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Abstract

This paper studies the problem of locating multiple diffusion
sources in networks with partial observations. We propose
a new source localization algorithm, named Optimal-Jordan-
Cover (OJC). The algorithm first extracts a subgraph using a
candidate selection algorithm that selects source candidates
based on the number of observed infected nodes in their neigh-
borhoods. Then, in the extracted subgraph, OJC finds a set
of nodes that “cover” all observed infected nodes with the
minimum radius. The set of nodes is called the Jordan cover,
and is regarded as the set of diffusion sources. Considering the
heterogeneous susceptible-infected-recovered (SIR) diffusion
in the Erdős-Rényi (ER) random graph, we prove that OJC can
locate all sources with probability one asymptotically with par-
tial observations. OJC is a polynomial-time algorithm in terms
of network size. However, the computational complexity in-
creases exponentially in m, the number of sources. We further
propose a low-complexity heuristic based on the K-Means for
approximating the Jordan cover, named Approximate-Jordan-
Cover (AJC). Simulations on random graphs and real networks
demonstrate that both AJC and OJC significantly outperform
other heuristic algorithms.

1 Introduction

Diffusion source localization (or called the information
source detection) is to infer the source(s) of an epidemic diffu-
sion process in a network based on some observations of the
diffusion. Possible observed information includes node states
(e.g., infected or susceptible) and the timestamps at which
nodes changed their states. The solution to this problem has
a wide range of applications. In epidemiology, identifying
patient zero helps diagnose the cause and the origin of the
disease. For cybersecurity, tracing the source of malware is
an important step in the investigation of a cyber attack. On on-
line social networks, the trustworthiness of news/information
heavily depends on its source.

Since the seminal work of Shah and Zaman (Shah and Za-
man 2010), the problem has received a lot of attention from
different research communities, including machine learning,
signal processing and information theory (a detailed discus-
sion can be found in the related work). However, most ex-
isting results assume that the diffusion is from single source
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and the observed information is one or multiple complete
network snapshot(s). Furthermore, provably guarantees on
the detection rate have only been established for tree net-
works except a recent paper by Zhu and Ying (Zhu and Ying
2016), where they proposed a Short-Fat Tree (SFT) algo-
rithm and proved that under the single-source, homogeneous
Independent-Cascade (IC) model, SFT locates the actual
source in the Erdős-Rényi random graph (Erdos and Renyi
1959) with probability one asymptotically (as the size of the
network increases) when a complete snapshot of the network
is given.

In this paper, we consider the diffusion source localization
problem in a setting that generalizes the existing ones at
several important directions.

• Multiple sources versus single source: In this paper, the
diffusion can be originated from multiple nodes simultane-
ously, instead of from a single source. When the infection
duration is sufficiently short, the infected subnetworks
from different sources are disconnected components. In
such cases, the single-source localization algorithms can
be applied to each of the infected subnetwork. We, how-
ever, do not make such an assumption, and consider the
scenario where the infected subnetworks may overlap with
each other, so the single-source localization algorithms
cannot be directly applied.

• A partial snapshot versus a complete snapshot: In this
paper, we assume a partial snapshot in which each node
reports its state with some probability, which is in contrast
to a complete snapshot assumed in the literature where all
nodes’ states are observed. Because of a partial snapshot,
the sources may not report their states and be observed
as infected nodes; and the observed infected nodes may
not form a connected component. Both increase the un-
certainty and complexity of the problem. In fact, it turns
out to be critical to have a candidate selection algorithm to
select source candidates from unobserved nodes but only
use observed infected nodes in computing the infection
eccentricity. The selection step yields 27× reduction on
the computing time in our simulations while guaranteeing
the same the detection rate, and yields 600× reduction on
the computing time with a slight reduction of the detection
rate.

• Heterogeneous diffusion versus homogeneous diffusion:
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Our algorithm applies to the heterogeneous SIR diffu-
sion model where links have different infection probabili-
ties and nodes have different recovery probabilities. The
asymptotic guarantees on the detection rate hold for the
heterogeneous SIR model.

While some of these extensions have been investigated
in the literature individually, our model includes all three
extensions. We propose a novel algorithm for locating mul-
tiple sources for such a general model and prove theoretical
guarantees on the detection rate for non-tree networks. The
main results of the paper are summarized below.

(1) We introduce the concept of Jordan cover, which is an
extension of Jordan center. Loosely speaking, a Jordan
cover with size m is a set of m nodes that can reach all
observed infected nodes with the minimum hop-distance.
We propose Optimal-Jordan-Cover (OJC), which consists
of two steps: OJC first selects a subset of nodes as the set
of the candidates of the diffusion sources; and then it finds
a Jordan cover in the subgraph induced by the candidate
nodes and the observed infected nodes. We emphasize that
only the hop-distance to the observed infected nodes is
considered in computing a Jordan cover.

(2) We analyze the performance of OJC on the ER random
graph, and establish the following performance guarantees.

(i) When the infection duration is shorter than 2
3
logn
μ ,

where μ is the average node degree and n is the number
of nodes in the network, OJC identifies the sources with
probability one asymptotically as n increases.

(ii) When the infection duration is at least
⌈

logn
log μ+log q

⌉
+ 2

where q is the minimum infection probability, under any
source location algorithm, the detection rate diminishes
to zero as n increases under the Susceptible-Infected
(SI) and Independent-Cascade (IC) models, which are
special cases of the SIR model.

(3) The computational complexity of OJC is polynomial in
n, but exponential in m. We further propose a heuristic
based on the K-Means for approximating the Jordan cover,
named Approximate-Jordan-Cover (AJC). Assuming a
constant number of iterations when using the K-Means,
the computational complexity of AJC is O(nE), where E
is the number of edges. Our simulations on random graphs
and real networks demonstrate that both AJC and OJC
significantly outperform other heuristic algorithms.

1.1 Related Work

Shah and Zaman (Shah and Zaman 2010; 2011) studied the
rumor source detection problem, and proposed a new graph
centrality called rumor centrality. They proved that the node
with the maximum rumor centrality is the maximum likeli-
hood estimator (MLE) of the diffusion source on regular trees
under the continuous-time SI model. In addition, it has been
proved that the detection probability is greater than zero on
regular trees and approaches one for geometric trees. (Shah
and Zaman 2012) analyzed the detection probability of rumor
centrality for general random trees. Later, the performance

of rumor centrality has been studied under different mod-
els, including multiple sources (Luo, Tay, and Leng 2013),
incomplete observations (Karamchandani and Franceschetti
2013), multiple independent diffusion processes from the
same source (Wang et al. 2014).

Kai and Ying (Zhu and Ying 2013) proposed a sample
path based approach for single source detection under the
SIR model and introduced the concept of Jordan infection
center. Assuming the homogeneous SIR model, a complete
network snapshot and regular tree networks, they (Zhu and
Ying 2013) proved that the Jordan infection center is the root
of the most likely diffusion sample path, and it is within a con-
stant hop-distance from the actual source with a high proba-
bility. Assuming tree networks, the performance of the Jordan
infection center has been further studied, including partial
observations under the heterogeneous SIR model (Zhu and
Ying 2014), multiple sources (Chen, Zhu, and Ying 2014),
the SI model and SIS model (Luo, Tay, and Leng 2014).

Besides the rumor centrality and sample path based ap-
proach, diffusion source localization has also been inves-
tigated from other perspectives: 1) (Lappas et al. 2010)
proposed a dynamical programming algorithm for the IC
model; 2) A variation of eigen centrality was proposed in
(Prakash, Vreeken, and Faloutsos 2012) to detect multiple
sources under the SI model; 3) (Lokhov et al. 2014) de-
rived the mean field approximation of the MLE of the actual
source and proposed a dynamic message passing algorithm
based on that. Furthermore, (Pinto, Thiran, and Vetterli 2012;
Zhu, Chen, and Ying 2015; Agaskar and Lu 2013; Zejnilovic,
Gomes, and Sinopoli 2013; Farajtabar et al. 2015) have pro-
posed algorithms to identify the source with partial times-
tamps.

In this paper, we propose two new source localization al-
gorithms, OJC and AJC, based on the Jordan cover. OJC
guarantees probability one detection asymptotically on the
ER random graph under the multi-source, heterogeneous SIR
model, and with an incomplete snapshot, which is the first
multi-source localization algorithm with provable guarantees
for non-tree networks. AJC is a low-complexity approxima-
tion of OJC.

2 Problem Formulation
We assume the network is represented by an undirected graph
g. Denote by E(g) the set of edges and V(g) the set of nodes
in graph g. Let n denote the number of nodes and E denote
the number of edges. We further assume a heterogeneous
SIR model for diffusion. In this model, each node has three
possible states: susceptible (S), infected (I) and recovered
(R). Time is slotted. At the beginning of each time slot, each
infected node (say node u) attempts to infect its neighbor (say
node v) with probability quv, independently across edges. We
call quv the infection probability of edge (u, v). At the end of
each time slot, each infected node (say node u) recovers with
probability ru, independent of other infected nodes. We call
ru the recovery probability. We further assume quv ∈ (0, 1]
for all edges (u, v) ∈ E(g) and rv ∈ [0, 1] for all nodes
v ∈ V(g).

Note that the SIR model includes two important special
cases. When the recovery probability is zero, the SIR model
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becomes the Susceptible-Infected (SI) model (Bailey 1975),
where infected nodes cannot recover. When the recovery
probability is one, the SIR model becomes the Independent
Cascade (IC) model (Goldenberg, Libai, and Muller 2001) by
regarding both infected nodes and recovered nodes as active
nodes and regarding the susceptible nodes as inactive nodes.

We assume the epidemic diffusion starts fromm sources in
the network. In other words, at time slot 0,m nodes (sources)
are in the infected state and all other nodes are in the suscep-
tible state. Denote by s1, s2, · · · , sm the sources and S the
set of sources, i.e., S = {s1, s2, · · · , sm}. We assume m is
a constant independent of n.

Finally, we assume that a partial snapshot of the network
state at time slot t is given, with an unknown observation time
t. In the snapshot, each infected or recovered node reports its
state with probability θv ∈ (0, 1), independent of other nodes.
If a node reports its state, we call it an observed node. Denote
by I ′ the set of observed infected and recovered nodes. In
this paper, we call infected nodes and recovered nodes as
“infected nodes” unless explicitly clarified.

Based on I ′, the source localization problem is to find S
that solves the following maximum likelihood (ML) problem

W∗ = argmax
W⊂V(g)

Pr(S = W|I ′).

Even with a single diffusion source, this problem is known to
be a difficult problem (Shah and Zaman 2010; Zhu and Ying
2013) on non-tree networks. Therefore, instead of solving
the ML problem above, we are interested in algorithms with
asymptotic perfect detection, i.e., finding all sources with
probability one as the network size increases. We believe
this alternative metric is reasonable because we often need
to solve the problem for large-size networks such as online
social networks, and an algorithm with asymptotic perfect
detection can detect sources with a high probability when the
network size is large.

3 Algorithms

In this section, we present OJC and AJC based on the concept
of Jordan cover. Define the hop-distance between a node v
and a node set W to be the minimum hop-distance between
node v and any node in W, i.e.,

d(v,W) � min
u∈W

d(v, u).

We then define the infection eccentricity of node set W to be
the maximum hop-distance from an infected node in I ′ to set
W, i.e.,

e(W, I ′) = max
v∈I′

d(v,W). (1)

We further define m-Jordan-cover (m-JC) to be the set
W∗(K, I ′,m) such that

W∗(K, I ′,m) = argmin
W∈{W||W|=m,W⊂K}

e(W, I ′). (2)

where I ′ is the set of observed infected nodes that m−JC
needs to cover and K is the candidate set for the sources.
Therefore,m-JC is the set ofm nodes inK with the minimum
infection eccentricity.

We now introduce the optimal Jordan cover (OJC) algo-
rithm whose asymptotic detection rate will be analyzed in
Section 4.1.
The Optimal Jordan Cover (OJC) Algorithm

• Step 1: Candidate Selection: Let Y be a positive integer.
The candidate set K is the set of nodes with more than
Y observed infected neighbors. In addition, define K+ �
K ∪ I ′. Denote by g− a connected subgraph of g induced
by node set K+. An induced graph is a subset of nodes
of a graph with all edges whose endpoints are both in the
node subset. If the induced graph is not connected, we
select a random node in each component, randomly pick
one selected node and add the shortest pathes from this
node to all other selected nodes to form a connected g−.
We call Y the selection threshold. Please check the full
version (Zhu, Chen, and Ying 2016) for the pseudo code
of the candidate selection algorithm for selecting K and
g−.

• Step 2: Jordan Cover: For any m combination of nodes
in K in Step 1, we compute the infection eccentricity of
the node set as defined in (1) on subgraph g−, and se-
lect the combination with the minimum infection eccen-
tricity as the set of sources. Ties are broken by the total
distance from the observed infected to the node set, i.e.,∑

v∈I′ d(v,W). �
With a properly chosen threshold Y, the candidate selection

step includes all sources in K with a high probability and
excludes nodes that are more than t+ 1 hops away from all
sources. By limiting the computation on the induced subgraph
g−, the computational complexity is reduced significantly.
From simulations, we will see that it results in 27× reduction
of the running time without affecting the detection rate. The
asymptotic detection rate of OJC will be studied in Theorem
2. Under some conditions, OJC identifies all sources with
probability one asymptotically.

OJC is a polynomial-time algorithm for given m, but
the complexity increases exponentially in m. To further re-
duce the complexity, we propose Approximate Jordan Cover
(AJC), which replaces Step 2 of OJC with the K-Means
algorithm (Hartigan and Wong 1979). As shown in the sim-
ulations, the performance of the AJC algorithm, in terms of
both detection rate and the error distance, is close to OJC with
much shorter running time. The computational complexity
of both algorithms are summarized in the following theorem.
The analysis can be found in the full version (Zhu, Chen, and
Ying 2016).

Theorem 1. The computational complexity of OJC is

O

(
|I ′|

(
|E(g)|+m

(|V(g−)|
m

)))
,

and the computational complexity of AJC is

O
(|I ′| (|E(g)|+H|V(g−)|)) ,

where H is the number of iterations used in the K-Means
algorithm in AJC. �
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4 Asymptotic Analysis of OJC

In this section, we present the asymptotic analysis of the
detection rate of OJC on the ER random graph. The results
include the conditions that guarantee probability one detec-
tion and the conditions under which it is impossible to detect
the source set with nonzero probability under any source
localization algorithm.

4.1 Asymptotic perfect detection on the ER
random graph

We first present the positive result that shows that on the
ER random graph, OJC identifies the m sources with prob-
ability one asymptotically under some conditions. Recall
that n is the number of nodes in the graph, and m is the
number of sources, which is a constant independent of n.
Denote by p the wiring probability of the ER random graph,
which is the probability that there exists a link between two
nodes. Let μ = np, which is the average node degree. Define
q � minu,v∈V(g) qu,v, i.e., the minimum infection probabil-
ity over all edges and θ � minv∈V(g) θv i.e., the minimum
report probability over all nodes.
Theorem 2. OJC identifies all m sources with probability
one as n → ∞ when the following conditions hold:

(c1): μqθ = Ω(log n) ,1

(c2): lim supn→∞
Y
μqθ < 1 and lim infn→∞ Y

μqθ > 0, and

(c3): t = ω(D) and lim supn→∞
t

log n
log μ

< 2
3 . �

We now briefly explain the conditions. Recall that μ is
the average node degree, q is the lower bound on the infec-
tion probability and θ is the lower bound on the reporting
probability, so μqθ is a lower bound on the average number
of observed infected neighbors of a node that was infected
before time slot t. Therefore, condition (c1) requires that this
lower bound is Ω(log n), and condition (c2) requires that
the threshold used in the candidate selection algorithm is a
constant fraction of the average number of observed infected
neighors. Applying the Chernoff bound, conditions (c1) and
(c2) together yield the following conclusions:
(i) any node who was infected before or at time slot t − 1

(hence, including the sources) will be selected into the
candidate set with a high probability,

(ii) any node that is t+D+1 hops away from the set of sources
will not have Y or more observed infected neighbors with
a high probability, and

(iii) any node that is more than t+D+1 hops away from the set
of sources will not have any observed infected neighbors.

Based the above facts, with a high probability, the candidate
set includes all nodes who were infected at t− 1 or earlier,
and any node in g− is at most t + D hops away from all
sources.

Condition (c3) is on the infection duration. We first restrict
t = ω(D) so that the infection subgraphs starting from dif-
ferent sources are likely to overlap and form a connected

1Throughput this paper, the asymptotic order notation is defined
for n → ∞.

Figure 1: A pictorial example for Theorem 2.

component. This is a more interesting regime than the one in
which infection subgraphs are disconnected from each other.
lim supn→∞

t
log n
log μ

< 2
3 is a critical condition. The intuition

why it is required is explained below. Figure 1 provides a
pictorial explanation of the proof. The picture illustrates the
breadth-first-search (BFS) tree T † rooted at source s1 with
height t+D, where s1 is one of the m sources. The nodes in
orange are the observed infected nodes whose infection was
originated from s1. The blue nodes are unobserved nodes. A
node is said to be on level i of the BFS if its hop-distance
to s1 is i. Assume m = 3 and consider a set of three nodes
who are within t+D hops from s1 but not includes s1 (e.g.,
W = {w1, w2, w3} in Figure 1). Suppose the infection ec-
centricity of W is ≤ t. Since s1 has a sufficient number of
neighbors according to the definition of μ, with a high proba-
bility, there exists a subtree of T † starting from an offspring
of s1,which does not include any node inW . Assume u is the
root of such a subtree in Figure 1. The yellow area in Figure 1
includes the level-t observed infected nodes on subtree T−s1

u .
Any path from w1, w2 or w3 to the yellow area, formed by
edges on T †,must have hop-distance larger than t. Therefore,
if the infection eccentricity of W is at least t, there must
exist a path from W to each of the nodes in the yellow area
with hop-distance ≤ t, and such a path must include at least
one edge which is not in T † (we call these edges collision
edges). In the detailed analysis, we will prove that with a
high probability, the number of nodes within t hops from W
via the collision edges is order-wise smaller than the number
of nodes in the yellow area when (c3) holds. Therefore, the
Jordan cover has to include s1. The same argument applies
to other sources. The detailed proof, which formalizes the
argument above, can be found in the full version (Zhu, Chen,
and Ying 2016).

4.2 Impossibility results

Theorem 5 in (Zhu and Ying 2016) presents the conditions
under which it is impossible to identify the single source
under the IC diffusion on the ER random graph, which is
a special case of the model in this paper. Assuming SI or
IC model, based on Lemma 1 in (Zhu and Ying 2016), we
have that with a high probability, all nodes of the ER graph
become infected when the infection duration is at least

tu �
⌈

log n

logμ+ log q

⌉
+ 2.
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When this occurs, it is impossible to detect the sources since
the nodes are indifferentiable.
Theorem 3. Assume the multi-source diffusion follows the
IC or SI model. If 24 log n < qμ <<

√
n and q is a constant

independent of n, then

lim
n→∞Pr(I = V(g)) = 1

when the observation time t ≥ tu. In other words, the entire
network is infected after tu with a high probability. In such a
case, the probability of finding the sources diminishes to zero
as n → ∞. �

5 Simulations

In this section, we evaluated the performance of our algo-
rithms via simulations. The performance metrics used in this
paper include:
• Error distance: The error distance is defined to be

min
P∈permutation(S′)

m∑
i=1

d(si, pi)

m
,

where s1, s2, . . . , sm are the real sources, S ′ is the set of
detected sources and P = (p1, p2, ..., pm) is a permutation
of S ′.

• Detection rate: The detection rate is defined as

|S ∩ S ′|
m

.

We compared our algorithms with two heuristic algorithms
(DC and CC) based on K-Means, which have been used for
comparison in (Luo, Tay, and Leng 2014). The algorithms
proposed in (Luo, Tay, and Leng 2014) and (Chen, Zhu, and
Ying 2014) are the same as AJC without candidate selec-
tion. In both DC and CC, the initial centroids are randomly
chosen. During the clustering step of each iteration in K-
Means, we selected distance centroid of each cluster in DC
and selected closeness centroid in CC, where distance cen-
troid is defined as argminv∈C

∑
u∈C∩I′ d(v, u), where C is

the set of nodes in the cluster. Closeness centroid is defined
as argmaxv∈C

∑
u∈C∩I′,u 	=v

1
d(u,v) . The following experi-

ments were conducted on an server with 8 Intel Xeon X3450
CPUs and 16G RAM with Linux 64 bit system. All algo-
rithms were implemented with Python 2.7.

5.1 OJC with different thresholds

In Figure 2, we evaluated OJC on the ER random graph. In
the experiments, we generated an ER random graph with
5, 000 nodes and wiring probability 0.002. We used the ho-
mogeneous SI model for diffusion with infection probability
0.8. In this experiment, we limited the infection network size
to be 100 ∼ 300 and the number of sources to be 2 due to
the computational complexity of the OJC algorithm. Figure
2 shows the performance of OJC with different thresholds.
From the results, the detection rate is close to one and the
error distance is close to zero under OJC with threshold 0
or 1. However, the running time is 1,817 seconds versus 68
seconds. So the candidate selection algorithm with threshold

one results in 27× reduction of the running time. When the
threshold increases 2, the running time reduces to 3 seconds,
which is a 600× reduction of the running time. Both the de-
tection rate and the error distance became slightly worse in
this case. The detection rate in this case is 0.961 and the error
distance is 0.056.

5.2 OJC, AJC and other heuristics

We further evaluated the performance of OJC and AJC on
both the power grid network (Watts and Strogatz 1998) and
ER random graph (size: 5000, wiring probability: 0.002)
and compared them with DC and CC heuristics. We used
the homogeneous SI model with infection probability 0.8 to
generate the diffusion sequences. For AJC/CC/DC, for each
diffusion sequence, we repeated the algorithm 100 times
from different initial conditions and chose the source set
with the smallest the smallest-infection-eccentricity/largest-
closeness-centrality/smallest-distance-centrality. In Figure 3
and 4, the x−axis represents the combinations of sample rate
and threshold. On the ER random graph, we increased the
threshold as the sample rate increased to control the running
time. For the power-grid network, since the average node
degree is only 2, we set threshold equal to 2 for experiments
for all sample rates. As we can see from the figures that when
fixing the threshold, the performance of all algorithms (in
terms of both error distance and detection rate) improves as
the sample rate increases because we had more information
about the diffusion. From Figure 3 and 4, we can also see
that AJC outperforms DC and CC, and has similar perfor-
mance with OJC. Note that with four sources, OJC became
very slow on both the ER random graph and the power grid
network because its complexity increases exponentially in
the number of sources. So for the cases with four sources, we
only simulated AJC.

6 Conclusions

In this paper, we studied the problem of detecting multiple
diffusion sources under the heterogeneous SIR model with
incomplete observations. We defined a concept called Jordan
cover and developed the OJC algorithm based on that. Our
theoretical analysis showed that OJC finds the set of sources
in the ER random graph with probability one asymptotically
under mild conditions. To the best of our knowledge, this
is the first theoretic performance guarantee for multiple in-
formation sources detection in non-tree networks. Since the
computational complexity of OJC is polynomial in n but ex-
ponential inm, we proposed a heuristic algorithm— the AJC
algorithm. Our simulation results showed that OJC and AJC
algorithms have similar performance and both significantly
outperform existing algorithms.
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Figure 2: Performance of OJC with different threshold values on the ER random graph
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(b) Source number: 3, infection size:
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Figure 3: The Performance of OJC, AJC, CC and DC on the ER random graph with different sample rates and threshold values

(0.6,2)(0.7,2)(0.8,2)(0.9,2)(1.0,2)

(Sample rate, threshold)

0

2

4

6

8

10

12

E
rr

o
r 

d
is

ta
n
c
e

OJC

AJC

Closeness

Distance

(0.6,2)(0.7,2)(0.8,2)(0.9,2)(1.0,2)

(Sample rate, threshold)

0.00

0.05

0.10

0.15

0.20

D
e
te

c
ti

o
n
 r

a
te

(a) Source number: 2, infection size:
100 ∼ 300.

(0.6,2)(0.7,2)(0.8,2)(0.9,2)(1.0,2)

(Sample rate, threshold)

0

1

2

3

4

5

6

7

8

9

E
rr

o
r 

d
is

ta
n
c
e

(0.6,2)(0.7,2)(0.8,2)(0.9,2)(1.0,2)

(Sample rate, threshold)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
e
te

c
ti

o
n
 r

a
te

(b) Source number: 3, infection size:
200 ∼ 400.
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(c) Source number: 4, infection size:
300 ∼ 500.

Figure 4: The Performance of OJC, AJC, CC and DC on the power grid network with different sample rates and threshold values
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