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Abstract

Multi-label classification is a practical yet challenging task
in machine learning related fields, since it requires the pre-
diction of more than one label category for each input in-
stance. We propose a novel deep neural networks (DNN)
based model, Canonical Correlated AutoEncoder (C2AE),
for solving this task. Aiming at better relating feature and
label domain data for improved classification, we uniquely
perform joint feature and label embedding by deriving a deep
latent space, followed by the introduction of label-correlation
sensitive loss function for recovering the predicted label out-
puts. Our C2AE is achieved by integrating the DNN archi-
tectures of canonical correlation analysis and autoencoder,
which allows end-to-end learning and prediction with the
ability to exploit label dependency. Moreover, our C2AE can
be easily extended to address the learning problem with miss-
ing labels. Our experiments on multiple datasets with differ-
ent scales confirm the effectiveness and robustness of our pro-
posed method, which is shown to perform favorably against
state-of-the-art methods for multi-label classification.

Introduction

With rich information presented in multimedia data, many
real-world classification tasks require one to assign more
than one label to each instance. For example, multiple types
of objects in an image need to be annotated, or different
identities need to be determined from an audio clip (Zhang
and Zhou 2014). Thus, different from standard multi-class
recognition problems (i.e., only one class label for each
input data), multi-label classification typically requires ad-
ditional efforts in extracting and describing the associated
data/label information to produce satisfactory performances.

By dividing the original multi-label classification problem
into multiple independent binary classification tasks, binary
relevance (Tsoumakas and Katakis 2006) is a straightfor-
ward technique and solution, which has been widely applied
by users in related fields. However, in addition to the concern
of high computational costs, such techniques cannot iden-
tify the correlation between label information, which would
limit the resulting prediction performance. As a result, meth-
ods proposed by (Read et al. 2011; Cheng, Hiillermeier, and
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Dembczynski 2010) aim at exploiting the cross-label depen-
dency by assuming label prior information. Unfortunately,
since these approaches perform a series of classification for
multi-label prediction, parallel implementation is not appli-
cable if reducing computation loads is desirable.

Deriving a latent label space with reduced dimension-
ality is also a popular technique for multi-label classifica-
tion (Balasubramanian and Lebanon 2012; Tai and Lin 2012;
Chen and Lin 2012; Bi and Kwok 2013; Hsu et al. 2009;
Zhang and Schneider 2012; Zhou, Tao, and Wu 2012;
Lin et al. 2014; Yu et al. 2014; Li and Guo 2015; Bhatia
et al. 2015). Its goal is to transform the label space into a la-
tent subspace, followed by the association between the pro-
jected input and label data for classification purposes. With
a proper decoding process which maps the projected data
back to the original label space, the task of multi-label pre-
diction is achieved. Since the learning of such latent sub-
spaces not only reduces the classification time, the corre-
lation between the labels can be implicitly exploited. In-
stead of observing latent spaces with reduced dimensions,
(Tsoumakas, Katakis, and Vlahavas 2011; Ferng and Lin
2013) proposed to derive high-dimensional label embedding
space for performing the above task. Nevertheless, the above
latent space learning algorithms can all be viewed as label
embedding based approaches. Moreover, the ability to han-
dle missing labels during the learning of multi-label classi-
fication models is also practical for real-world application
like image annotation. Incomplete labeled data during train-
ing might result in noisy classifiers with insufficient predic-
tion capability. While this is typically not well addressed
in existing methods, (Wu et al. 2014) chose a transductive
setting with label smoothness regularization, and (Wu, Lyu,
and Ghanem 2015) approached the problem by formulating
a convex quadratic matrix optimization problem.

Among the first to utilize neural network architectures,
BP-MLL (Zhang and Zhou 2006) not only treated each out-
put node as a binary classification task, and relied on the
architecture itself to exploit the dependency across labels.
Later, it was extended by (Nam et al. 2014) with additional
deep neural networks (DNN) techniques. Some recent works
proposed different loss functions (Gong et al. 2013) or archi-
tectures (Wei et al. 2014) for further improving the perfor-
mance. For example, CNN-RNN (Wang et al. 2016) chose
to learn a linear label embedding function, with label co-



occurrence information observed by recurrent neural net-
works (RNN). However, since only linear embedding was
considered, higher order dependency between different la-
bels might not be successfully discovered.

In this paper, we present a novel DNN-based framework,
Canonical-Correlated Autoencoder (C2AE), for multi-label
classification. Different from most label embedding based
methods which typically view label embedding and predic-
tion as two separate tasks, our C2AE advances deep canon-
ical correlation analysis (DCCA) and autoencoder to learn
a feature-aware latent subspace for label embedding and
multi-label classification. Moreover, with label-correlation
aware loss functions introduced at the decoding outputs, our
C2AE is able to better exploit cross-label dependency during
both label embedding and prediction processes. The main
contributions of this paper are highlighted as follows:

e By utilizing and integrating the architectures of deep
canonical correlation analysis and autoencoder, our
Canonical-Correlated Autoencoder (C2AE) is among the
first DNN-based label embedding frameworks for multi-
label classification.

e Our C2AE is able to perform feature-aware label embed-
ding and label-correlation aware prediction. The former
is realized by joint learning of DCCA and the encoding
stage of autoencoder, while the latter is achieved by the
introduced loss functions for the decoding outputs.

e Without modifying the proposed architecture, our C2AE
can be easily extended to handle missing label problems.
Our experiments verify that we perform significantly bet-
ter than state-of-the-art approaches on multi-label classi-
fication tasks with/without missing labels.

Related Work

While binary relevance (Tsoumakas and Katakis 2006) is
among the popular techniques for multi-label classification,
the lack of sufficient ability to discover interdependency be-
tween labels would be its concern.

To address the above issue, approaches based on classifier
chains were proposed. For example, probabilistic classifier
chains (PCC) aim at capturing conditional label dependency
via the product rule of probabilities (Cheng, Hiillermeier,
and Dembczynski 2010). While beam search (Kumar et
al. 2013) and advanced inference procedure (Dembczynski,
Waegeman, and Hiillermeier 2012) were further extended
from PCC, these approaches are typically computationally
expensive, and cannot be easily extended to problems with a
large number of labels.

Label embedding (LE) is another popular strategy for
multi-label classification. It transforms the label vectors into
a subspace with latent embedding of the corresponding in-
formation, and the correlation between labels can be im-
plicitly described. With additional mapping (from the in-
put vectors) and decoding (for prediction) stages derived
for this latent label space, one can perform multi-label pre-
diction with reduced computation costs (Hsu et al. 2009;
Balasubramanian and Lebanon 2012; Tai and Lin 2012;
Chen and Lin 2012; Zhang and Schneider 2012; Zhou,
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Figure 1: The proposed architecture of Canonical-Correlated
Autoencoder (C2AE), which learns a latent space L via non-
linear mappings of F,,, F., and F;. Note that X and Y are the
input and label data, respectively.

Tao, and Wu 2012; Bi and Kwok 2013; Yu et al. 2014,
Lin et al. 2014; Li and Guo 2015). For example, in (Hsu et
al. 2009), the label embedding was obtained via random pro-
jections, while principal component based projections (e.g.,
principal label space transformation (PLST) (Tai and Lin
2012) and its conditional version (CPLST) (Chen and Lin
2012)) were later utilized. Variants of LE like (Lin et al.
2014), (Bhatia et al. 2015), and (Li and Guo 2015) are
also available, which aim at improving the predictability and
recoverability of proposed models. Recently, (Wang et al.
2016) presented CNN-RNN, which applied linear label em-
bedding followed by recurrent neural networks (RNN) for
better identifying the co-occurrence of labels.

We note that, existing LE approaches typically consider
linear embedding functions, while some apply standard ker-
nel functions (e.g., low-degree polynomial kernels) for non-
linear embedding. Moreover, only few methods jointly uti-
lize the input feature space for label embedding (e.g., (Chen
and Lin 2012; Lin et al. 2014; Li and Guo 2015)). In this
paper, we advance deep neural networks for exploiting label
correlation during the embedding process. In particular, we
propose Canonical-Correlated Autoencoder (C2AE), which
can be viewed as a feature-aware label embedding frame-
work with ability in exploiting label interdependency during
both embedding and prediction processes. We will detail our
proposed DNN model in the following section.

Our Proposed Method
Canonical-Correlated Autoencoder (C2AE)
Let D = {(x;,y;)}}Y; = {X, Y} denote a set of d dimen-

i=1 —
sional training instances X € IR**" and the associated la-
bels Y € {0,1}"™*", where N and m are the numbers of
instances and label attributes, respectively. By observing D,
the goal of multi-label classification is to derive a proper
learning model, so that the label y of a test instance X can be
predicted accordingly.

Motivated by label embedding and the recent develop-



ments in deep learning, we propose a novel DNN archi-
tecture of Canonical-Correlated Autoencoder (C2AE), as
depicted in Figure 1. Our C2AE utilizes Deep Canonical
Correlation Analysis (DCCA) and autoencoder structures,
which learns a latent subspace from both feature and label
domains for multi-label classification.

As illustrated in Figure 1, our C2AE (denoted by ®) in-
tegrates two effective DNN models (i.e., DCCA and autoen-
coder) with three mapping functions to be determined: fea-
ture mapping F,, encoding function F., and decoding func-
tion F;. During the training stage, the input of C2AE are the
observed training instances X and their labels Y, while the
recovered output is the label of interest Y (i.e., same as the
input labels). Aiming at determining the latent space L, the
DCCA component of our C2AE associates X and Y, while
the autoencoder part enforces the output is recovered as Y.
Thus, the objective function of C2AE can be formulated as
follows:

® = min ®(F, F.)+ ol (F.,Fq),

F,,F..Fy
where ®(F,,F.) and I'(F., F;) denote the losses at the la-
tent space and output of C2AE, respectively. And, we have
the parameter o balances between the above two types of
loss functions.

Once the learning of our C2AE is complete, it can be eas-
ily applied for predicting the labels of test inputs. To be more
precise, a test input X will be first transformed into the de-
rived latent space by F, followed by the decoding mapping
of F; for predicting its output label y (i.e., y = F4(F,(X)).

ey

Learning Deep Latent Spaces for Joint Feature & Label
Embedding

We now discuss why we advance DCCA in our C2AE for
feature and label-aware embedding. For the sake of com-
pleteness, we first briefly review the ideas of CCA and
DCCA (Hotelling 1936; Andrew et al. 2013; Wang et al.
2015).

As a standard statistical technique for relating cross-
domain data (e.g., input feature data X and their label data
Y), CCA determines linear projection matrices W1 and
W, for each domain, aiming at observing a subspace in
which the correlation of projected data is maximized (i.e.,
corr(WTX, W2Y)). With the two linear projections re-
placed by DNNs, DCCA solves the same objective function
with the DNN models learned/updated by gradient descent
techniques (Andrew et al. 2013).

To determine ®(F,, F.) in (1), we adapt the idea of (Ket-
tenring 1971) and rewrite the correlation-based objective
function as the following deep version:

min [|F.(X) - Fe(Y)[ %
ot 2
st F,(X)F,.(X)T =F.(Y)F.(Y)" =1,

where F,(X) and F.(Y) denote the transformed feature
and label data in the derived latent space L, respectively.
And, I € R™! is the identity matrix, where [ is the dimen-
sion of the latent space L. As explained in (Kettenring 1971),
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the above identity constraint would make the above formu-
lation equivalent to the standard CCA objection function of
correlation maximization. Compared to the standard CCA
optimization task, the above formulation allows us to calcu-
late the network loss and the corresponding gradient descent
function efficiently.

By solving F,(X) and F.(Y) in (2) with DNN models,
we enforce the learned deep latent space to jointly associate
feature and label data. It is worth noting that, while existing
multi-label classification approaches based on label embed-
ding (Tai and Lin 2012; Chen and Lin 2012; Lin et al. 2014;
Li and Guo 2015) perform subspace learning using feature
and/or label data, they typically learn an additional model
relating feature data and the derived subspace for predic-
tion purposes. In other words, the tasks of label embedding
and multi-label prediction are performed separately, which
might not be preferable. In our work, we not only utilize
(2) for joint feature and label embedding with classification
guarantees, our integration with autoencoder architectures
further allows satisfactory recoverability for prediction pur-
poses (see the following subsection for details).

Learning and Recovering Label-Correlated Outputs

With the DCCA component in our C2AE performing
DCCA for joint feature and label embedding, we further ad-
vance the autoencoder in C2AE for recovering label outputs,
with a particular goal of preserving cross-label dependency.

Inspired by (Zhang and Zhou 2006), we introduce a label-
correlation aware loss function at the output of our C2AE,
which is determined as follows:

N
[(F.,Fa) =Y E;
i=1

>

(p,)ey} xy

1

E; = ] exp(—(Fa(Fe(x:))? — Fa(Fe(x:))")),

7
3)

where y} denotes the set of the positive labels in y; for the
ith instance x;, and y? is that of the negative labels. Given
the input x;, F4(F.(x;))P returns the pth entry of the C2AE
output. Thus, minimizing the above loss function is equiv-
alent to maximizing the prediction outputs of all positive-
negative label attribute pairs, which implicitly enforces the
preservation of label co-occurrence information. If standard
mean square error or cross-entropy losses are considered,
such label dependency cannot be successfully identified.

With the above loss function, our C2AE integrating
DCCA and autoencoder can be viewed as an end-to-end
DNN, which performs joint feature/label embedding and
label-correlate aware prediction in a unified model. To be
more precise, we are able to learn feature embedding F,,
label embedding F., and label prediction F; in a unified
framework. As noted earlier, most existing linear or non-
linear label-embedding based approaches derive the above
models separately with no performance correlation guaran-
tees. Later in our experiments, we will verify the effective-
ness of our approach over such methods.

Learning from Data with Missing Labels



As highlighted earlier, our C2AE can be further extended
to multi-label classification problems with missing labels.
That is, we need to learn a robust C2AE model, when miss-
ing labels during the training stage are expected.

To solve this challenging yet practical task, we now easily
apply a more general setting for determining the loss func-
tion for our C2AE. More specifically, for an instance with
positive, negative, and some missing label attributes, we de-
termine the loss function of (3) by calculating the losses de-
rived from known label pairs only (i.e, available positive-
negative label pairs). This would make our C2AE robust to
missing labels, and exhibits sufficient abilities in exploiting
the label dependency from the known label attributes.

In addition to extending our loss function at the output
layer of C2AE for handling data with missing labels, we also
perform a simple preprocessing stage for such data before
feeding them into our network. To be more precise, we set
the positive labels in an instance to be 1, the missing labels to

ly;l
ly?]

be 0, and the negative labels to be — for keeping the av-

erage of the labels to 0. This is to guaréntee that the missing
labels would not be fed into the DNN model since its value
is set to 0, which effectively suppresses the noise (coming
from the missing labels) to be mapping into the latent space.

Optimization

To learn the model of C2AE, we need to solve the optimiza-
tion problem of (1), in which the loss terms ®(F,, F.) and
I'(F.,F,) are calculated at the latent space and the output
of C2AE, respectively.

Similar to the derivation of existing DNN models, we ap-
ply the technique of gradient descent for each loss term for
updating the corresponding network parameters. As shown
in Figure 1, the gradient of ®(F,, F.) updates the feature
mapping F, and encoding F., while that of I'(F., F;) up-
dates both encoding F. and decoding functions F ;.

To calculate the gradient term of ®(F,., F. ), we reformu-
late (2) with the aid of Lagrange multipliers:

®(F,,F.) = Tr(C17Cq) + A Tr(C2TCq + C37 Cy),

where

F.(X) - Fe(Y)
F.(X)F,(X)" -1
F.(Y)F.(Y)" -1

Thus, the gradient of ®(F,, F.) with respect to F,(X) and
F.(Y) can be derived as:

OOO
||

0P(F,,F.)

or.x) =20t ANF, (X)Cs, 4)
00(F,,F,)
W = 2C1 + 4 \F.(X)Cs3, ©)

Next, we discuss how to calculate the gradient of
I'(F.,F,) (as determined in (3)) with respect to each

F4(F.(x:))’. For simplicity, we let ¢! = F(F,(x;))7, and
thus the above gradient can be derived as follows:
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Algorithm 1: Learning of C2AE

Input: Feature matrix X, label matrix Y, parameter o,
and dimension [ of the latent space
Output: F,, F;, and F,
Randomly initialize ¥, F4, F..
repeat
Randomly select a batch of data S[X] and S[Y]
Define the loss function by (1)
Perform gradient descent on F; by (6)
Perform gradient descent on F', by (4)
Perform gradient descent on F', by (5) and (6)
until Converge

Table 1: Datasets considered for performance evaluation.

dataset #labels | #instances | #feature | #cardinality
iaprtcl2 291 19,627 1000 5.7
mirflickr 38 25,000 1000 4.7
espgame 268 23,641 1000 4.7
tmc2007 22 28,596 500 2.1
NUS-WIDE | 81 269,648 4096 1.9
N
8F(Fe, Fd) _ Z 8E1
ac] ] dc)
Zexp (c] —c?y),ifj e y}
SF. CyHIyYl IIyZI
? p—
8cg B
— exp(— c—c))lfJEy7
Iytl\yz\ Z '

(6)
where y! denotes the set of the positive labels in y; for the
ith instance x;, and y? is that of the negative labels.

With the above derivations, we can learn our C2AE by
gradient descent, and the pseudo code is summarized in Al-
gorithm 1. Once the learning of C2AE is complete, label
prediction of a test input X can be easily achieved by round-

Experiments
Datasets and Settings

To evaluate the performance of our proposed method, we
consider the following datasets for experiments: iaprtci2,
ESPGame, mirflickr, tmc2007, and NUS-WIDE. The first
three datasets are image datasets used in (Guillaumin et
al. 2009), where 1000-dimensional Bag-of-Words features
(based on SIFT) are extracted. We note that tmc2007
is a large-scale text dataset downloaded from Mulan
(Tsoumakas et al. 2011), and NUS-WIDE is a large-scale im-
age dataset typically applied for image annotation tasks. The
details of each dataset are listed in Table 1. For NUS-WIDE,
we follow the setting of (Gong et al. 2013) by discarding
the instances with no positive labels and randomly select
150,000 instances for training and the remaining for testing.
For fair comparisons with other CNN-based methods, we
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Figure 2: Performance comparisons in terms of Micro-F1 and Macro-F1 with different latent space dimension ratios (I/m).

extract 4096-dimensional fc-7 feature for NUS-WIDE using
a pre-trained AlexNet model.

For the architecture of our C2AE, we have F,, composed
of 2 layers of fully connected layers, while Fy; and F, are
both single fully connected layer structures. For each fully
connected layer, a total of 512 neurons are deployed. A leaky
ReLU activation function is considered, while the batch size
is fixed as 500. To select the parameters for C2AE, we ran-
domly hold 1/6 of our training data for validation (with «
selected from [0.1, 10] and X fixed as 0.5). We also perform
the same validation process for selecting the parameters (in-
cluding the threshold for predicting the final labels) for other
methods to be compared in our experiments. As for the eval-
uation metrics, we consider micro-F1 and macro-F1 (Tang,
Rajan, and Narayanan 2009).

Comparisons with Label Embedding based
Approaches

We first consider the approaches based on label embedding
for comparisons: Conditional Principal Label Space Trans-
formation (CPLST) (Chen and Lin 2012), Feature-aware Im-
plicit Label space Encoding (FalE) (Lin et al. 2014), Low
rank Empirical risk minimization for Multi-Label Learn-
ing (LEML) (Yu et al. 2014), Sparse Local Embeddings for
Extreme Multi-label Classification (SLEEC) (Bhatia et al.
2015), and the baseline method of partial binary relevance
(PBR) (Chen and Lin 2012). In addition, we replace the lin-
ear regressors in CPLST and FAIE by DNN regressors, and
denote such methods as Deep CPLST and Deep FAIE.
Figure 2 illustrates and compares the performances of the
above methods, in which the horizontal axis denotes the ratio
of the latent space dimension (I/m). From this figure, we see
that our C2AE performed favorably against all label embed-
ding methods (with and without DNN introduced) in most
cases, which supports our exploitation of nonlinear joint fea-
ture and label embedding for multi-label classification. We

Label Neighboring Labels

horizon sun, sunset, line, condor, water

plant flower, leave, bloom, bird

airplane plane, deck, airport, power

bike cyclist, ground, embankment, trunk, racing

classroom desk, kid, child, room

Figure 3: Visualization of embedded labels for IAPRTC-12.

also see that, with the introduction of DNN architectures
for CPLST and FAIE, their DNN versions were not able to
achieve comparable performances as ours did. This further
verifies the effectiveness of our C2AE in learning deep latent
spaces from both feature and label data, and with additional
abilities in identifying label co-occurrences.

To further verify the effectiveness of our derived deep
latent space, we consider several example labels from
IAPRTC-12, and list their corresponding neighboring ones
in Figure 3. From this figure, we see that the neighboring la-
bels observed in the latent space exhibit highly correlated se-
mantic information. This confirms our C2AE in sufficiently
exploiting label dependency during the learning process.

Comparisons with DNN-based Approaches

We further compare our C2AE with recent DNN-based
methods for multi-label classification. In addition of a
basline method of DNN (as a deep version of binary rel-
evance with the loss function of BCE (Nam et al. 2014)
and BP-MLL (Zhang and Zhou 2006)), we have (1) WARP
(Gong et al. 2013), which is a CNN network with the WARP
loss function, and (2) CNN-RNN (Wang et al. 2016), which
is a state-of-the-art DNN combining CNN and RNN for
multi-label prediction.
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Table 2: Performance comparisons of DNN-based ap-
proaches on NUS-WIDE. Macro-F1 and Micro-F1 are ab-
breviated as as C-F1 and O-F1, respectively.

Method C-P C-R C-F1 || O-P O-R O-Fl
CNN-WARP || 31.7 35.6 33.5 48.6  60.5 53.9
CNN-RNN 40.5 304 34.7 || 499 61.7 552
DNN-BCE 422 237 21.7 || 56.6 67.0 61.4
BP-MLL 44.5 39.8 383 57.3 68.9 625
C2AE 55.8 453 486 | 66.2 69.1 67.6

The large-scale image annotation dataset of NUS-WIDE
is applied for evaluation and comparisons. As noted earlier,
for fair comparison purposes, we extract 4096-dimensional
fc7 features from NUS-WIDE using a pre-trained AlexNet
network (Krizhevsky, Sutskever, and Hinton 2012) as the
feature inputs for C2AE and other methods. And, since ex-
isting DNN approaches do not perform dimension reduc-
tion from the label space, we fix our dimension reduction
ratio [/m as 1. The metrics of per-class and overall preci-
sion (C-P and O-P), including the recall scores (C-R and
O-R) are considered in accordance with (Gong et al. 2013;
Wang et al. 2016).

Table 2 lists and compares the classification performances
of different DNN-based methods. It can be seen that DNN-
BCE and CNN-WARP did not exhibit abilities in exploit-
ing label co-occurrence information, so they were not able
to achieve satisfactory performances. While such capabili-
ties were introduced in BP-MLL and CNN-RNN via linear
embedding, our approach still produced promising perfor-
mances among all DNN methods considered. This supports
our use of DNN models in both feature/label embedding and
label correlation exploitation.

To make additional remarks on the computation time, our
C2AE only takes 10-15 minutes to perform training on NUS-
WIDE using a titan X GPU, which is much more efficient
than training other DNN-based approaches, especially those
require the learning of RNN. Nevertheless, our C2AE not
only achieves satisfactory classification performance, it is
also an efficiently preferable DNN model to consider.

Performance Evaluation with Missing Labels

Finally, we handle the challenging task in which missing la-
bels are presented in the training set. To conduct the exper-
iments, we vary the label missing rate from 10% to 50%,
while enforcing at least one positive label to be preserved
for each instance. Three state-of-the-art approaches are now
considered: (1) LEML, (2) Multi-label Learning with Miss-
ing Labels (MLML) (Wu et al. 2014), and (3) ML-MG (.e.,
Multi-label Learning with Missing Labels Using a Mixed
Graph (ML-PGD) (Wu, Lyu, and Ghanem 2015)). We show
the performance comparisons in Figure 4, in which our
C2AE consistently and remarkably performed against other
approaches. It is worth noting that, existing solutions typ-
ically learn linear regressors as their predictors, with addi-
tional regularization to handle missing labels. Our C2AE
uniquely performs an end-to-end learning with joint feature
and label embedding. Its effectiveness for multi-label clas-
sification and robustness to missing label problems can be
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Figure 4: Comparisons of Micro-F1 and Macro-F1 with

varying label missing rates.

successfully verified by the above experiments.

Conclusion

We proposed Canonical Correlated Autoencoder (C2AE) for
solving the task of multi-label classification. By uniquely in-
tegrating DCCA and autoencoder in a unified DNN model,
we are able to perform joint feature and label embedding
for relating such cross-domain data. With label-correlation
sensitive loss functions introduced at the outputs of C2AE,
additional ability of exploiting cross-label dependency is
further introduced into our learning model. In the experi-
ments, we showed that our C2AE not only performed favor-
ably against baseline and state-of-the-art methods on mul-
tiple datasets, we further confirmed that our C2AE can be
easily applied for learning tasks with varying amounts of
missing labels. Thus, the effectiveness and robustness of our
proposed method can be successfully verified.
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