
Query-Efficient Imitation Learning for
End-to-End Simulated Driving

Jiakai Zhang
Department of Computer Science

New York University
zhjk@nyu.edu

Kyunghyun Cho
Department of Computer Science

Center for Data Science
New York University

kyunghyun.cho@nyu.edu

Abstract

One way to approach end-to-end autonomous driving is to
learn a policy that maps from a sensory input, such as an im-
age frame from a front-facing camera, to a driving action, by
imitating an expert driver, or a reference policy. This can be
done by supervised learning, where a policy is tuned to min-
imize the difference between the predicted and ground-truth
actions. A policy trained in this way however is known to suf-
fer from unexpected behaviours due to the mismatch between
the states reachable by the reference policy and trained pol-
icy. More advanced algorithms for imitation learning, such as
DAgger, addresses this issue by iteratively collecting training
examples from both reference and trained policies. These al-
gorithms often require a large number of queries to a reference
policy, which is undesirable as the reference policy is often ex-
pensive. In this paper, we propose an extension of the DAgger,
called SafeDAgger, that is query-efficient and more suitable
for end-to-end autonomous driving. We evaluate the proposed
SafeDAgger in a car racing simulator and show that it indeed
requires less queries to a reference policy. We observe a sig-
nificant speed up in convergence, which we conjecture to be
due to the effect of automated curriculum learning.

Introduction

We define end-to-end autonomous driving as driving by a
single, self-contained system that maps from a sensory input,
such as a front-facing camera, to actions necessary for driv-
ing, such as the angle of steering wheel and braking. In this
approach, the autonomous driving system is often learned
from data rather than manually designed, mainly due to sheer
complexity of manually developing a such system.

This end-to-end approach to autonomous driving dates
back to late 80’s. ALVINN by Pomerleau (Pomerleau 1989)
was a neural network with a single hidden layer that takes
as inputs a frame from a front-facing camera and a response
map from a range finder sensor and returns a quantized steer-
ing wheel angle. The ALVINN was trained using a set of
training tuples (image, sensor map, steering angle) collected
from simulation. A similar approach was taken later in 2005
to train, this time, a convolutional neural network to drive
an off-road mobile robot (Muller et al. 2005). More recently,
Bojarski et al. (Bojarski et al. 2016) used a similar, but deeper,

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

convolutional neural network for lane following based solely
on a front-facing camera. In all these cases, a deep neural net-
work has been found to be surprisingly effective at learning a
complex mapping from a raw image to control.

A major learning paradigm behind all these previous at-
tempts has been supervised learning. A human driver or
a rule-based AI driver in a simulator, to which we refer
as a reference policy drives a car equipped with a front-
facing camera and other types of sensors while collecting
image-action pairs. These collected pairs are used as train-
ing examples to train a neural network controller, called
a primary policy. It is however well known that a purely
supervised learning based approach to imitation learning
(where a learner tries to imitate a human driver) is sub-
optimal (see, e.g., (Daumé Iii, Langford, and Marcu 2009;
Ross, Gordon, and Bagnell 2010) and references therein.)

We therefore investigate a more advanced approach to im-
itation learning for training a neural network controller for
autonomous driving. More specifically, we focus on DAg-
ger (Ross, Gordon, and Bagnell 2010) which works in a
setting where the reward is given only implicitly. DAgger im-
proves upon supervised learning by letting a primary policy
collect training examples while running a reference policy
simultaneously. This dramatically improves the performance
of a primary policy. However, DAgger needs to constantly
query a reference policy, which is expensive especially when
a reference policy may be a human driver. It also uses an
exploration policy that may not be safe to itself or its environ-
ment. To reduce the cost of querying the reference policy, the
active imitation learning approach (Judah et al. 2014) allows
to choose most useful states where advice from the teacher
can be useful. Kim and Pineau (Kim and Pineau 2013) tried
to address the DAgger problems by proposing to learn multi-
ple policies, each specializing in a particular region of state
space. They used a metric based on state distance to decide if
the reference policy needs to be queried. Instead of learning
multiple policies, Laskey et al. (Laskey et al. 2016) recently
introduced the SHIV approach (Svm-based reduction in Hu-
man InterVention) which converged to a single policy.

In this paper, we propose a query-efficient extension of the
DAgger, called SafeDAgger. We first introduce a safety clas-
sifier that learns to predict the error made by a primary policy
without querying a reference policy. This safety classifier is
incorporated into the DAgger’s iterations in order to select

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

2891

only a small subset of training examples that are collected by
a primary policy. This subset selection significantly reduces
the number of queries to a reference policy.

We empirically evaluate the proposed SafeDAgger using
TORCS (tor accessed May 12 2016), a racing car simulator,
which has been used for vision-based autonomous driving
research in recent years (Koutník et al. 2013; Chen et al.
2015). In this paper, our goal is to learn a primary policy
that can drive a car indefinitely without any crash or going
out of a road. The experiments show that the SafeDAgger
requires much fewer queries to a reference policy than the
original DAgger does and achieves a superior performance
in terms of the average number of laps without crash and
the amount of damage. We conjecture that this is due to the
effect of automated curriculum learning created by the subset
selection based on the safety classifier.

Imitation Learning for Autonomous Driving

In this section, we describe imitation learning in the context
of learning an automatic policy for driving a car.

State Transition and Reward

A surrounding environment, or a world, is defined as a set of
states S. Each state is accompanied by a set of possible ac-
tions A(S). Any given state s ∈ S transitions to another state
s′ ∈ S when an action a ∈ A(S) is performed, according to
a state transition function δ : S ×A(S)→ S. This transition
function may be either deterministic or stochastic.

For each sequence of state-action pairs, there is an associ-
ated (accumulated) reward r:

r(Ω = ((s0, a0), (s1, a1), (s2, a2), . . .)),

where st = δ(st−1, at−1).
A reward may be implicit in the sense that the reward

comes as a form of a binary value with 0 corresponding to
any unsuccessful run (e.g., crashing into another car so that
the car breaks down,) while any successful run (e.g., driving
indefinitely without crashing) does not receive the reward.
This is the case in which we are interested in this paper. In
learning to drive, the reward is simply defined as follows:

r(Ω) =

{
1, if there was no crash,
0, otherwise

This reward is implicit, because it is observed only when
there is a failure, and no reward is observed with an optimal
policy (which never crashes and drives indefinitely.)

Policies

A policy is a function that maps from a state observation
φ(s) to one a of the actions available A(s) at the state s. An
underlying state s describes the surrounding environment
perfectly, while a policy often has only a limited access to the
state via its observation φ(s). In the context of end-to-end
autonomous driving, s summarizes all necessary information
about the road (e.g., # of lanes, existence of other cars or
pedestrians, etc.,) while φ(s) is, for instance, an image frame
taken by a front-facing camera.

We have two separate policies. First, a primary policy
π is a policy that learns to drive a car. This policy does
not observe a full, underlying state s but only has access
to the state observation φ(s), which is in this paper a pixel-
level image frame from a front-facing camera. The primary
policy is implemented as a function parametrized by a set of
parameters θ.

The second one is a reference policy π∗. This policy may
or may not be optimal, but is assumed to be a good policy
which we want the primary policy to imitate. In the context
of autonomous driving, a reference policy can be a human
driver. We use a rule-based controller, which has access to a
true, underlying state in a driving simulator, as a reference
policy in this paper.

Cost of a Policy Unlike previous works on imitation learn-
ing (see, e.g., (Daumé Iii, Langford, and Marcu 2009;
Ross, Gordon, and Bagnell 2010; Chang et al. 2015)), we
introduce a concept of cost to a policy. The cost of querying
a policy for an appropriate action varies significantly based
on how the policy is implemented. For instance, it is expen-
sive to query a reference policy, if it is a human driver. On
the other hand, it is much cheaper to query a primary policy
which is often implemented as a classifier. Therefore, in this
paper, we analyze an imitation learning algorithm in terms of
how many queries it makes to a reference policy.

Driving

A car is driven by querying a policy for an action with a
state observation φ(s) at each time step. The policy, in this
paper, observes an image frame from a front-facing camera
and returns both the angle of a steering wheel (u ∈ [−1, 1])
and a binary indicator for braking (b ∈ {0, 1}). We call this
strategy of relying on a single fixed policy a naive strategy.

Reachable States With a set of initial state Sπ
0 ⊂

S, each policy π defines a subset of the reachable
states Sπ. That is, Sπ = ∪∞t=1S

π
t , where Sπ

t ={
s|s = δ(s′, π(φ(s′))) ∀s′ ∈ Sπ

t−1

}
. In other words, a car

driven by a policy π will only visit the states in Sπ .
We use S∗ to be a reachable set by the reference policy. In

the case of learning to drive, this reference set is intuitively
smaller than that by any other reasonable, non-reference
policy. This happens, as the reference policy avoids any state
that is likely to lead to a low reward which corresponds to
crashing into other cars and road blocks or driving out of the
road.

Supervised Learning

Imitation learning aims at finding a primary policy π that
imitates a reference policy π∗. The most obvious approach
to doing so is supervised learning. In supervised learning,
a car is first driven by a reference policy while collecting
the state observations φ(s) of the visited states, resulting in
D = {φ(s)1, φ(s)2, . . . , φ(s)N} . Based on this dataset, we
define a loss function as

lsupervised(π, π
∗, D) =

1

N

N∑
n=1

‖π(φ(s)n)− π∗(φ(s)n)‖2.
(1)

2892

Then, a desired primary policy can be written as π̂ =
argminπ lsupervised(π, π

∗, D).
A major issue of this supervised learning approach to im-

itation learning stems from the imperfection of the primary
policy π̂ even after training. This imperfection likely leads
the primary policy to a state s which is not included in the
reachable set S∗ of the reference policy, i.e., s /∈ S∗. As this
state cannot have been included in the training set D ⊆ S∗,
the behaviour of the primary policy becomes unpredictable.
The imperfection arises from many possible factors, includ-
ing sub-optimal loss minimization, biased primary policy,
stochastic state transition and partial observability.

DAgger: beyond Supervised Learning

A major characteristics of the supervised learning approach
described above is that it is only the reference policy π∗
that generates training examples. This has a direct conse-
quence that the training set is almost a subset of the ref-
erence reachable set S∗. The issue with supervised learn-
ing can however be addressed by imitation learning or
learning-to-search (Daumé Iii, Langford, and Marcu 2009;
Ross, Gordon, and Bagnell 2010).

In the framework of imitation learning, the primary policy,
which is currently being estimated, is also used in addition
to the reference policy when generating training examples.
The overall training set used to tune the primary policy then
consists of both the states reachable by the reference policy
as well as the intermediate primary policies. This makes it
possible for the primary policy to correct its path toward a
good state, when it visits a state unreachable by the reference
policy, i.e., s ∈ Sπ\S∗.

DAgger is one such imitation learning algorithm proposed
in (Ross, Gordon, and Bagnell 2010). This algorithm fine-
tunes a primary policy trained initially with the supervised
learning approach described earlier. Let D0 and π0 be the su-
pervised training set (generated by a reference policy) and the
initial primary policy trained in a supervised manner. Then,
DAgger iteratively performs the following steps. At each iter-
ation i, first, additional training examples are generated by a
mixture of the reference π∗ and primary πi−1 policies (i.e.,

βiπ
∗ + (1− βi)πi−1 (2)

) and combined with all the previous training sets: Di =
Di−1∪

{
φ(s)i1, . . . , φ(s)

i
N

}
. The primary policy is then fine-

tuned, or trained from scratch, by minimizing lsupervised(θ,Di)
(see Eq. (1).) This iteration continues until the supervised
cost on a validation set stops improving.

DAgger does not rely on the availability of explicit reward.
This makes it suitable for the purpose in this paper, where
the goal is to build an end-to-end autonomous driving model
that drives on a road indefinitely. However, it is certainly
possible to incorporate an explicit reward with other imitation
learning algorithms, such as SEARN (Daumé Iii, Langford,
and Marcu 2009), AggreVaTe (Ross and Bagnell 2014) and
LOLS (Chang et al. 2015). Although we focus on DAgger
in this paper, our proposal later on applies generally to any
learning-to-search type of imitation learning algorithms.

Cost of DAgger At each iteration, DAgger queries the ref-
erence policy for each and every collected state. In other
words, the cost of DAgger CDAgger

i at the i-th iteration is
equivalent to the number of training examples collected, i.e,
CDAgger

i = |Di|. In all, the cost of DAgger for learning a
primary policy is CDAgger =

∑M
i=1 |Di|, excluding the initial

supervised learning stage.
This high cost of DAgger comes with a more practical

issue, when a reference policy is a human operator, or in our
case a human driver. First, as noted in (Ross et al. 2013), a
human operator cannot drive well without actual feedback,
which is the case of DAgger as the primary policy drives most
of the time. This leads to suboptimal labelling of the collected
training examples. Furthermore, this constant operation easily
exhausts a human operator, making it difficult to scale the
algorithm toward more iterations.

SafeDAgger: Query-Efficient Imitation

Learning with a Safety Classifier

We propose an extension of DAgger that minimizes the num-
ber of queries to a reference policy both during training and
testing. In this section, we describe this extension, called
SafeDAgger, in detail.

Safety Classifier

Unlike previous approaches to imitation learning, often as
learning-to-search (Daumé Iii, Langford, and Marcu 2009;
Ross, Gordon, and Bagnell 2010; Chang et al. 2015), we intro-
duce a classifier csafe, to which we refer as a safety classifier.
This classifier takes as input both the partial observation of a
state φ(s) and a primary policy π and returns a binary label
indicating whether the primary policy π is likely to deviate
from a reference policy π∗ without querying it.

We define the deviation of a primary policy π from a
reference policy π∗ as

ε(π, π∗, φ(s)) = ‖π(φ(s))− π∗(φ(s))‖2 .
Note that the choice of error metric can be flexibly chosen
depending on a target task. For instance, in this paper, we
simply use the L2 distance between a reference steering angle
and a predicted steering angle, ignoring the brake indicator.

Then, with this defined deviation, the optimal safety clas-
sifier c∗safe is defined as

c∗safe(π, φ(s)) =

{
0, if ε(π, π∗, φ(s)) > τ
1, otherwise , (3)

where τ is a predefined threshold. The safety classifier de-
cides whether the choice made by the policy π at the cur-
rent state can be trusted with respect to the reference policy.
We emphasize again that this determination is done without
querying the reference policy.

Learning A safety classifier is not given, meaning that it
needs to be estimated during learning. A safety classifier csafe
can be learned by collecting another set of training examples:1

1It is certainly possible to simply set aside a subset of the original
training set for this purpose.

2893

D′ = {φ(s)′1, φ(s)′2, . . . , φ(s)′N} . We define and minimize
a binary cross-entropy loss:

lsafe(csafe, π, π
∗, D′) =

− 1

N

N∑
n=1

c∗safe(φ(s)
′
n) log csafe(φ(s)

′
n, π)+ (4)

(1− c∗safe(φ(s)
′
n)) log(1− csafe(φ(s)

′
n, π)),

where we model the safety classifier as returning a Bernoulli
distribution over {0, 1}.
Driving: Safe Strategy Unlike the naive strategy, which
is a default go-to strategy in most cases of reinforcement
learning or imitation learning, we can design a safe strategy
by utilizing the proposed safety classifier csafe. In this strat-
egy, at each point in time, the safety classifier determines
whether it is safe to let the primary policy drive. If so (i.e.,
csafe(π, φ(s)) = 1,) we use the action returned by the primary
policy (i.e., π(φ(s)).) If not (i.e., csafe(π, φ(s)) = 0,) we let
the reference policy drive instead (i.e., π∗(φ(s)).)

Assuming the availability of a good safety classifier, this
strategy avoids any dangerous situation arisen by an imperfect
primary policy, that may lead to a low reward (e.g., break-
down by a crash.) In the context of learning to drive, this
safe strategy can be thought of as letting a human driver take
over the control based on an automated decision.2 Note that
this driving strategy is applicable regardless of a learning
algorithm used to train a primary policy.

Discussion The proposed use of safety classifier has a po-
tential to address this issue up to a certain point. First, since a
separate training set is used to train the safety classifier, it is
more robust to unseen states than the primary policy. Second
and more importantly, the safety classifier finds and exploits
a simpler decision boundary between safe and unsafe states
instead of trying to learn a complex mapping from a state
observation to a control variables. For instance, in learning
to drive, the safety classifier may simply learn to distinguish
between a crowded road and an empty road and determine
that it is safer to let the primary policy drive in an empty
road.

Relationship to a Value Function A value function V π(s)
in reinforcement learning computes the reward a given policy
π can achieve in the future starting from a given state s
(Sutton and Barto 1998). This description already reveals a
clear connection between the safety classifier and the value
function. The safety classifier csafe(π, s) determines whether
a given policy π is likely to fail if it operates at a given
state s, in terms of the deviation from a reference policy. By
assuming that a reward is only given at the very end of a
policy run and that the reward is 1 if the current policy acts
exactly like the reference policy and otherwise 0, the safety
classifier precisely returns the value of the current state.

A natural question that follows is whether the safety classi-
fier can drive a car on its own. This perspective on the safety
classifier as a value function suggests a way to use the safety

2Such intervention has been done manually by a human
driver (Pomerleau 1992).

Algorithm 1 SafeDAgger Blue fonts are used to highlight the differences

from the vanilla DAgger.

1: Collect D0 using a reference policy π∗
2: Collect Dsafe using a reference policy π∗
3: π0 = argminπ lsupervised(π, π

∗, D0)
4: csafe,0 = argmincsafe

lsafe(csafe, π0, π
∗, Dsafe ∪D0)

5: for i = 1 doM
6: Collect D′ using the safe strategy πi−1 and csafe,i−1

7: Subset Selection:
D′ ← {φ(s) ∈ D′|csafe,i−1(πi−1, φ(s)) = 0}

8: Di = Di−1 ∪D′
9: πi = argminπ lsupervised(π, π

∗, Di)
10: csafe,i = argmincsafe

lsafe(csafe, πi, π
∗, Dsafe ∪Di)

11: end for
12: return πM and csafe,M

classifier directly to drive a car. At a given state s, the best ac-
tion â can be selected to be argmaxa∈A(s) csafe(π, δ(s, a)).
This is however not possible in the current formulation, as
the transition function δ is unknown. We may extend the
definition of the proposed safety classifier so that it considers
a state-action pair (s, a) instead of a state alone and predicts
the safety in the next time step, which makes it closer to a Q
function.

SafeDAgger: Safety Classifier in the Loop

We describe here the proposed SafeDAgger which aims at
reducing the number of queries to a reference policy during
iterations. At the core of SafeDAgger lies the safety clas-
sifier introduced earlier in this section. The SafeDAgger is
presented in Alg. 1. There are two major modifications to the
original DAgger.

First, we use the safe strategy, instead of the naive strategy,
to collect training examples (line 6 in Alg. 1). This allows
an agent to simply give up when it is not safe to drive itself
and hand over the control to the reference policy, thereby
collecting training examples with a much further horizon
without crashing. This would have been impossible with
the original DAgger unless the manually forced take-over
measure was implemented (Ross et al. 2013).

Second, the subset selection (line 7 in Alg. 1) drastically
reduces the number of queries to a reference policy. Only a
small subset of states where the safety classifier returned 0
need to be labelled with reference actions. This is contrary to
the original DAgger, where all the collected states had to be
queried against a reference policy.

Furthermore, this subset selection allows the subsequent
supervised learning to focus more on difficult cases, which
almost always correspond to the states that are problematic
(i.e., S\S∗.) This reduces the total amount of training ex-
amples without losing important training examples, thereby
making this algorithm data-efficient.

Once the primary policy is updated with Di which is a
union of the initial training set D0 and all the hard examples
collected so far, we update the safety classifier. This step
ensures that the safety classifier correctly identifies which
states are difficult/dangerous for the latest primary policy.

2894

This has an effect of automated curriculum learning (Bengio
et al. 2009) with a mix strategy (Zaremba and Sutskever
2014), where the safety classifier selects training examples
of appropriate difficulty at each iteration.

Despite these differences, the proposed SafeDAgger inher-
its much of the theoretical guarantees from the DAgger. This
is achieved by gradually increasing the threshold τ of the
safety classifier (Eq. (3)). If τ > ε(π, φ(s)) for all s ∈ S, the
SafeDAgger reduces to the original DAgger with βi (from
Eq. (2)) set to 0. We however observe later empirically that
this is not necessary, and that training with the proposed
SafeDAgger with a fixed τ automatically and gradually re-
duces the portion of the reference policy during data collec-
tion over iterations.

Adaptation to Other Imitation Learning Algorithms
The proposed use of a safety classifier is easily adaptable
to other more recent cost-sensitive algorithms. In Aggre-
VaTe (Ross and Bagnell 2014), for instance, the roll-out
by a reference policy may be executed not from a uniform-
randomly selected time point, but from the time step when
the safety classifier returns 0. A similar adaptation can be
done with LOLS (Chang et al. 2015). We do not consider
these algorithms in this paper and leave them as future work.

Experimental Setting

Simulation Environment

We use TORCS (tor accessed May 12 2016), a racing car
simulator, for empirical evaluation in this paper. We chose
TORCS based on the following reasons. First, it has been
used widely and successfully as a platform for research on
autonomous racing (Loiacono et al. 2008), although most
of the previous work, except for (Koutník et al. 2013; Chen
et al. 2015), are not comparable as they use a radar instead
of a camera for observing the state. Second, TORCS is a
light-weight simulator that can be run on an off-the-shelf
workstation. Third, as TORCS is an open-source software, it
is easy to interface it with another software which is Torch in
our case.3

Tracks To simulate a highway driving with multiple lanes,
we modify the original TORCS road surface textures by
adding various lane configurations such as the number of
lanes, the type of lanes. We use ten different tracks in to-
tal for our experiments. We split those ten tracks into two
disjoint sets: seven training tracks and three test tracks. All
training examples as well as validation examples are collected
from the training tracks only, and a trained primary policy is
tested on the test tracks. See Fig. 1 for the visualizations of
the tracks and the first section for the types of information
collected as examples, in the supplementary material.

Reference Policy π∗ We implement our own reference pol-
icy which has access to an underlying state configuration. The
state includes the position, heading direction, speed, and dis-
tances to others cars. The reference policy follows a simple
traffice rule. The cars driven by the reference policy either

3We will release a patch to TORCS that allows seamless integra-
tion between TORCS and Torch.

follow the current lane (accelerating up to the speed limit),
change the lane if there is a slower car in the front and a lane
to the left or right is available, or brakes.

Data Collection

We use a car in TORCS driven by the pre-defined reference
policy to collect data. For each training track, we add 40 cars
driven by the same reference policy to simulate traffic. We
run up to three iterations in addition to the initial supervised
learning stage. In the case of SafeDAgger, we collect 30k,
30k and 10k of training examples (after the subset selection
in line 6 of Alg. 1.) In the case of the original DAgger, we
collect up to 390k data each iteration and uniform-randomly
select 30k, 30k and 10k samples as our training examples.

This data collection strategy was designed in order to keep
the amount of data used for training a primary policy network
at the same level. Note that the number of queries to the
reference policy is much higher (up to 39 folds) with the
original DAgger, as it queries the reference policy for every
single image frame simultaneously with a primary policy.

Policy Networks

Primary Policy πθ We use a deep convolutional network
that has five convolutional layers followed by a set of fully-
connected layers. This convolutional network takes as input
the pixel-level image taken from a front-facing camera. It
predicts the angle of steering wheel ([−1, 1]) and whether
to brake ({0, 1}). Furthermore, the network predicts as an
auxiliary task the car’s affordances, including the existence
of a lane to the left or right of the car and the existence of
another car to the left, right or in front of the car. We have
found this multi-task approach to easily outperform a single-
task network, confirming the promise of multi-task learning
from (Caruana 1997).

Safety Classifier csafe We use a feedforward network to im-
plement a safety classifier. The activation of the primary pol-
icy network’s last hidden convolutional layer is fed through
two fully-connected layers followed by a softmax layer
with two categories corresponding to 0 and 1. We choose
τ = 0.0025 as our safety classifier threshold so that ap-
proximately 20% of initial training examples are considered
unsafe, as shown in Fig. 2. See Fig. 3 in the supplementary
material for some examples of which frames were determined
safe or unsafe. For more details, see the second section in the
supplementary material.

Evaluation

Training and Driving Strategies We mainly compare
three training strategies; (1)Supervised Learning, (2) DAg-
ger (with βi = Ii=0) and (3) SafeDAgger. For each training
strategy, we evaluate trained policies with both of the driving
strategies; (1) naive strategy and (2) safe strategy.

Evaluation Metrics We evaluate each combination by let-
ting it drive on the three test tracks up to three laps. All these
runs are repeated in two conditions; without traffic and with
traffic, while recording three metrics. The first metric is the
number of completed laps without going outside a track, av-
eraged over the three tracks. When a car drives out of the

2895

0 1 2 3
of DAgger Iterations

2.0

2.2

2.4

2.6

2.8

3.0
A

vg
.#

of
L

ap
s

DAgger-Naive
SafeDAgger-Naive
SafeDAgger-Safe
Supervised-Naive

(a)

0 1 2 3
of DAgger Iterations

0

100

101

102

103

D
am

ag
e/

L
ap

DAgger-Naive
SafeDAgger-Naive
SafeDAgger-Safe
Supervised-Naive

(b)

0 1 2 3
of DAgger Iterations

0.00

0.05

0.10

0.15

0.20

0.25

M
SE

(S
te

er
in

g
A

ng
le

)

DAgger
SafeDAgger
Supervised

(c)

0 1 2 3
of DAgger Iterations

2

4

6

8

10

%
of

c s
af

e
=

0

DAgger
SafeDAgger

(d)

Figure 1: (a) Average number of laps (↑), (b) damage per lap (↓), (c) the mean squared error of steering angle for each
configuration (training strategy–driving strategy) over the iterations and (d) the portion of time driven by a reference policy
during test. We use solid and dashed curves for the cases without and with traffic, respectively.

-36.21 -1.95 -1.25
logSquare Error

100

101

102

103

104

105

106

77.70%

Figure 2: The histogram of the log square errors of steering
angle after supervised learning only. The dashed line is lo-
cated at τ = 0.0025. 77.70% of the training examples are
considered safe.

track, we immediately halt. Second, we look at the damage
accumulated while driving. Damage happens each time the
car bumps into another car. Instead of a raw, accumulated
damage level, we report the damage per lap. Lastly, we report
the mean squared error of steering angle, computed while
the primary policy drives.

Results and Analysis

In Fig. 1, we present the result in terms of both the average
laps and damage per lap. The first thing we notice is that a
primary policy trained using supervised learning (the 0-th
iteration) alone works perfectly when a safety classifier is
used together. The safety classifier switched to the reference
policy for 7.11% and 10.81% of time without and with traffic
during test.

Second, in terms of both metrics, the primary policy trained
with the proposed SafeDAgger makes much faster progress
than the original DAgger. After the third iteration, the primary
policy trained with the SafeDAgger is perfect. We conjecture
that this is due to the effect of automated curriculum learn-
ing of the SafeDAgger. Furthermore, the examination of the
mean squared difference between the primary policy and the
reference policy reveals that the SafeDAgger more rapidly
brings the primary policy closer to the reference policy.

As a baseline we put the performance of a primary policy
trained using purely supervised learning in Fig. 1 (a)–(b). It
clearly demonstrates that supervised learning alone cannot

train a primary policy well even when an increasing amount
of training examples are presented.

In Fig. 1 (d), we observe that the portion of time the safety
classifier switches to the reference policy while driving de-
creases as the SafeDAgger iteration progresses. We conjec-
ture that this happens as the SafeDAgger encourages the
primary policy’s learning to focus on those cases deemed
difficult by the safety classifier. When the primary policy
was trained with the original DAgger (which does not take
into account the difficulty of each collected state), the rate
of decrease was much smaller. Essentially, using the safety
classifier and the SafeDAgger together results in a virtuous
cycle of less and less queries to the reference policy during
both training and test.

Lastly, we conduct one additional run with the SafeDAg-
ger while training a safety classifier to predict the deviation
of a primary policy from the reference policy one second
in advance. We observe a similar trend, which makes the
SafeDAgger a realistic algorithm to be deployed in practice.

Conclusion

In this paper, we have proposed an extension of DAgger,
called SafeDAgger. We first introduced a safety classifier
which prevents a primary policy from falling into a danger-
ous state by automatically switching between a reference
policy and the primary policy without querying the reference
policy. This safety classifier is used during data collection
stages in the proposed SafeDAgger, which can collect a set
of progressively difficult examples while minimizing the
number of queries to a reference policy. The extensive ex-
periments on simulated autonomous driving showed that the
SafeDAgger not only queries a reference policy less but also
trains a primary policy more efficiently.

Imitation learning, in the form of the SafeDAgger, allows
a primary policy to learn without any catastrophic experience.
The quality of a learned policy is however limited by that of a
reference policy. More research in finetuning a policy learned
by the SafeDAgger to surpass existing, reference policies, for
instance by reinforcement learning (Silver et al. 2016), needs
to be pursued in the future.

Acknowledgments We thank the support by Facebook,
Google (Google Faculty Award 2016) and Nvidia (GPU Cen-
ter of Excellence 2015-2016).

2896

References

Bengio, Y.; Louradour, J.; Collobert, R.; and Weston, J. 2009.
Curriculum learning. In Proceedings of the 26th annual
international conference on machine learning, 41–48. ACM.
Bojarski, M.; Testa, D. D.; Dworakowski, D.; Firner, B.;
Flepp, B.; Goyal, P.; Jackel, L. D.; Mathew Monfort, U. M.;
Zhang, J.; Zhang, X.; Zhao, J.; and Zieba, K. 2016.
End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316.
Caruana, R. 1997. Multitask learning. Machine learning
28(1):41–75.
Chang, K.-w.; Krishnamurthy, A.; Agarwal, A.; Daume, H.;
and Langford, J. 2015. Learning to search better than your
teacher. In Proceedings of the 32nd International Conference
on Machine Learning (ICML-15), 2058–2066.
Chen, C.; Seff, A.; Kornhauser, A.; and Xiao, J. 2015.
Deepdriving: Learning affordance for direct perception in
autonomous driving. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2722–2730.
Daumé Iii, H.; Langford, J.; and Marcu, D. 2009. Search-
based structured prediction. Machine learning 75(3):297–
325.
Judah, K.; Fern, A. P.; Dietterich, T. G.; et al. 2014. Ac-
tive lmitation learning: formal and practical reductions to
iid learning. The Journal of Machine Learning Research
15(1):3925–3963.
Kim, B., and Pineau, J. 2013. Maximum mean discrepancy
imitation learning.
Koutník, J.; Cuccu, G.; Schmidhuber, J.; and Gomez, F. 2013.
Evolving large-scale neural networks for vision-based re-
inforcement learning. In Proceedings of the 15th annual
conference on Genetic and evolutionary computation, 1061–
1068. ACM.
Laskey, M.; Staszak, S.; Hsieh, W. Y.-S.; Mahler, J.; Pokorny,
F. T.; Dragan, A. D.; and Goldberg, K. 2016. Shiv: Reducing
supervisor burden in dagger using support vectors for effi-
cient learning from demonstrations in high dimensional state
spaces. In 2016 IEEE International Conference on Robotics
and Automation (ICRA), 462–469. IEEE.
Loiacono, D.; Togelius, J.; Lanzi, P. L.; Kinnaird-Heether, L.;
Lucas, S. M.; Simmerson, M.; Perez, D.; Reynolds, R. G.;
and Saez, Y. 2008. The wcci 2008 simulated car racing
competition. In CIG, 119–126. Citeseer.
Muller, U.; Ben, J.; Cosatto, E.; Flepp, B.; and Cun, Y. L.
2005. Off-road obstacle avoidance through end-to-end learn-
ing. In Advances in neural information processing systems,
739–746.
Pomerleau, D. A. 1989. Alvinn: An autonomous land vehicle
in a neural network. Technical report, DTIC Document.
Pomerleau, D. A. 1992. Progress in neural network-based
vision for autonomous robot driving. In Intelligent Vehicles’
92 Symposium., Proceedings of the, 391–396. IEEE.
Ross, S., and Bagnell, J. A. 2014. Reinforcement and imita-
tion learning via interactive no-regret learning. arXiv preprint
arXiv:1406.5979.

Ross, S.; Melik-Barkhudarov, N.; Shankar, K. S.; Wendel,
A.; Dey, D.; Bagnell, J. A.; and Hebert, M. 2013. Learning
monocular reactive uav control in cluttered natural environ-
ments. In Robotics and Automation (ICRA), 2013 IEEE
International Conference on, 1765–1772. IEEE.
Ross, S.; Gordon, G. J.; and Bagnell, J. A. 2010. A reduction
of imitation learning and structured prediction to no-regret
online learning. arXiv preprint arXiv:1011.0686.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of go with deep neural networks and tree search.
Nature 529(7587):484–489.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learning:
An introduction, volume 28. MIT press.
accessed May 12, 2016. The Open Racing Car Simulator.
Zaremba, W., and Sutskever, I. 2014. Learning to execute.
arXiv preprint arXiv:1410.4615.

2897

