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Abstract

Deep Residual Networks (ResNets) have recently achieved
state-of-the-art results on many challenging computer vision
tasks. In this work we analyze the role of Batch Normal-
ization (BatchNorm) layers on ResNets in the hope of im-
proving the current architecture and better incorporating other
normalization techniques, such as Normalization Propagation
(NormProp), into ResNets. Firstly, we verify that BatchNorm
helps distribute representation learning to residual blocks at
all layers, as opposed to a plain ResNet without BatchNorm
where learning happens mostly in the latter part of the net-
work. We also observe that BatchNorm well regularizes Con-
catenated ReLU (CReLU) activation scheme on ResNets,
whose magnitude of activation grows by preserving both
positive and negative responses when going deeper into the
network. Secondly, we investigate the use of NormProp as
a replacement for BatchNorm in ResNets. Though Norm-
Prop theoretically attains the same effect as BatchNorm on
generic convolutional neural networks, the identity mapping
of ResNets invalidates its theoretical promise and NormProp
exhibits a significant performance drop when naively applied.
To bridge the gap between BatchNorm and NormProp in
ResNets, we propose a simple modification to NormProp and
employ the CReLU activation scheme. We experiment on vi-
sual object recognition benchmark datasets such as CIFAR-
10/100 and ImageNet and demonstrate that 1) the modified
NormProp performs better than the original NormProp but is
still not comparable to BatchNorm and 2) CReLU improves
the performance of ResNets with or without normalizations.

Introduction
In recent years, convolutional neural networks (CNNs)
have dominated many challenging computer vision
tasks. From AlexNet (Krizhevsky, Sutskever, and Hin-
ton 2012), VGG (Simonyan and Zisserman 2014) to
GoogleNet (Szegedy et al. 2015), there has been a gradual
advance in the depth of convolution layers. The Deep
Residual Network (ResNet) (He et al. 2016a) architecture,
the latest break-through along this direction, scales up to
hundreds or even thousands of layers yet still generate
meaningful and improved representations by introducing
skip connections, i.e., identity mappings, across several con-
volution layers. Following its emergence, a wealth of studies
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has been carried out to explain the compelling performance
of ResNets (Veit, Wilber, and Belongie 2016), to understand
the role of identity mappings (He et al. 2016b), to further
deepen the networks (Huang et al. 2016) and to create
wide but shallow alternatives (Zagoruyko and Komodakis
2016). In this work, we take a novel perspective and analyze
another core ingredient of the success of ResNets, Batch
Normalization (BatchNorm) (Ioffe and Szegedy 2015).
We investigate the essential consequences of applying
BatchNorm on ResNets with both ReLU activations (Nair
and Hinton 2010) where gradients tend to vanish, and con-
catenated ReLU (CReLU) activations (Shang et al. 2016)
where gradients tend to overly aggregate. Our discoveries
show that BatchNorm stabilizes the scale of the network,
thereby suppressing excessively big or small convolution
responses, and that BatchNorm ResNets can further benefit
from coupling with CReLU. Next we attempt to gener-
alize the insights gained from BatchNorm to other types
of normalization techniques because, as we will further
discuss, there are circumstances when BatchNorm becomes
less desirable. For an example, we choose Normalization
Propagation (NormProp) (Arpit et al. 2016) as a BatchNorm
substitute on ResNet. Our experimental and theoretical
findings demonstrate that in order for NormProp ResNets to
be more comparable to the baseline BatchNorm ResNet, it
is beneficial to make appropriate adjustments to the original
NormProp formulation and to use CReLU. Overall, our
studies suggest that by better comprehending the nature of a
technique on deep networks, we can potentially improve the
existing method as well as design appropriate alternatives
when in need.

Related Works
This section introduces the following key components in our
work: Residual Networks, Batch Normalization, Normaliza-
tion Propagation, and Concatenated ReLU.

Deep Residual Networks
Residual Networks (ResNets) (He et al. 2016a) are com-
posed of stacked residual blocks and each block can be
mathematically characterized as the following:

xl+1 = ReLU (xl + f(xl,Wl)) ,
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where the function f consists of convolution, BatchNorm,
and ReLU layers (Figure 1(a)).

Very deep ResNets have won over previous state-of-
the-art on several tasks on ImageNet (Russakovsky et al.
2015) and MS COCO (Lin et al. 2014) by a significant
margin. Features extracted from pre-trained ResNets have
shown prominent results when transferred to other vision
tasks (Ilievski, Yan, and Feng 2016). The concept of resid-
ual blocks has also influenced the design of other deep neu-
ral networks (Oord, Kalchbrenner, and Kavukcuoglu 2016).
The great success of ResNets has sparked an abundance
of follow-up research in order to decipher its intriguing
properties and to improve the baseline architecture: Veit,
Wilber, and Belongie interpret deep ResNets as exponen-
tial ensembles of shallow networks; Zagoruyko and Ko-
modakis present the advantages of shallower but widened
ResNets; Shah et al. replace ReLU with Exponential Lin-
ear Unit (ELU) (Clevert, Unterthiner, and Hochreiter 2015);
Szegedy, Ioffe, and Vanhoucke combine residual blocks with
inception; Huang et al. regularize extremely deep ResNets
with stochastic layer dropout; He et al. search for the best
activation ordering inside a residual block. In contrast with
other existing works, we focus on exploring normalization
techniques on ResNets.

BatchNorm and NormProp
Ioffe and Szegedy introduce Batch Normalization, which
calculates the mean and standard deviation for each convo-
lution filter response across each mini-batch at each iteration
to normalize the current layer activation before advancing to
the next layer. Mathematically speaking, for the filter matrix
W1 from the l-th layer,

xl+1 = (Wlxl − Eωl
[Wlωl]) /σωl

(Wlωl).

Note that, thanks to the mean subtraction, the bias term can
be discarded from the convolution layer. BatchNorm alle-
viates the “internal covariate shift” phenomenon, where the
distribution of xl can fluctuate if not properly normalized.
In practice, BatchNorm yields faster convergence and lifted
performance. It also allows less stringent weight initializa-
tion and a larger starting learning rate. BatchNorm is espe-
cially meaningful to ResNets because of its depth and iden-
tity mappings, which we will elaborate in the BatchNorm
in ResNets section.

Despite the undeniable value of BatchNorm, it also en-
counters certain drawbacks, such as non-negligible compu-
tation and memory overhead, as well as incompatibility with
online learning (a batch size of 1) and recurrent neural net-
works (Ba, Kiros, and Hinton 2016). Several new normaliza-
tion methods inspired by BatchNorm have been proposed to
address the above issues. For example, Normalization Prop-
agation (NormProp) (Arpit et al. 2016) and its close variant
Weight Normalization (Salimans and Kingma 2016) repa-
rameterize the weights instead of activations; Layer Normal-
ization (Ba, Kiros, and Hinton 2016) assimilates BatchNorm
procedures but obtain the statistics for each filter via a single

1Without loss of generality, we present for the case of fully con-
nected layers only.

example. Nevertheless, there has not been any documented
attempt to integrate them into the state-of-the-art ResNets.

Among these techniques, NormProp is primarily tested on
CNNs for vision tasks. We therefore take NormProp as an
example and attempt to answer these questions in the Norm-
Prop in ResNets section: can NormProp achieve as compet-
itive results as BatchNorm on ResNet? If not, why and how
to shrink the gap?

Concatenated Rectified Linear Units
One of the most common non-linearities for deep neural
networks is the Rectified Linear Units (ReLU) (Nair and
Hinton 2010) which simply erases any negative responses,
mathematically defined as [·]+ � max(·, 0). Despite its pop-
ularity, several disadvantages of the ReLU nonlinearity have
been observed, such as convergence slowdown (Maas, Han-
nun, and Ng 2013), filter redundancy (Shang et al. 2016)
and bias shift (Clevert, Unterthiner, and Hochreiter 2015). A
family of non-saturated ReLU alternatives, such as Leaky
ReLU (Maas, Hannun, and Ng 2013), PReLU (He et al.
2015), ELU (Clevert, Unterthiner, and Hochreiter 2015),
assign a small amount of activation to the negative re-
sponses instead of completely zeroing them out. Concate-
nated ReLU (CReLU) (Shang et al. 2016) is a remedy of
another flavor–it concatenates the original linear responses
and their negative copies then applies ReLU to both.
Definition 1. CReLU, denoted by ρc : R → R

2, is defined
as: ρc(x) � ([x]+, [−x]+).

While ReLU’s excessive sparsity can hamper optimiza-
tion in latter layers, CReLU faces the opposite problem:
its magnitude of activation grows when going deeper into
the network (section BatchNorm in ResNets). Hence, nor-
malization is of great necessity when integrating CReLU
into very deep ResNets. However, Shang et al. only applies
CReLU on relatively shallow CNNs without residual con-
nections. Thus it is worth investigating how BatchNorm and
NormProp impact the functionality of CReLU on ResNets.

It is relatively straightforward to replace ReLU with an-
other activation function, as done by Shah et al.. However,
CReLU alters the network architecture by adding additional
output channels. It is unclear how to optimally incorpo-
rate CReLU activations into ResNets. In our design, we en-
gage CReLU inside each residual block, avoid changing the
identity path and keep the same number of convolution fil-
ters (Figure 1(a)). For each bottleneck blocks, we only add
CReLU after the first two convolution layers (Figure 1(b)).

Batch Normalization in ResNets
Before BatchNorm was proposed, training state-of-the-art
deep CNNs, such as AlexNet, VGG, GoogleNet, required
careful initialization and more iterations. The deepest net-
work then was generally based on GoogleNet (22 layers).

ResNets leverage identity mappings across every few con-
volution layers to delve as deep as hundreds of layers and
achieves new state-of-the-art. Besides the identity mapping,
BatchNorm is another indispensable ingredient in the suc-
cess of ResNets. The increased depth of ResNets intensi-
fies the importance of using BatchNorm. He et al. points
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(a) Basic residual block architecture. From left to right, Batch-
Norm + ReLU, BatchNorm + CReLU, Plain/NormProp +
ReLU, Plain/NormProp + CReLU.

(b) Bottleneck residual block architecture. From left to right,
BatchNorm + ReLU, BatchNorm + CReLU, Plain/NormProp
+ ReLU, Plain/NormProp + CReLU.

Figure 1: Various residual blocks with different activation schemes and normalization techniques.

out that deeper networks face many more optimization hur-
dles. BatchNorm layers can partly alleviate such difficulties.
However, the identity mapping challenges the traditional
training strategies for deep CNNs. For example, most initial-
ization techniques (Glorot and Bengio 2010; He et al. 2015;
Mishkin and Matas 2016) target at generic convolution lay-
ers and much of the theoretical motivation of these tech-
niques, such as making the expectation and variance of each
layer’s outputs to be 0 and 1, breaks down due to the iden-
tity mapping. In this case, BatchNorm enables training to
happen even when it is hard to satisfy the ideal initialization
conditions. To explore the effectiveness of different normal-
ization techniques, we turn our attention to a ResNet-specific
metric: the differences between the input to a residual block
and its output. Specifically, if xl ∈ R

c×w×h is an input to a
residual block with c channels and w × h spatial dimension
and xl+1 = f(xl,W) + xl, xl+1 ∈ R

c×w×h is the output,
we measure the difference by computing:

Δ =
1

w × h

∑
w

∑
h

‖xl(:, i, j)− xl+1(:, i, j)‖2.

A large Δ indicates a dramatic change induced by the resid-
ual path and negligible contribution from identity path. A
close-to-zero Δ indicates that information is mostly passed
through the identity path only. We measure Δs across all 54
residual blocks in several 110-layer ResNet models trained
on CIFAR-100, namely, plain ReLU/CReLU models and
BatchNorm ReLU/CReLU models. It is worthwhile ex-
plaining our interest in CReLU models. CReLU equally
preserves negative and positive activation as well as the
corresponding gradients, thus the gradients of a CReLU
network can easily aggregate if not properly normalized.
As a result, the magnitude of activation can grow exces-
sively when going deeper. ReLU networks, on the other
hand, present a different optimization challenge–the activa-
tion gets excessively sparse due to zeroing out negative lin-
ear responses.
Δ’s in Figure 2(a) displays a perhaps expected yet still in-

formative trend. For both plain models, hardly any Δ occurs

Norm Activation Mean NZR
Plain

ReLU
30.81 ± 36.69 0.14

NormProp 28.68 ± 33.58 0.21
BatchNorm 3.77 ± 4.43 0.51

Plain
CReLU

24.53 ± 26.02 0.50
NormProp 10.41 ± 10.28 0.50
BatchNorm 1.94 ± 1.99 0.50

Table 1: The mean activation (Mean) after last ReLU (i.e.,
before softmax layer) and the non-zero entries ratio (NZR).
Note when using CReLU, the NZR is automatically 0.5.

in the first 36 residual blocks (Figure 2(b), green and yel-
low bars), except for the spike when the spatial dimension
is reduced; but during the latter half of the plain models, the
values of Δ abruptly experience a huge jump onto a differ-
ent order of magnitude. Differing from CReLU, whose Δs
aggregate gradually after 36th block as a result of its afore-
mentioned nature, Δs for ReLU plain model almost shoot
up exponentially.

By a huge contrast, for both BatchNorm models, the range
of their Δs settles at around 1 to 5 for all residual blocks. An
immediate conclusion is that BatchNorm induces consistent
changes in activation throughout all layers of the network
despite its extreme depth, but without BatchNorm the first
half of the network is hardly utilized. In other words, dis-
carding BatchNorm diminishes the potential of learning bet-
ter representations using deeper models.

This observation also implies that BatchNorm encourages
deep ResNets to sustain a stable, non-exploding activation
“magnitude”, whereas the plain networks suffer from dra-
matic, unstable increments in activation scales during the
second half. We can further confirm this assertion by exam-
ining the mean of the last layer activation (after ReLU) be-
fore going into Softmax. Table 1 shows that plain networks
produce activation with large mean and high variance while
BatchNorm networks, including CReLU model (recall its
vanilla version often ends up with large responses), produce

1511



Figure 2: Input-output difference of each residual block for 110-layer ResNet trained on CIFAR-100 with or without BatchNorm
using ReLU or CReLU. We zoom-in the differences for the first 36 residual blocks and provide a plot inside the black box.
Best viewed in color on monitor.

activation with small mean and small variance. Maintaining
a set of layer-wise consistent, non-exploding, non-vanishing
model parameters is conjectured by Neyshabur, Salakhut-
dinov, and Srebro to be an important regularizer for deep
networks. The intuition is that, even when two models are
“scale equivalent”–meaning their output only differs by a
multiplication scalar, the model whose parameters vary too
much layer by layer undergoes unbalanced gradient updates
across layers, while the one with parameter magnitude be-
ing consistent throughout the network enjoys more steady
and effective optimization. On this end, ResNets leverages
BatchNorm to effectively maintain stable activation mag-
nitude across all layers. Also, because BatchNorm redis-
tributes the outputs of each layer to have zero mean and
unit variance, the last layer still activates approximately 50%
of the neurons after ReLU. By contrast, plain ReLU model
only has 14% non-zero activation, which can result in over-
stretching the magnitude of activated entries, loss in repre-
sentation power and inefficiency in backpropagation.

Finally, we would like to point out that, though Batch-
Norm ReLU and CReLU models demonstrate similar qual-
itative phenomenon in their Δs, replacing ReLU with
CReLU consistently gives better recognition accuracy, un-
der the same set of hyperparameters and training scheme.
Especially for ImageNet ResNet models of different depths,
CReLU activation demonstrates non-trivial improvement
upon the baseline performance, which already is state-of-
the-art.

Normalization Propagation in ResNets
In this section, we present both theoretical analysis and em-
pirical evidence to show how the original formulation of
NormProp fails in ResNets. Then, we provide two partial
remedies by modifying the original formulation and by us-
ing CReLU activation scheme.

The NormProp formulation is given as follows:

xl+1 =

[
1

2
− 1

2π

]− 1
2
[
ReLU

(
γl(Wlxl)

‖W‖2 + βl

)
− 1√

2π

]

where βl , Wl, and γl are learnable parameters. Under the as-
sumption that W has incoherent rows (i.e., filters) and input

xl has zero mean and unit variance, NormProp guarantees
the output xl+1 to also approximately have zero mean and
unit variance as well. However, we argue that the theoreti-
cal property of NormProp severely breaks down with resid-
ual connections and the original formulation of NormProp is
difficult to be directly adopted for the following reasons:

1. ResNet convolution filters are not “incoherent”, which
contradicts one of the important assumptions for Norm-
Prop’s theoretical backbone, Canonical Error Bound.

2. The identity mapping complicates the statistics of the out-
put distribution, which is guaranteed by NormProp for
generic CNN architectures. This cannot be easily fixed by
a constant affine transformation since the variance after
addition depends on the convolution filter weights.

We provide detailed illustrations regarding 1 and 2 in the
supplementary materials. Moreover, as shown in Table 2, we
verify that the naive application of NormProp on ResNet in
replacement of BatchNorm significantly fails and can only
be marginally better than plain ResNet.

Our initial modification to NormProp removes the con-
stant affine transformation terms because they no longer help
adjust the distribution of the output to have zero mean and
unit variance, but rather complicate the learning by inducing
meaningless negative activations. Mathematically, our mod-
ification is written as follows:

xl+1 = [ReLU (γl(Wlxl)/‖Wl‖2 + βl)]

and we denote our modified version as NormProp2. Note
that NormProp2 embodies the same formulation as Weight-
Norm. Though NormProp2 is superior to NormProp, we still
find it incompetent when applying to ImageNet, a large scale
dataset. Thus, furthermore, we fix the multiplication param-
eter γ to derive NormProp3, especially targeting at Ima-
geNet experiments. In this case, γ’s are treated as hyperpa-
rameters and we set γ = 1/1.21, which is suggested as an
initial value in the original NormProp (Arpit et al. 2016).

In addition to the aforementioned change, we propose to
replace ReLU into CReLU for the following reasons:
1. CReLU can alleviate the vanishing activation issue of

ReLU by keeping both positive and negative responses
when competent normalization methods are lacking.
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2. Since adding bias to plain ReLU ResNets delivers a much
more positive impact than their CReLU counterparts (Ta-
ble 2), we conjecture that CReLU activation is more ro-
bust to mean shift than ReLU, which is lacking in Norm-
Prop due to the identity path in ResNets.

Experiments
We validate our claims on visual object recognition bench-
marks, namely CIFAR-10 and 100 (Krizhevsky 2009) and
ImageNet (Deng et al. 2009). CIFAR-10 and 100 datasets
are made of 50, 000 training and 10, 000 testing exam-
ples of 32 × 32 images evenly drawn from 10 and 100
classes, respectively. We choose 110-layer ResNet (He et
al. 2016a) as our baseline and report the median of 5 runs.
ImageNet dataset is composed of 1.3M images for training
and 50, 000 for validation from 1, 000 object categories. In
this experiment, we take 34-layer and 50-layer ResNet (He
et al. 2016a) as our baseline models. While the 34-layer
model uses the standard building block as in Figure 1(a),
the 50-layer ResNet utilizes the bottleneck block as in Fig-
ure 1(b) (He et al. 2016a).

Our implementation is based on Facebook ResNet imple-
mentations (Gross and Wilber 2016) and we reserve the data
preprocessing and augmentation as well as hyperparameter
values except for the initial learning rate and batch size for
ImageNet. The default initial learning rate is 0.1, but we de-
crease it by half until training is feasible when the initial
rate is too high. For imageNet experiments, we decrease the
batch size from 256 to 128 due to computation considera-
tion; to compensate the batch size reduction, we run the ex-
periments for 150 epochs. Furthermore, we use MSR initial-
ization (He et al. 2014) for models with BatchNorm, while
other models are initialized with Xavier initialization (Glo-
rot and Bengio 2010). Finally, we adapt the same shortcut
connection as Gross and Wilber.2 The summary results are
provided in Table 2 and 4.

CReLU on ResNets
We observe a consistent improvement of CReLU mod-
els over their ReLU counterparts. Specifically, CReLU al-
lows very deep networks to be trained without BatchNorm
more reliably and reach fairly close to the best performance
of ReLU models with BatchNorm on CIFAR-10 and 100.
Though the CReLU activation scheme increases the model
parameters by two, it should not be the major contributing
factor as we can see in Table 2 that doubling the number
of filters of ReLU models under the same regularization
setup does not lead to a performance gain. To further demon-
strate, we compare ReLU and CReLU models of similar
size by reducing the number of filters for CReLU mod-
els. For CIFAR-10, ReLU model retains the baseline 16-
32-64 design whereas the filters are reduced to 12-24-48 for
CReLU model. CIFAR-100 undergoes underfitting with the
baseline architecture but overfitting when doubling the num-
ber of filters without additional regularization. Therefore, for
CIFAR-100, we apply doubled number of filters for ReLU

2In the case of NormProp, BatchNorm is applied on the identity
path when spatial dimension is reduced to enable stable training.

Norm Activation CIFAR-10 CIFAR-100
Plain

ReLU

7.78 36.10
(no bias) 12.16 40.00

NormProp 11.60 37.60
NormProp2 7.46 31.71
BatchNorm 6.35 27.46

(double) 7.27 27.33
Plain

CReLU

6.86 28.24
(no bias) 7.17 28.71

NormProp2 7.22 29.29
BatchNorm 5.72 25.89

Table 2: Test error rates on CIFAR-10 and 100 datasets with
different normalization methods including plain (with and
without bias), NormProp, and BatchNorm and different acti-
vation scheme (ReLU, CReLU) based on 110-layer ResNet.

Activation CIFAR-10 (size) CIFAR-100 (size)
ReLU 6.35 (16-32-64) 22.50 (32-64-128)
CReLU 5.87 (12-24-48) 22.06 (24-48-96)

Table 3: Comparison between ReLU and CReLU Batch-
Norm ResNet models with similar number of model param-
eters after increasing the weight decay coefficients.

model (32-64-128), 1.5 times for CReLU (24-48-96) and
increase the weight decay coefficient to 0.0005. The results
comparing BatchNorm ReLU and CReLU models of com-
parable sizes on CIFAR datasets are summarized in Table 3.

It is also noteworthy that for ReLU models on both
CIFAR-10 and 100, simply adding the bias to the plain net-
work improves the performance significantly, but much less
to CReLU ResNet models. We contemplate that CReLU
models are more robust to mean shift than ReLU ones.

Normalization in ResNets
As expected, the performance of NormProp models are far
behind from BatchNorm ones on ReLU ResNets. For exam-
ple, NormProp ResNet models show 11.60 and 37.60 test
error rates on CIFAR-10 and 100 datasets, respectively, and
this is merely better than those of plain ResNet with no bias
and are not competitive to those of BatchNorm, which are
6.35 and 27.46. We note that the training error for Norm-
Prop models are not as low as BatchNorm models, hence
overfitting is not the cause. More likely, the invalidation of
the theory behind NormProp due to the identity mapping in
ResNets is responsible for the unsatisfactory performance.
Alternatively, NormProp2 (where we discard constant terms
from the original formulation) demonstrates more competi-
tive performance than the original NormProp and gets closer
to the performance of BatchNorm ResNet models.

When it comes to CReLU activation scheme, however,
neither NormProp nor our proposed variations are effec-
tive. In fact, the training significantly breaks down with
NormProp and we did not manage to train CReLU ResNet
models even after trying out many different initial learning
rates. NormProp2 allows the model to be trained, but it is
marginally effective given already a good performance of
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Depth Act. Norm top-1 top-5 top-1† top-5†

34

ReLU

Plain 29.92 10.84 27.15 9.16
NP2 29.23 10.29 27.46 9.07
NP3 29.72 10.54 27.38 9.16
BN‡ 26.73 8.74 24.76 7.35

CReLU

Plain 28.85 10.28 26.59 8.90
NP2 29.31 10.29 27.57 9.15
NP3 28.28 9.84 26.26 8.73
BN 25.62 8.28 23.72 7.15

50

ReLU

Plain 31.48 12.27 29.31 10.54
NP2 29.75 10.80 28.16 9.79
NP3 28.08 9.74 26.01 8.38
BN‡ 24.01 7.02 22.24 6.08

CReLU

Plain 28.00 9.58 26.51 8.65
NP2 29.06 10.31 27.58 9.35
NP3 26.12 8.51 24.27 7.40
BN 23.03 6.67 21.59 5.69

101 ReLU BN‡ 22.44 6.21 21.08 5.35
CReLU BN 21.89 5.92 20.63 5.35

Table 4: Error rates on ImageNet validation set on ResNets
with different normalization techniques and depths. The top-
1† and top-5† results are 10-crop results. The numbers with
‡ are taken from Gross and Wilber.

CReLU ResNet model without any normalization method
in the case of CIFAR datasets. On the other hand, Batch-
Norm can be adopted smoothly to CReLU ResNet models,
showing substantial improvement on both CIFAR-10 and
100 datasets.

Comprehensive experiments with different normalization
methods on ImageNet dataset is conducted using 34-layer
and 50-layer ResNet models. ImageNet dataset has much
more training examples and output classes than CIFAR-10
or 100 datasets. Therefore the conclusions made from CI-
FAR datasets do not always carry over to ImageNet. Our
results on ImageNet are mostly consistent with the ob-
servations we made previously. CReLU activation consis-
tently shows superior performance to ReLU and 101-layer
BatchNorm ResNet with CReLU achieves the best perfor-
mance of 20.63 top-1 and 5.35 top-5 error rates. Our mod-
ified NormProp2 allows ResNet models to be trained but
improvement over plain ResNet is not significant and is
far behind the performance of models trained with Batch-
Norm. For NormProp3 models we fix all γi’s during training
which leads to improved performance, lowering the top-1
error rates of 34-layer CReLU ResNet model from 27.57 to
26.26. NormProp3 with CReLU has also shown improved
performance over NormProp2 on 50-layer ResNet. How-
ever, there is still a non-trivial performance gap between the
models with the variants of NormProp and BatchNorm.

Conclusion
We explore the essential role of BatchNorm in deep ResNets
with two kinds of activation schemes, ReLU and CReLU
which provide two different optimization landscapes. Moti-
vated by our observations, we attempt to substitute Batch-
Norm with another normalization technique, namely Norm-
Prop. However, the intrinsics of the ResNet architecture
makes the adaption non-trivial. Despite the challenge ex-
hibited in ResNet modification, our work demonstrates that

by maneuvering NormProp ResNet’s design towards the di-
rection that leads to similar effects of BatchNorm, the gap
between BatchNorm and NormProp can be brought closer
and that empirically CReLU is an effective add-on to both
BatchNorm, to improve upon state-of-the-art performance,
and NormProp, to render more comparable performances
to BatchNorm baselines. Venues for future research involve
transferring our findings to other neural net frameworks,
such as recurrent neural networks, with other type of layer
architectures.

Supplementary Materials
Background. We start with a recap of the theoretical
premise upon which NormProp for generic CNNs is con-
structed. Arpit et al. initially motivate NormProp from the
following important proposition, called Canonical Error
Bound:

Proposition 1. (Canonical Error Bound) Let xl+1 = Wxl

where xl ∈ R
n, xl+1 ∈ R

m are random variables such that
Exl

[xlx
T
l ] = σ2I and the matrix W ∈ R

m×n is determin-
istic. Then the covariance matrix of xl+1 is approximately
canonical, i.e., satisfying

min
α

‖Σ− diag(α)‖F ≤ σ2μ

√√√√ m∑
i,j=1;i �=j

‖Wi‖22‖Wj‖22. (1)

where Σ = E[(xl+1 − E[xl+1])(xl+1 − E[xl+1])
T ] is the

covariance matrix of xl+1, μ is the coherence of the rows
of W , α ∈ R

m is the closest approximation of the covari-
ance matrix to a canonical ellipsoid and diag(·) converts
a vector to a diagonal matrix. The corresponding optimal
α∗
i = σ2‖Wi‖22, ∀i ∈ {1, · · · ,m}.

Recall that coherence μ is defined as

Definition 2. The coherence of a matrix W is defined as

μ = max
i�=j

(|WT
i Wj |)/(‖Wi‖2‖Wj‖2).

Inequality (1) tells us that if W has almost orthogonal
rows, i.e. μ ≈ 0, then Σ is almost diagonal. If assuming
σ = 1, that is, each entry of xl is independent with unit vari-
ance, then Σ is approximately the identity matrix. As a re-
sult, xl, the output, has zero mean and unit variance. Extend-
ing the above consequence, Arpit et al. further assumes that
the output xl+1 has standard Gaussian distribution. Under
this additional assumption, after adding ReLU non-linearity,
ReLU(xl+1) possesses the following distribution

Proposition 2. Let x ∼ N (0, 1), and y = ReLU(x), then
E[y] = 1

2π and var(y) = 1
2 (1− 1

π ).

Therefore, in order for the output after ReLU non-
linearity to be of zero mean and unit variance, the final for-
mulation of NormProp is

xl+1 =

[
1

2
− 1

2π

]− 1
2
[
ReLU

(
γl(Wlxl)

‖W‖2 + βl

)
− 1√

2π

]
.
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Figure 3: Left: coherence μ for each convolution filter ma-
trix across 34 layers ResNets with NormProp2 trained on
ImageNet. Right: an illustration of a simplified NormProp
residual block.

Coherence Assumption. Based on Proposition 1, in order
for the linear output covariance matrix to be diagonal, it re-
quires μ ≈ 0. However, in the case of ResNet, since identity
mappings can also be responsible to pass on the information
to the next block, intuitively W do not necessarily have al-
most orthogonal filters. To verify this conjecture, we empiri-
cally measure the coherence μ of each convolution filter ma-
trix Wi, i = 1, · · · , 34, for the 34-layer NormProp2 ReLU
ResNet trained on ImageNet (see Figure 3(a)). We also
measure μ from NormProp2 CReLU ResNet since Shang
et al. report the phenomenon of ReLU models exhibiting
highly negatively-correlated filters. Indeed, neither CReLU
nor ReLU NormProp ResNet has low-coherent convolution
filter matrix. This finding substantially diminishes the va-
lidity of the important assumption from Proposition 1 and
hence the theoretical promise of NormProp.

Identity Mapping. Now let us step back for a second and
make a bold assumption that W is an orthogonal matrix. We
also set up a simple residual block with W as shown in Fig-
ure 3(b). Though Proposition 1 approximates xl+1 = Wxl

has zero mean zero and unit variance, by adding the identity
path, Wxl + xl no longer obeys the rule. Formally, we can
compute the new statistics as following

Proposition 3. Let xl+1 = Wxl + xl where xl ∈ R
n such

that xl ∼ N (0, I) and W ∈ R
n×n an orthogonal matrix.

Then xl+1 is not a standard multivariate Gaussian random
vector, that is xl+1 � N (0, I)

Proof. Since xl+1 = Wxl + Ixl where xl follows multi-
variate Gaussian distribution, then xl+1, an affine transfor-
mation of xl also follows multivariate Gaussian distribution.
More precisely,

xl+1 ∼ N (0, (W + I)(W + I)T ) = N (0, 2(W + I))

Thus, the covariance matrix of xl+1 is not I . Moreover, the
covariance matrix is dependent on W .

From Proposition 3, we can see that 1) the output of the
residual block after addition no longer has identity variance
and 2) its distribution cannot be adjusted to identity variance
by any simple constant affine transformation as is done in
the original NormProp formulation, because the covariance

of the output is non-diagonal and dependent on W , which is
constantly changing during optimization.

Finally, for the theoretical promise does not hold under
ResNet settings, it is justified to adapt NormProp formula-
tion based on practical need. As further elaborated in the
main text, we propose straightforward modifications (Norm-
Prop2 and NormProp3) which give better empirical perfor-
mances than the original NormProp.
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