 that larger values of λ
lead to a tighter generalization bound. As such, Theorem 1
supports the conclusions of (1) and Figure 1 in the supple-
mentary that a larger λ leads to a smaller probability of
L(h•

S(x), h
•
T (x)) = 1, which signifies that the source and

target domains are more similar to each other with larger λ
values than cases with smaller λ:
Larger λ → More similar domains → Tighter bound.

In a way, that can be seen as if the true value of λ between
a source and a target domain provides a rough estimate of a
distance between the two domains.

Experiments

We evaluate the proposed GenDA algorithm on the Amazon
reviews dataset, and on the CVC-02 and CVC-04 pedestrian
detection datasets. We start with the note that descriptions
of some issues related to the three discriminative learners

used at the source domain and to setting the parameters of
GenDA, the reverse cross-validation method used, and finally
example images related to the CVC data, are all left, due to
space limitation, to Section 6 in the supplementary.

Sentiment Analysis

The dataset used in this experiment is the Amazon reviews
dataset (Blitzer, Dredze, and Pereira 2007), which represents
one of the benchmark domain adaptation datasets. Its in-
tact version contains more than 340,000 reviews describing
22 product types. Since its original form is immensely un-
balanced, the version of the Amazon reviews data used in
domain adaptation, which was first introduced by Blitzer,
Dredze, and Pereira (2007), consists of 4 product types where
each product types refers to a domain. The four domains are:
i) books (BK), ii) DVDs (DV), iii) electronics (EL), and
iv) kitchen appliances (KA). Each Amazon review origi-
nally had a rating from 0 to 5 stars. For comparability, the
convention followed in domain adaptation is to change the
review ratings into either positive (higher than 3 stars) or
negative (less than or equal to 3 stars) (Chen et al. 2012;
Glorot, Bordes, and Bengio 2011). Features are pre-processed
with standard tf-idf (Salton and Buckley 1988). The selected
feature set is composed of 5,000 features of unigrams and
bigrams. All these settings are done in order to compare on
common grounds with state-of-the-art.

There are 2,000 labeled reviews per each of the 4 domains.
Number of unlabeled reviews ranges between 3,586 KA re-
views and 5,945 DV reviews. The two classes of the data
are balanced in each of the 4 domains, i.e. ratio of positive
ratings is 50%. We perform 12 adaptation tasks, moving from
one domain to another, e.g. EL → BK. Training on the source
domain is performed on 2,000 labeled source data instances
(reviews), i.e. the sample S. The target learner is given a
set of 2,000 unlabeled target instances. The unlabeled target
learning set is used as the sample, T , that is given as input
to the source learner so that corresponding values of p(x)
can be computed according to (1), and then the non-linear
transformation between the unlabeled sample, T along with
p(x) and the latent feature space, z, is learnt. Afterwards,
Expectation-Maximization (EM) followed by the label align-
ment method are used to learn the target labels of the sample
T , as illustrated in Section .

Results of the experiments performed on the 12 Amazon
reviews adaptation tasks are displayed in Table 1. Compar-
isons with state-of-the-art results on the Amazon reviews data
by Ganin et al. (2015) are based on classification accuracy.
For each adaptation task, we compare to the best classifica-
tion accuracy obtained by Ganin et al. (2015). A paired t-test
with p = 0.05 is used to identify significance. The proposed
algorithm GenDA outperforms the best result by Ganin et al.
(2015) in 10 out of the 12 adaptation tasks (significantly so in
8 tasks). Concerning the source classifiers, the SVM classifier
is clearly superior to the other two classifiers, and the logistic
regression (LR) comes second in most of the tasks.

Pedestrian Detection

The task of pedestrian detection (Dollar et al. 2012; Enzweiler
and Gavrila 2009) in images is challenging both due to diffi-
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Table 1: Classification Accuracy of GenDA using 3 differ-
ent source classifiers vs. state-of-the-art by taking the best
available classification accuracy from Ganin et al. (2015),
on the Amazon reviews dataset. Bold denotes the best result
significantly outperforms all the competitors for such task.

Source-Target SVM GenDA NN GenDA LR GenDA Ganin

BK-DV 81.2% 72.4% 78.8% 79.9%
BK-EL 77.1% 75.1% 75.9% 79.2%

BK-KA 84% 74.7% 81.5% 81.6%
DV-BK 77.1% 70.2% 75.4% 75.5%
DV-EL 78.9% 73.9% 77.8% 78.6%
DV-KA 85.1% 71.4% 84.5% 82.2%
EL-BK 74.5% 65.5% 69.7% 72.7%
EL-DV 77.3% 76.1% 71.2% 76.5%
EL-KA 80.4% 78.1% 81% 85.4%

KA-BK 81% 71.4% 74.1% 72%
KA-DV 74.4% 70.1% 73.9% 74%
KA-EL 85.1% 79% 83.7% 84.3%

culties inherent in the task itself, like diversities in scene con-
tents, poses, occlusions, etc, and due to the high risk arising
from some related applications like driver assistance systems.
For the core subtask of pedestrian classification (primarily
used to decide whether or not a given image window contains
a pedestrian), we apply our unsupervised domain adaptation
algorithm, GenDA, to two pedestrian detection datasets, re-
ferred to as the CVC-02 and CVC-04 datasets. Input to a
pedestrian detection task consists of images manually labeled
where bounding boxes provide information about the location
of pedestrians in pedestrian images, i.e. images containing
pedestrians. The manual intervention required for such task
is very exhaustive (Vazquez, Lopez, and Ponsa 2012). By
having a virtual input, where pedestrian and pedestrian-free
cropped images1 come from virtual images, e.g. video games,
unsupervised domain adaptation can be used by considering
the labeled virtual images to be the source domain and by
considering unlabeled real images to be the target domain.
More details about the settings of this experiment is given in
Section 7 of the supplementary.

As such, the pedestrian classifier is a binary classifier with
labels: Pedestrian images, and pedestrian-free images. An
image window is labeled as a pedestrian cropped image if
the classification score is larger than a threshold, and is la-
beled as a pedestrian-free cropped image otherwise. Value
of the threshold as well as parameters of the pyramidal slid-
ing window (8× 8 pixels), are set equivalent to their values
in Vazquez, Lopez, and Ponsa (2012). The principal task
of GenDA is to classify cropped target images into either a
pedestrian or a pedestrian-free cropped image.

As source labeled data, we use the CVC-04 virtual-world
pedestrian dataset (Vazquez et al. 2014), which consists of
1208 virtual pedestrians and 1220 (a subset of the available
6828) pedestrian-free cropped images. As target unlabeled
data, where the labels are used only to assess accuracy at
the end but never in learning, we use the CVC-02 real-world
dataset (Geronimo et al. 2010). The dataset, CVC-02 was
recorded using a camera based on 640×480 pixels resolution

1we use the term “cropped image” to refer to a part of an image
on which pedestrian detection has already been applied. It is the
same term used in the CVC data descriptions.

(Vazquez, Lopez, and Ponsa 2013). We use a set of 600 CVC-
02 cropped images, evenly divided between the two classes,
as the unlabeled target sample, T .

We compare our results to state-of-the-art unsupervised
domain adaptation results on CVC datasets represented by
Vazquez, Lopez, and Ponsa; Vazquez, Lopez, and Ponsa
(2012; 2013), which are based on transductive SVM. We
compare results based on the same metric used in Vazquez,
Lopez, and Ponsa; Vazquez, Lopez, and Ponsa (2012; 2013),
which is detection error tradeoff (DET) curve (Martin et
al. 1997) showing the FPPI (false positive per image) rate
vs. false negative (or missed detections) rate, for differ-
ent thresholds. The smaller the area under the curve, the
more accurate the algorithm. We implemented the algo-
rithm in Vazquez, Lopez, and Ponsa (2012) with the help
of coding excerpts taken from SVMlight (Joachims 1999a;
1999b). In Figure 1, UDA refers to the unsupervised domain
adaptation algorithm by Vazquez, Lopez, and Ponsa; Vazquez,
Lopez, and Ponsa (2012; 2013). Results displayed in Figure 1
demonstrate an improvement induced by GenDA over UDA,
which we believe is mainly due to two reasons: Flexibility
of the introduced relaxed covariate shift assumption, and the
power of the latent feature representation, Z. Note that we
stick to the DET curve, shown in Figure 1, as a metric so that
we can compare on common grounds with state-of-the-art.
Two examples from the CVC-02 dataset are displayed in
Section 7 of the supplementary.

Figure 1: A DET curve showing FPPI vs. missed detections
rate resulting from applying GenDA vs. its competitor UDA
(Vazquez, Lopez, and Ponsa 2012; 2013) to 2 CVC pedestrian
detection datasets. FPPI rate refers to false positive per image
rate. The smaller the area under the curve, the more accurate
the algorithm. Average area under the curve is 33.2 for UDA,
and is 28.6 for GenDA.

Conclusion
We introduced a probabilistic relaxation of the covariate shift
assumption, and utilized it as a part of a proposed unsu-
pervised domain adaptation model. On the one hand, the
assumption is flexible enough to depict several forms of re-
lationships between the source and target domains. On the
other hand, the proposed model is efficient due to the power
of the induced latent representation and due to its inference
procedure. The proposed domain adaptation model can also
be used to model other domain adaptation assumptions, and
that represents an imminent direction for future work.
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