Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

Structured Inference Networks
for Nonlinear State Space Models

Rahul G. Krishnan, Uri Shalit, David Sontag
Courant Institute of Mathematical Sciences, New York University
{rahul, shalit, dsontag} @cs.nyu.edu

Abstract

Gaussian state space models have been used for decades as
generative models of sequential data. They admit an intuitive
probabilistic interpretation, have a simple functional form, and
enjoy widespread adoption. We introduce a unified algorithm
to efficiently learn a broad class of linear and non-linear state
space models, including variants where the emission and tran-
sition distributions are modeled by deep neural networks. Our
learning algorithm simultaneously learns a compiled inference
network and the generative model, leveraging a structured
variational approximation parameterized by recurrent neural
networks to mimic the posterior distribution. We apply the
learning algorithm to both synthetic and real-world datasets,
demonstrating its scalability and versatility. We find that using
the structured approximation to the posterior results in models
with significantly higher held-out likelihood.

1 Introduction

Models of sequence data such as hidden Markov models
(HMMs) and recurrent neural networks (RNNs) are widely
used in machine translation, speech recognition, and compu-
tational biology. Linear and non-linear Gaussian state space
models (GSSMs, Fig. 1) are used in applications including
robotic planning and missile tracking. However, despite huge
progress over the last decade, efficient learning of non-linear
models from complex high dimensional time-series remains
a major challenge. Our paper proposes a unified learning
algorithm for a broad class of GSSMs, and we introduce an
inference procedure that scales easily to high dimensional
data, compiling approximate (and where feasible, exact) in-
ference into the parameters of a neural network.

In engineering and control, the parametric form of the
GSSM model is often known, with typically a few spe-
cific parameters that need to be fit to data. The most
commonly used approaches for these types of learning
and inference problems are often computationally demand-
ing, e.g. dual extended Kalman filter (Wan and Nelson
1996), expectation maximization (Briegel and Tresp 1999;
Ghahramani and Roweis 1999) or particle filters (Schon,
Wills, and Ninness 2011). Our compiled inference algorithm
can easily deal with high-dimensions both in the observed

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2101

and the latent spaces, without compromising the quality of
inference and learning.

When the parametric form of the model is unknown, we
propose learning deep Markov models (DMM), a class of
generative models where classic linear emission and tran-
sition distributions are replaced with complex multi-layer
perceptrons (MLPs). These are GSSMs that retain the Marko-
vian structure of HMMs, but leverage the representational
power of deep neural networks to model complex high di-
mensional data. If one augments a DMM model such as the
one presented in Fig. 1 with edges from the observations
x,; to the latent states of the following time step z;1, then
the DMM can be seen to be similar to, though more restric-
tive than, stochastic RNNs (Bayer and Osendorfer 2014) and
variational RNNs (Chung et al. 2015).

Our learning algorithm performs stochastic gradient as-
cent on a variational lower bound of the likelihood. In-
stead of introducing variational parameters for each data
point, we compile the inference procedure at the same time
as learning the generative model. This idea was originally
used in the wake-sleep algorithm for unsupervised learning
(Hinton et al. 1995), and has since led to state-of-the-art
results for unsupervised learning of deep generative mod-
els (Kingma and Welling 2014; Mnih and Gregor 2014;
Rezende, Mohamed, and Wierstra 2014).

Specifically, we introduce a new family of structured infer-
ence networks, parameterized by recurrent neural networks,
and evaluate their effectiveness in three scenarios: (1) when
the generative model is known and fixed, (2) in parameter
estimation when the functional form of the model is known
and (3) for learning deep Markov models. By looking at the
structure of the true posterior, we show both theoretically
and empirically that inference for a latent state should be
performed using information from its future, as opposed to
recent work which performed inference using only infor-
mation from the past (Chung et al. 2015; Gan et al. 2015;
Gregor et al. 2015), and that a structured variational approxi-
mation outperforms mean-field based approximations. Our
approach may easily be adapted to learning more general
generative models, for example models with edges from ob-
servations to latent states.

Finally, we learn a DMM on a polyphonic music dataset
and on a dataset of electronic health records (a complex high
dimensional setting with missing data). We use the model

Figure 1: Generative Models of Sequential Data: (7op
Left) Hidden Markov Model (HMM), (Top Right) Deep
Markov Model (DMM) B denotes the neural networks
used in DMMs for the emission and transition functions.
(Bottom) Recurrent Neural Network (RNN), ¢ denotes a
deterministic intermediate representation. Code for learn-
ing DMMs and reproducing our results may be found at:
github.com/clinicalml/structuredinference

learned on health records to ask queries such as “what would
have happened to patients had they not received treatment”,
and show that our model correctly identifies the way certain
medications affect a patient’s health.

Related Work: Learning GSSMs with MLPs for the tran-
sition distribution was considered by (Raiko and Tornio
2009). They approximate the posterior with non-linear dy-
namic factor analysis (Valpola and Karhunen 2002), which
scales quadratically with the observed dimension and is im-
practical for large-scale learning.

Recent work has considered variational learning of time-
series data using structured inference or recognition networks.
Archer et al. propose using a Gaussian approximation to
the posterior distribution with a block-tridiagonal inverse
covariance. Johnson et al. use a conditional random field as
the inference network for time-series models. Concurrent to
our own work, Fraccaro et al. also learn sequential generative
models using structured inference networks parameterized
by recurrent neural networks.

Bayer and Osendorfer and Fabius and van Amersfoort cre-
ate a stochastic variant of RNNs by making the hidden state
of the RNN at every time step be a function of independently
sampled latent variables. Chung et al. apply a similar model
to speech data, sharing parameters between the RNNs for the
generative model and the inference network. Gan et al. learn
a model with discrete random variables, using a structured
inference network that only considers information from the
past, similar to Chung et al. and Gregor et al.’s models. In
contrast to these works, we use information from the future
within a structured inference network, which we show to be
preferable both theoretically and practically. Additionally, we
systematically evaluate the impact of the different variational
approximations on learning.

Watter et al. construct a first-order Markov model using in-
ference networks. However, their learning algorithm is based
on data tuples over consecutive time steps. This makes the
strong assumption that the posterior distribution can be recov-
ered based on observations at the current and next time-step.

2102

As we show, for generative models like the one in Fig. 1,
the posterior distribution at any time step is a function of all
future (and past) observations.

2 Background

Gaussian State Space Models: We consider both inference
and learning in a class of latent variable models given by: We
denote by z; a vector valued latent variable and by x; a vector
valued observation. A sequence of such latent variables and
observations is denoted Z, Z respectively.

2z ~ N(Gal(z—-1,Ar), Sp(2e—1, Ay)) (D

wy ~ I(Fy(20)) 2
We assume that the distribution of the latent states is a mul-
tivariate Gaussian with a mean and covariance which are
differentiable functions of the previous latent state and A,
(the time elapsed of time between ¢ — 1 and ¢). The multivari-
ate observations x; are distributed according to a distribution
II (e.g., independent Bernoullis if the data is binary) whose
parameters are a function of the corresponding latent state z;.
Collectively, we denote by § = {«, 3, £} the parameters of
the generative model.

Eq. 1 subsumes a large family of linear and non-linear
Gaussian state space models. For example, by setting
Ga(Zt_l) = Gtzt—la Sﬁ = EhFﬁ = tht’ where Gt’ Et
and F; are matrices, we obtain linear state space models. The
functional forms and initial parameters for G, Sg, F,, may
be pre-specified.

Variational Learning: Using recent advances in vari-
ational inference we optimize a variational lower bound
on the data log-likelihood. The key technical innovation
is the introduction of an inference network or recognition
network (Hinton et al. 1995; Kingma and Welling 2014;
Mnih and Gregor 2014; Rezende, Mohamed, and Wierstra
2014), a neural network which approximates the intractable
posterior. This is a parametric conditional distribution that is
optimized to perform inference. Throughout this paper we
will use 6 to denote the parameters of the generative model,
and ¢ to denote the parameters of the inference network.

For the remainder of this section, we consider learning
in a Bayesian network whose joint distribution factorizes as:
p(x, z) = po(2)po(x|z). The posterior distribution pg(z|x) is
typically intractable. Using the well-known variational princi-
ple, we posit an approximate posterior distribution g4 (z|x) to
obtain the following lower bound on the marginal likelihood:

log py(x) > E)[10gpe(x|2)] — KL(go(z[2)llpo(2)),

a0 (2|z

3)
where the inequality is by Jensen’s inequality. Kingma and
Welling; Rezende, Mohamed, and Wierstra use a neural net
(with parameters ¢) to parameterize g,. The challenge in the
resulting optimization problem is that the lower bound in
Eq. 3 includes an expectation w.r.t. ¢4, which implicitly de-
pends on the network parameters ¢. When using a Gaussian
variational approximation g4(z|z) ~ N (g(x), Xg(x)),
where 14(x), X4 (x) are parametric functions of the obser-
vation z, this difficulty is overcome by using stochastic
backpropagation: a simple transformation allows one to ob-
tain unbiased Monte Carlo estimates of the gradients of

(Transition)

(Emission)

Eq,(z|z) [log pa(x|2)] with respect to ¢. The KL term in Eq.
3 can be estimated similarly since it is also an expectation.
When the prior py(z) is Normally distributed, the KL and its
gradients may be obtained analytically.

3 A Factorized Variational Lower Bound

We leverage stochastic backpropagation to learn generative
models given by Eq. 1, corresponding to the graphical model
in Fig. 1. Our insight is that for the purpose of inference,
we can use the Markov properties of the generative model
to guide us in deriving a structured approximation to the
posterior. Specifically, the posterior factorizes as:

T

p(212) = p(=1|7) HP(Zt|Zt717 Tty
t=2

“

,.TT).

To see this, use the independence statements implied by the
graphical model in Fig. 1 to note that p(Z]Z), the true poste-
rior, factorizes as:

T

p(18) = p(a|®) [plel-1. 3)

t=2

Now, we notice that z; L xq,...,2¢_1|2:—1, yielding the
desired result. The significance of Eq. 4 is that it yields insight
into the structure of the exact posterior for the class of models
laid out in Fig. 1.

We directly mimic the structure of the posterior with the
following factorization of the variational approximation:

T
9 (Z17) = gy (21|71, ..., 27) H ao(zt|2t—1, 21, ... aT)
t=2

&)

S.t. q¢(zt‘zt—1axt7---7xT) ~

N(qu(zt—l,xun~>$T)’Z¢(Zt—1,$t7~-~79€T))

where p14 and Xy are functions parameterized by neural nets.
Although g, has the option to condition on all information
across time, Eq. 4 suggests that in fact it suffices to condition
on information from the future and the previous latent state.
The previous latent state serves as a summary statistic for
information from the past.

Exact Inference: We can match the factorization of the true
posterior using the inference network but using a Gaussian
variational approximation for the approximate posterior over
each latent variable (as we do) limits the expressivity of the
inferential model, except for the case of linear dynamical sys-
tems where the posterior distribution is Normally distributed.
However, one could augment our proposed inference network
with recent innovations that improve the variational approxi-
mation to allow for multi-modality (Rezende and Mohamed
2015; Tran, Ranganath, and Blei 2016). Such modifications
could yield black-box methods for exact inference in time-
series models, which we leave for future work.

Deriving a Variational Lower Bound: For a generative
model (with parameters #) and an inference network (with
parameters ¢), we are interested in maxg log py (). For ease
of exposition, we instantiate the derivation of the variational

2103

bound for a single data point Z though we learn 6, ¢ from a
corpus.

The lower bound in Eq. 3 has an analytic form of the
KL term only for the simplest of transition models G, Sg
between z;_; and z; (Eq. 1). One could estimate the gradient
of the KL term by sampling from the variational model, but
that results in high variance estimates and gradients. We use
a different factorization of the KL term (obtained by using
the prior distribution over latent variables), leading to the
variational lower bound we use as our objective function:

T
L(7;(0,9)) = %(IZEli)[logpe(wt\Zt)] (6)
— KL(gg(21|7)|po(21))
T
- E [KL(gg(2t|zt—1, 7)|[po(2e]2e-1))] -

5 a0 (2117

The key point is the resulting objective function has
more stable analytic gradients. Without the factorization
of the KL divergence in Eq. 6, we would have to estimate
KL(q(Z]@)||p(2)) via Monte-Carlo sampling, since it has no
analytic form. In contrast, in Eq. 6 the individual KL terms
do have analytic forms. A detailed derivation of the bound
and the factorization of the KL divergence is detailed in the
supplemental material.

Learning with Gradient Descent: The objective in Eq. 6
is differentiable in the parameters of the model (6, ¢). If the
generative model 6 is fixed, we perform gradient ascent of
Eq. 6 in ¢. Otherwise, we perform gradient ascent in both
¢ and 6. We use stochastic backpropagation (Kingma and
Welling 2014; Rezende, Mohamed, and Wierstra 2014) for
estimating the gradient w.r.t. ¢. Note that the expectations
are only taken with respect to the variables z;_1, z;, which
are the sufficient statistics of the Markov model. For the KL.
terms in Eq. 6, we use the fact that the prior pg(z¢|z¢—1) and
the variational approximation to the posterior g4 (2¢|z:—1, %)
are both Normally distributed, and hence their KL divergence
may be estimated analytically.

Algorithm 1 depicts an overview of the learning algorithm.
We outline the algorithm for a mini-batch of size one, but in
practice gradients are averaged across stochastically sampled
mini-batches of the training set. We take a gradient step in
6 and ¢, typically with an adaptive learning rate such as
(Kingma and Ba 2015).

4 Structured Inference Networks

We now detail how we construct the variational approxima-
tion gy, and specifically how we model the mean and diagonal
covariance functions p and X using recurrent neural networks
(RNNG5). Since our implementation only models the diagonal
of the covariance matrix (the vector valued variances), we
denote this as o2 rather than X.. This parameterization cannot
in general be expected to be equal to py(Z]Z), but in many
cases is a reasonable approximation. We use RNNs due to
their ability to scale well to large datasets.

Table 1 details the different choices for inference net-
works that we evaluate. The Deep Kalman Smoother DKS

Algorithm 1 Learning a DMM with stochastic gradient descent:
We use a single sample from the recognition network during learning
to evaluate expectations in the bound. We aggregate gradients across
mini-batches.

Inputs: Dataset D
Inference Model: g4 (Z]Z)
Generative Model: pg(Z|Z), pg(Z)
while notConverged() do
1. Sample datapoint: & ~ D
2. Estimate posterior parameters (Evaluate 114, ¥4)
3. Sample Z ~ q4(Z]7)
4. Estimate conditional likelihood: py(Z|2) & KL
5. Evaluate £(Z; (0, ¢))
6. Estimate MC approx. to VoL
7. Estimate MC approx. to V4L
(Use stochastic backpropagation to move gradients with
respect to g inside expectation)
8. Update 6, ¢ using ADAM (Kingma and Ba 2015)
end while

Table 1: Inference Networks: BRNN refers to a Bidirectional
RNN and comb.fxn is shorthand for combiner function.

Inference Network ~ Variational Approximation for z, Implemented With

MF-LR q(zt|xe, ... x7) BRNN
MF-L q(zt|xe, ... @) RNN
ST-L q(zt|z—1, 21, .. @) RNN & comb.fxn
DKS q(ze|ze—1, 24, ... 7) RNN & comb.fxn
ST-LR q(zt|zt-1,21,. .. 27) BRNN & comb.fxn

corresponds exactly to the functional form suggested by
Eq. 4, and is our proposed variational approximation. The
DKS smoothes information from the past (z;) and future
(x4, . .. zr) to form the approximate posterior distribution.

We also evaluate other possibilities for the variational mod-
els (inference networks) g4: two are mean-field models (de-
noted MF) and two are structured models (denoted ST). They
are distinguished by whether they use information from the
past (denoted L, for left), the future (denoted R, for right),
or both (denoted LR). See Fig. 2 for an illustration of two of
these methods. Each conditions on a different subset of the
observations to summarize information in the input sequence
Z. DKS corresponds to ST-R

The hidden states of the RNN parameterize the varia-
tional distribution, which go through what we call the “com-
biner function”. We obtain the mean y; and diagonal co-
variance o7 for the approximate posterior at each time-step
in a manner akin to Gaussian belief propagation. Specifi-
cally, we interpret the hidden states of the forward and back-
ward RNNSs as parameterizing the mean and variance of two
Gaussian-distributed “messages” summarizing the observa-
tions from the past and the future, respectively. We then mul-
tiply these two Gaussians, performing a variance-weighted
average of the means. All operations should be understood
to be performed element-wise on the corresponding vectors.
Rleft B are the hidden states of the RNNs that run from
the past and the future respectively (see Fig. 2).

Combiner Function for Mean Field Approximations:

S

Combiner lunumn (11,%1) N2722 N3723

Figure 2: Structured Inference Networks: MF-LR and ST-
LR variational approximations for a sequence of length 3, us-
ing a bi-directional recurrent neural net (BRNN). The BRNN
takes as input the sequence (1, ...x3), and through a series
of non-linearities denoted by the blue arrows it forms a se-
quence of hidden states summarizing information from the
left and right (b and h}=") respectively. Then through a
further sequence of non-linearities which we call the “com-
biner function” (marked (a) above), and denoted by the red
arrows, it outputs two vectors x and Y, parameterizing the
mean and diagonal covariance of g4 (2¢|2—1,%) of Eq. 5.
Samples Z; are drawn from gg4(z¢|2¢—1, Z), as indicated by
the black dashed arrows. For the structured variational mod-
els ST-LR, the samples Z; are fed into the computation of
e+1 and X1, as indicated by the red arrows with the label
(a). The mean-field model does not have these arrows, and
therefore computes g4 (2|). We use 2y = 0. The inference
network for DKS (ST-R) is structured like that of ST-LR
except without the RNN from the past.

For the MF-LR inference network, the mean p; and diago-
nal variances o7 of the variational distribution g, (z;|Z) are
predicted using the output of the RNN (not conditioned on
z¢—1) as follows, where softplus(z) = log(1 + exp(x)):

_ right 7 right right
- VVM ht + bHr ’

ight ; right ht
= softplus(VV“2g hy® +b”g)

left 7 left left
= WeRRE 4 blet;

= softplus(V[/(lj;g“hlfett + blegt)

2 2 2 2
_ HeOf + oy o 00

0f = 53
2 2 0 Ut 2
o + o Ur+al

Combiner Function for Structured Approximations:
The combiner functions for the structured approximations

are implemented as:
(For ST-LR)
1 1i
hcombined = g(tanh(Wztfl + b) + hlteft + htght)
(For DKS)

heombined = %(tanh(WZt71 +b) + Ry
(Posterior Means and Covariances)
tt = Wy hcombined + by

2 — softplus (W2 heombined + bo2)

Oy =

The combiner function uses the tanh non-linearity from z;_;
to approximate the transition function (alternatively, one
could share parameters with the generative model), and here
we use a simple weighting between the components.

Relationship to Related Work: Archer et al.; Gao et
al. use ¢(217) = [I, a(z|2e—1,Z) where q(z|2:—1,%) =
N (), B(zt—1, Tt, ©1—1)). The key difference from our
approach is that this parameterization (in particular, condi-
tioning the posterior means only on ;) does not account for
the information from the future relevant to the approximate
posterior distribution for z;.

Johnson et al. interleave predicting the local variational
parameters of the graphical model (using an inference net-
work) with steps of message passing inference. A key dif-
ference between our approach and theirs is that we rely on
the structured inference network to predict the optimal local
variational parameters directly. In contrast, in Johnson et al.,
any suboptimalities in the initial local variational parameters
may be overcome by the subsequent steps of optimization
albeit at additional computational cost.

Chung et al. propose the Variational RNN (VRNN) in
which Gaussian noise is introduced at each time-step of a
RNN. Chung et al. use an inference network that shares
parameters with the generative model and only uses infor-
mation from the past. If one views the noise variables and
the hidden state of the RNN at time-step ¢ together as z,
then a factorization similar to Eq. 6 can be shown to hold,
although the KL term would no longer have an analytic form
since pg(2¢|zt—1, £t—1) would not be Normally distributed.
Nonetheless, our same structured inference networks (i.e.
using an RNN to summarize observations from the future)
could be used to improve the tightness of the variational
lower bound, and our empirical results suggest that it would
result in better learned models.

5 Deep Markov Models

Following (Raiko et al. 2006), we apply the ideas of deep
learning to non-linear continuous state space models. When
the transition and emission function have an unknown func-
tional form, we parameterize G, Sg, I, from Eq. 1 with
deep neural networks. See Fig. 1 (right) for an illustration of
the graphical model.

Emission Function: We parameterize the emission
function F, using a two-layer MLP (multi-layer per-
ceptron), MLP(Q?, NL;4, NLQ) NLo (WQNLl (Wlx +
b1) + b)), where NL denotes non-linearities such as

2105

ReLU, sigmoid, or tanh units applied element-wise to
the input vector. For modeling binary data, Fy(z;) =
sigmoid(WemissionMLP (24, ReLU, ReLU) + bemission) param-
eterizes the mean probabilities of independent Bernoullis.

Gated Transition Function: We parameterize the transi-
tion function from z; to z;41 using a gated transition function
inspired by Gated Recurrent Units (Chung et al. 2014), in-
stead of an MLP. Gated recurrent units (GRUs) are a neural
architecture that parameterizes the recurrence equation in the
RNN with gating units to control the flow of information
from one hidden state to the next, conditioned on the observa-
tion. Unlike GRUs, in the DMM, the transition function is not
conditional on any of the observations. All the information
must be encoded in the completely stochastic latent state. To
achieve this goal, we create a Gated Transition Function. We
would like the model to have the flexibility to choose a linear
transition for some dimensions while having a non-linear
transitions for the others. We adopt the following parameteri-
zation, where I denotes the identity function and ® denotes
element-wise multiplication:

gt = MLP(z;_1,ReLU, sigmoid) (Gating Unit)

ht = MLP(z;—1,ReLU, 1) (Proposed mean)
(Transition Mean G, and Sg)

pe(ze—1) = (1= gt) © (Wi, ze-1 +by,) + 91 © Iy
02(z_1) = softplus(Ws2ReLU(hy) + bo2)

Note that the mean and covariance functions both share
the use of h;. In our experiments, we initialize Wup to be the
identity function and b,,, to 0. The parameters of the emission
and transition function form the set 6.

6 Evaluation

Our models and learning algorithm are implemented
in Theano (Theano Development Team 2016). We use
Adam (Kingma and Ba 2015) with a learning rate of
0.0008 to train the DMM. Our code is available at
github.com/clinicalml/structuredinference.

Datasets: We evaluate on three datasets.

Synthetic: 'We consider simple linear and non-linear
GSSMs. To train the inference networks we use N = 5000
datapoints of length 7" = 25. We consider both one and
two dimensional systems for inference and parameter esti-
mation. We compare our results using the training value of
the variational bound L(Z; (6, ¢)) (Eq. 6) and the RMSE =

\/ﬁ% sz\; 23:1 (116 (i¢) — 27]2, where z* correspond
to the true underlying 2’s that generated the data.
Polyphonic Music: We train DMMs on polyphonic music
data (Boulanger-lewandowski, Bengio, and Vincent 2012).
An instance in the sequence comprises an 88-dimensional
binary vector corresponding to the notes of a piano. We learn
for 2000 epochs and report results based on early stopping
using the validation set. We report held-out negative log-
likelihood (NLL) in the format “a (b) {c}”. a is an importance
sampling based estimate of the NLL (details in supplementary

material); b = —x—— S| —L(T; 0,) where T} is the

Z{V=1 T;

length of sequencé 1. This is an upper bound on the NLL,

which facilitates comparison to RNNs; TSBN (Gan et al.
2015) (in their code) report ¢ = + PO T%L(i;’; 6,¢). We
compute this to facilitate comparison with their work. As
in (Kaae Sgnderby et al. 2016), we found annealing the KL
divergence in the variational bound (L(Z; (8, ¢))) from 0 to
1 over 5000 parameter updates got better results.

Electronic Health Records (EHRs): The dataset comprises
5000 diabetic patients using data from a major health insur-
ance provider. The observations of interest are: Alc level
(hemoglobin Alc, a protein for which a high level indicates
that the patient is diabetic) and glucose (blood sugar). We
bin glucose into quantiles and Alc into clinically meaningful
bins. The observations also include age, gender and ICD-9
diagnosis codes for co-morbidities of diabetes such as conges-
tive heart failure, chronic kidney disease and obesity. There
are 48 binary observations for a patient at every time-step.
We group each patient’s data (over 4 years) into three month
intervals, yielding a sequence of length 18.

6.1 Synthetic Data

Compiling Exact Inference: We seek to understand
whether inference networks can accurately compile exact
posterior inference into the network parameters ¢ for linear
GSSMs when exact inference is feasible. For this experiment
we optimize Eq. 6 over ¢, while 0 is fixed to a synthetic
distribution given by a one-dimensional GSSM. We compare
results obtained by the various approximations we propose
to those obtained by an implementation of Kalman smooth-
ing (Duckworth 2016) which performs exact inference. Fig.
3 (top and middle) depicts our results. The proposed DKS
(i.e., ST-R) and ST-LR outperform the mean-field based vari-
ational method MF-L that only looks at information from
the past. MF-LR, however, is often able to catch up when it
comes to RMSE, highlighting the role that information from
the future plays when performing posterior inference, as is
evident in the posterior factorization in Eq. 4. Both DKS and
ST-LR converge to the RMSE of the exact Smoothed KF,
and moreover their lower bound on the likelihood becomes
tight.

Approximate Inference and Parameter Estimation:
Here, we experiment with applying the inference networks to
synthetic non-linear generative models as well as using DKS
for learning a subset of parameters within a fixed generative
model. On synthetic non-linear datasets (see supplemental
material) we find, similarly, that the structured variational
approximations are capable of matching the performance of
inference using a smoothed Unscented Kalman Filter (Wan,
Van Der Merwe, and others 2000) on held-out data. Finally,
Fig. 4 illustrates a toy instance where we successfully per-
form parameter estimation in a synthetic, two-dimensional,
non-linear GSSM.

6.2 Polyphonic Music

Mean-Field vs Structured Inference Networks: Table 2
shows the results of learning a DMM on the polyphonic mu-
sic dataset using MF-LR, ST-L, DKS and ST-LR. ST-L is
a structured variational approximation that only considers
information from the past and, up to implementation details,

2106

3.7
5 = 3.6 r\
m z 3.5
%4 fg_J, ©-0-6-0-0-0-0-C-0-0-G-0-C-0-C
= ' 2,
£3<«— STLR = STR >
& |— MFLR o MFL £ 32
v ST.L o8 KF [Exact] * 3.1 S
11] 50 100 150 200 250 300 350 $'(]() 50 100 150 200 250 300 350
Epochs Epochs
2 Latent Space 5 Observations
15 o= Stk 10 N A
10 W soe _ n
= 5 = i f " R
=0 = e »] (] ¥
y = U "
5 Y -5
) er 10 ° L)
—105 5 10 15 20 2% 5 10 15 20
s—a z oo KF B8 x > ST-R

—> ST-R

Figure 3: Synthetic Evaluation: (Top & Middle) Compiled
inference for a fixed linear GSSM: z; ~ N (2;_1 + 0.05,10),
xy ~ N(0.5z¢,20). The training set comprised N = 5000
one-dimensional observations of sequence length 7' = 25.
(Top left) RMSE with respect to true z* that generated the
data. (Top right) Variational bound during training. The re-
sults on held-out data are very similar (see supplementary
material). (Bottom) Visualizing inference in two sequences
(denoted (1) and (2)); Left panels show the Latent Space
of variables z, right panels show the Observations z. Ob-
servations are generated by the application of the emission
function to the posterior shown in Latent Space. Shading
denotes standard deviations.

a*:O‘.E)

k__
f*=-01 0.00
1Z0.02
1=0.04
1=0.06
1=0.08
1010
—0.12

= DN IND 0O QO s o T
TIOTTIOTTIOUIO

o
COO00O0O00

100 200 300 400
Epochs

0100 200 300 400 0
Epochs

Figure 4: Parameter Estimation: Learning parameters «, 3
in a two-dimensional non-linear GSSM. N = 5000, T = 25
7 ~ N([0.22)_; +tanh(az});0.22} ; +sin(Bz)_;)], 1.0)
Ty ~ N(0.52;,0.1) where Z denotes a vector, [| denotes
concatenation and superscript denotes indexing.

is comparable to the one used in (Gregor et al. 2015). Com-
paring the negative log-likelihoods of the learned models,
we see that the looseness in the variational bound (which
we first observed in the synthetic setting in Fig. 3 top right)
significantly affects the ability to learn. ST-LR and DKS sub-
stantially outperform MF-LR and ST-L. This adds credence
to the idea that by taking into consideration the factorization
of the posterior, one can perform better inference and, con-
sequently, learning, in real-world, high dimensional settings.

Table 2: Comparing Inference Networks: Test negative log-
likelihood on polyphonic music of different inference net-
works trained on a DMM with a fixed structure (lower is
better). The numbers inside parentheses are the variational
bound.

Inference Network JSB Nottingham Piano Musedata
DKS (i.e., ST-R) 6.605 (7.033) 3.136 (3.327) 8.471 (8.584) 7.280 (7.136)
ST-L 7.020 (7.519) 3.446 (3.657) 9.375 (9.498) 8.301 (8.495)
ST-LR 6.632 (7.078) 3.251(3.449) 8.406 (8.529) 7.127 (7.268)
MF-LR 6.701 (7.101) 3.273 (3.441) 9.188 (9.297) 8.760 (8.877)

Note that the DKS network has half the parameters of the
ST-LR and MF-LR networks.

A Generalization of the DMM: To display the efficacy
of our inference algorithm to model variants beyond first-
order Markov Models, we further augment the DMM with
edges from z;_; to 2z; and from z;_; to z;. We refer to
the resulting generative model as DMM-Augmented (Aug.).
Augmenting the DMM with additional edges realizes a richer
class of generative models.

We show that DKS can be used as is for inference on a
more complex generative model than DMM, while making
gains in held-out likelihood. All following experiments use
DKS for posterior inference.

The baselines we compare to in Table 3 also have more
complex generative models than the DMM. STORN has
edges from z;_; to z; given by the recurrence update and
TSBN has edges from z;_; to z; as well as from x;_1 to x;.
HMSBN shares the same structural properties as the DMM,
but is learned using a simpler inference network.

In Table 3, as we increase the complexity of the generative
model, we obtain better results across all datasets.

The DMM outperforms both RNNs and HMSBN every-
where, outperforms STORN on JSB, Nottingham and outper-
form TSBN on all datasets except Piano. Compared to LV-
RNN (that optimizes the inclusive KL-divergence), DMM-
Aug obtains better results on all datasets except JSB. This
showcases our flexible, structured inference network’s ability
to learn powerful generative models that compare favourably
to other state of the art models. We provide audio files for
samples from the learned DMM models in the code reposi-
tory.

6.3 EHR Patient Data

Learning models from large observational health datasets is
a promising approach to advancing precision medicine and
could be used, for example, to understand which medications
work best, for whom. In this section, we show how a DMM
may be used for precisely such an application. Working with
EHR data poses some technical challenges: EHR data are
noisy, high dimensional and difficult to characterize easily.
Patient data is rarely contiguous over large parts of the dataset
and is often missing (not at random). We learn a DMM on
the data showing how to handle the aforementioned tech-
nical challenges and use it for model based counterfactual
prediction.

Graphical Model: Fig. 5 represents the generative model
we use when T' = 4. The model captures the idea of an

2107

Table 3: Evaluation against Baselines: Test negative log-
likelihood (lower is better) on Polyphonic Music Genera-
tion dataset. Table Legend: RNN (Boulanger-lewandowski,
Bengio, and Vincent 2012), LV-RNN (Gu, Ghahramani, and
Turner 2015), STORN (Bayer and Osendorfer 2014), TSBN,
HMSBN (Gan et al. 2015).

Methods JSB Nottingham Piano Musedata
6.388 2.770 7.835 6.831
DMM (6.926) (2.964) (7.980) (6.989)
16.856) {2.954) (8.246) {6.203)
6.288 2.679 7.591 6.356
DMM-Aug. (6.773) (2.856) (7.721) (6.476)
16.692) (2.872) (8.025) {5.766)
(8.0473) (5.2354) (9.563) (9.741)
HMSBN 179070} (5.1231} {9.786) ({8.9012}
STORN 6.91 2.85 7.13 6.16
RNN 8.71 446 8.37 8.13
TSBN 17.48) (3.67} (7.98) 16.81)
LV-RNN 3.99 272 7.61 6.89

underlying time-evolving latent state for a patient (z;) that
is solely responsible for the diagnosis codes and lab values
(z+) we observe. In addition, the patient state is modulated by
drugs (u;) prescribed by the doctor. We may assume that the
drugs prescribed at any point in time depend on the patient’s
entire medical history though in practice, the dotted edges
in the Bayesian network never need to be modeled since x;
and u; are always assumed to be observed. A natural line
of follow up work would be to consider learning when u; is
missing or latent.

We make use of time-varying (binary) drug prescription
for each patient by augmenting the DMM with an additional
edge every time step. Specifically, the DMM’s transition
function is now z¢ ~ N (Gq(zt—1,ut—1),85(zt—1,ut—1))
(cf. Eq. 1). In our data, each u; is an indicator vector of
eight anti-diabetic drugs including Metformin and Insulin,
where Metformin is the most commonly prescribed first-line
anti-diabetic drug.

Figure 5: DMM for Medical Data: The DMM (from Fig. 1) is
augmented with external actions u; representing medications
presented to the patient. z; is the latent state of the patient.
x; are the observations that we model. Since both u; and x;
are always assumed observed, the conditional distribution
p(ug|xy, ..., x4—1) may be ignored during learning.

Emission & Transition Function:The choice of emission
and transition function to use for such data is not well un-

B w/ medication ~ HEMM w/out medication
High A1C High Glucose
))
1.0 1.0 120, / TIET]
2 =1
09 0.9 U0} e—e TNLLE-[L]
5 Do+ TLHENL
508 g g o LN
So7] 0.7 2 o
5 = 80 >
506 0.6 =
g E
0T T s 10 Y% 2 4 6 s 10 % 200 400 600 800 1000
Time Time Epochs

Figure 6: (Left Two Plots) Estimating Counterfactuals with
DMM: The x-axis denotes the number of 3-month intervals
after prescription of Metformin. The y-axis denotes the pro-
portion of patients (out of a test set size of 800) who, after
their first prescription of Metformin, experienced a high level
of AIC. In each tuple of bar plots at every time step, the
left aligned bar plots (green) represent the population that
received diabetes medication while the right aligned bar plots
(red) represent the population that did not receive diabetes
medication. (Rightmost Plot) Upper bound on negative-log
likelihood for different DMMs trained on the medical data.
(T) denotes “transition”, (E) denotes “emission”, (L) denotes
“linear” and (NL) denotes “non-linear”.

derstood. In Fig. 6 (right), we experiment with variants of
DMMs and find that using MLPs (rather than linear func-
tions) in the emission and transition function yield the best
generative models in terms of held-out likelihood. In these
experiments, the hidden dimension was set as 200 for the
emission and transition functions. We used an RNN size of
400 and a latent dimension of size 50. We use the DKS as
our inference network for learning.

Learning with Missing Data: In the EHR dataset, a sub-
set of the observations (such as A1C and Glucose values
which are commonly used to assess blood-sugar levels for
diabetics) is frequently missing in the data. We marginalize
them out during learning, which is straightforward within the
probabilistic semantics of our Bayesian network. The sub-
network of the original graph we are concerned with is the
emission function since missingness affects our ability to eval-
uvate log p(x|2;) (the first term in Eq. 6). The missing random
variables are leaves in the Bayesian sub-network (comprised
of the emission function). Consider a simple example of two
modeling two observations at time ¢, namely my, o;. The
log-likelihood of the data (my, o;) conditioned on the latent
variable z; decomposes as log p(my, o¢|z¢) = log p(me|z:) +
log p(0¢|2¢) since the random variables are conditionally in-
dependent given their parent. If m is missing and marginal-
ized out while o; is observed, then our log-likelihood
is: log [p(me,0ez) = log([,, p(melze)p(or2e)) =
log p(o¢|z¢) (since [p(my|z) = 1) i.e we effectively
ignore the missing observations when estimating the log-
likelihood of the data.

The Effect of Anti-Diabetic Medications: Since our co-
hort comprises diabetic patients, we ask a counterfactual
question: what would have happened to a patient had anti-
diabetic drugs not been prescribed? Specifically we are in-
terested in the patient’s blood-sugar level as measured by
the widely-used A1C blood-test. We perform inference us-

2108

ing held-out patient data leading up to the time %k of first
prescription of Metformin. From the posterior mean, we per-
form ancestral sampling tracking two latent trajectories: (1)
the factual: where we sample new latent states conditioned
on the medication u; the patient had actually received and
(2) the counterfactual: where we sample conditioned on not
receiving any drugs for all remaining timesteps (i.e uy set
to the zero-vector). We reconstruct the patient observations
Tk, ..., 27, threshold the predicted values of A1C levels into
high and low and visualize the average number of high A1C
levels we observe among the synthetic patients in both sce-
narios. This is an example of performing do-calculus (Pearl
2009) in order to estimate model-based counterfactual effects.

The results are shown in Fig. 6. We see the model learns
that, on average, patients who were prescribed anti-diabetic
medication had more controlled levels of A1C than patients
who did not receive any medication. Despite being an ag-
gregate effect, this is interesting because it is a phenomenon
that coincides with our intuition but was confirmed by the
model in an entirely unsupervised manner. Note that in our
dataset, most diabetic patients are indeed prescribed anti-
diabetic medications, making the counterfactual prediction
harder. The ability of this model to answer such queries opens
up possibilities into building personalized neural models of
healthcare. Samples from the learned generative model and
implementation details may be found in the supplement.

7 Discussion

We introduce a general algorithm for scalable learning in a
rich family of latent variable models for time-series data. The
underlying methodological principle we propose is to build
the inference network to mimic the posterior distribution
(under the generative model). The space complexity of our
learning algorithm depends neither on the sequence length
T nor on the training set size N, offering massive savings
compared to classical variational inference methods.

Here we propose and evaluate building variational infer-
ence networks to mimic the structure of the true posterior
distribution. Other structured variational approximations are
also possible. For example, one could instead use an RNN
from the past, conditioned on a summary statistic of the fu-
ture, during learning and inference.

Since we use RNNs only in the inference network, it should
be possible to continue to increase their capacity and condi-
tion on different modalities that might be relevant to approxi-
mate posterior inference without worry of overfitting the data.
Furthermore, this confers us the ability to easily model in the
presence of missing data since the semantics of the DMM
render it easy to marginalize out unobserved data. In contrast,
in a (stochastic) RNN (bottom in Fig. 1) it is much more
difficult to marginalize out unobserved data due to the depen-
dence of the intermediate hidden states on the previous input.
Indeed this allowed us to develop a principled application of
the learning algorithm to modeling longitudinal patient data
in EHR data and inferring treatment effect.

Acknowledgements

The Tesla K40s used for this research were donated by the
NVIDIA Corporation. The authors gratefully acknowledge
support by the DARPA Probabilistic Programming for Ad-
vancing Machine Learning (PPAML) Program under AFRL
prime contract no. FA8750-14-C-0005, ONR #N00014-13-1-
0646, a NSF CAREER award #1350965, and Independence
Blue Cross. We thank David Albers, Kyunghyun Cho, Yacine
Jernite, Eduardo Sontag and anonymous reviewers for their
valuable feedback and comments.

References

Archer, E.; Park, I. M.; Buesing, L.; Cunningham, J.; and
Paninski, L. 2015. Black box variational inference for state
space models. arXiv preprint arXiv:1511.07367.

Bayer, J., and Osendorfer, C. 2014. Learning stochastic
recurrent networks. arXiv preprint arXiv:1411.7610.

Boulanger-lewandowski, N.; Bengio, Y.; and Vincent, P. 2012.
Modeling temporal dependencies in high-dimensional se-
quences: Application to polyphonic music generation and
transcription. In ICML 2012.

Briegel, T., and Tresp, V. 1999. Fisher scoring and a mixture
of modes approach for approximate inference and learning
in nonlinear state space models. In NIPS 1999.

Chung, J.; Gulcehre, C.; Cho, K.; and Bengio, Y. 2014.
Empirical evaluation of gated recurrent neural networks on
sequence modeling. arXiv preprint arXiv:1412.3555.
Chung, J.; Kastner, K.; Dinh, L.; Goel, K.; Courville, A.;
and Bengio, Y. 2015. A recurrent latent variable model for
sequential data. In NIPS 2015.

Duckworth, D. 2016. Kalman filter, kalman smoother, and
em library for python. https://pykalman.github.io/. Accessed:
2016-02-24.

Fabius, O., and van Amersfoort, J. R. 2014. Variational
recurrent auto-encoders. arXiv:1412.6581.

Fraccaro, M.; Sgnderby, S. K.; Paquet, U.; and Winther, O.
2016. Sequential neural models with stochastic layers. In
NIPS 2016.

Gan, Z.; Li, C.; Henao, R.; Carlson, D. E.; and Carin, L.
2015. Deep temporal sigmoid belief networks for sequence
modeling. In NIPS 2015.

Gao, Y.; Archer, E.; Paninski, L.; and Cunningham, J. P.
2016. Linear dynamical neural population models through
nonlinear embeddings. In NIPS 2016.

Ghahramani, Z., and Roweis, S. T. 1999. Learning nonlinear
dynamical systems using an EM algorithm. In NIPS 71999.
Gregor, K.; Danihelka, I.; Graves, A.; Rezende, D. J.; and
Wierstra, D. 2015. DRAW: A recurrent neural network for
image generation. In ICML 2015.

Gu, S.; Ghahramani, Z.; and Turner, R. E. 2015. Neural
adaptive sequential monte carlo. In NIPS 2015.

Hinton, G. E.; Dayan, P,; Frey, B. J.; and Neal, R. M. 1995.
The" wake-sleep” algorithm for unsupervised neural net-
works. Science 268.

2109

Johnson, M. J.; Duvenaud, D.; Wiltschko, A. B.; Datta, S. R.;
and Adams, R. P. 2016. Structured VAEs: Composing prob-
abilistic graphical models and variational autoencoders. In
NIPS 2016.

Kaae Sgnderby, C.; Raiko, T.; Maalge, L.; Kaae Sgnderby,
S.; and Winther, O. 2016. How to Train Deep Variational
Autoencoders and Probabilistic Ladder Networks. ArXiv
e-prints.

Kingma, D., and Ba, J. 2015. Adam: A method for stochastic
optimization. In /CLR 2015.

Kingma, D. P, and Welling, M. 2014. Auto-encoding varia-
tional bayes. In ICLR 2014.

Mnih, A., and Gregor, K. 2014. Neural variational inference
and learning in belief networks. In ICML 2014.

Pearl, J. 2009. Causality. Cambridge university press.
Raiko, T., and Tornio, M. 2009. Variational bayesian learning

of nonlinear hidden state-space models for model predictive
control. Neurocomputing 72(16):3704-3712.

Raiko, T.; Tornio, M.; Honkela, A.; and Karhunen, J. 2006.
State inference in variational bayesian nonlinear state-space
models. In International Conference on ICA and Signal
Separation 2006.

Rezende, D. J., and Mohamed, S. 2015. Variational inference
with normalizing flows. In ICML 2015.

Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014. Stochas-
tic backpropagation and approximate inference in deep gen-
erative models. In ICML 2014.

Schon, T. B.; Wills, A.; and Ninness, B. 2011. System
identification of nonlinear state-space models. Automatica
47(1):39-49.

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical expressions.
abs/1605.02688.

Tran, D.; Ranganath, R.; and Blei, D. M. 2016. The varia-
tional gaussian process. In ICLR 2016.

Valpola, H., and Karhunen, J. 2002. An unsupervised en-
semble learning method for nonlinear dynamic state-space
models. Neural computation 14(11):2647-2692.

Wan, E. A., and Nelson, A. T. 1996. Dual kalman filtering
methods for nonlinear prediction, smoothing and estimation.
In NIPS 1996.

Wan, E.; Van Der Merwe, R.; et al. 2000. The unscented
kalman filter for nonlinear estimation. In AS-SPCC 2000.
Watter, M.; Springenberg, J. T.; Boedecker, J.; and Riedmiller,
M. 2015. Embed to control: A locally linear latent dynamics
model for control from raw images. In NIPS 2015.

