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Abstract

Customer volume prediction, which predicts the volume from
a customer source to a service place, is a very important tech-
nique for location selection, market investigation, and other
related applications. Most of traditional methods only make
use of partial information for either supervised or unsuper-
vised modeling, which cannot well integrate overall available
knowledge. In this paper, we propose a method titled GR-
NMEF for jointly modeling both implicit correlations hidden
inside customer volumes and explicit geographical knowl-
edge via an integrated probabilistic framework. The effective-
ness of GR-NMF in coupling all-round knowledge is verified
over a real-life outpatient dataset under different scenarios.
GR-NMF shows particularly evident advantages to all base-
lines in location selection with the cold-start challenge.

Introduction

Customer volume prediction refers to the problem of pre-
dicting customer volumes (footfalls) from customer sources,
e.g., residential zones, to service places, e.g., theaters, shop-
ping malls, schools, and hospitals. It plays a key role in many
business and public affair applications. For example, in lo-
cation selection applications, customer volume prediction
is utilized to predict potential footfalls to a location can-
didate (Xu et al. 2016; Hernandez and Bennison 2000). In
business and public investigation applications, it is also uti-
lized to estimate the competitiveness or investment value of
service places (Fu et al. 2014b).

Traditional methods for customer volume prediction usu-
ally adopt intuitive information, such as spatial interac-
tions (Athiyaman 2011), road structure (Bafna 2003), and
accessibility (Medda 2012), to predict unknown footfall
from a customer source point to a service place. In recent
years, with the rapid development of data sciences, more and
more researchers turn to data-driven methods (Li et al. 2015;
Karamshuk et al. 2013) and empirical models (Simini et al.
2012; Jensen 2006) for higher-quality prediction. The rich
studies along this line, however, are mostly concerned with
modeling partial information as either a supervised or un-
supervised learning problem. Further study is still in great
need to integrate all-round knowledge available for robust
customer volume prediction.
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Driven by this motivation, in this paper, we propose a
Geographical Regression and Non-negative Matrix Factor-
ization (GR-NMF) model for high-quality customer volume
prediction. The main contributions of our study are summa-
rized as follows.

First, GR-NMF is able to jointly model implicit knowl-
edge hidden inside customer volumes and explicit knowl-
edge expressed as geographical relations. Specifically, the
regression model for the explicit knowledge is formulated
as an order-unsymmetrical matrix factorization problem,
which is naturally compatible with the matrix factorization
framework for implicit knowledge mining.

Second, GR-NMF can be regarded as a semi-supervised
learning framework that models unobserved customer vol-
umes as the calibration of implicit knowledge modeling with
explicit knowledge modeling. This turns out to be the cou-
pling item and fits the general matrix factorization frame-
work nicely.

Third, GR-NMF has a unified probabilistic interpretation,
which makes the model theoretically solid. All the parame-
ters have definite statistical meanings, which can help users
to understand the relations and contribution weights of im-
plicit and explicit knowledge. Clear guidance to the fine set-
ting of these parameters is carefully given for practical use.

Extensive experiments are conducted on a real-life outpa-
tient dataset obtained from the Shenzhen city of China. The
results show that GR-NMF outperforms competitive base-
lines consistently in various application scenarios with dif-
ferent sampling rates. In particular, equipped with explicit
geographical knowledge, GR-NMF shows prominent advan-
tages to all baselines in location selection with the cold-start
challenge. The rationale of the approximate method for pa-
rameter setting is also testified empirically.

Model and Inference

Throughout the paper, we use lowercase symbols such as
a, b to denote scalars, bold lowercase symbols such as a, b
to denote vectors, bold uppercase symbols such as A, B to
denote matrices, and calligraphy symbols such as A, B, to
denote tensors.

Assume S {s1,82,...,80m} contains M service
points, and C {c1,¢2,...,cn} contains N customer-
source points (or customer points for short). Let Z;; denote



the absolute customer volume from ¢; to s;, then the cus-
tomer volumes matrix X € RM*N is defined as

Ty = log(j‘:ij + 1),V 1,7. (1)
Note that we adopt the logarithmic customer volume to
avoid modeling biases due to the severe imbalance of abso-
lute customer volumes for different service-customer point
pairs (Wang et al. 2014). We also define a binary sampling
matrix Y € RM*N for X, where the element Yi; equals
to 1 when customer volume from c; to s; is sampled and 0
otherwise. In other words, we know the customer volumes
with sampling indicator 1, and the target of our model is to
predict the customer volumes with sampling indicator 0.

Probabilistic Matrix Factorization for Implicit
Correlations

We first propose a probabilistic matrix factorization to ex-
plore latent correlations in the customer volumes matrix X.
Suppose there exist H latent patterns in X. The correlations
between the i-th service point and the H patterns is mea-
sured by a projection vector s; € R, where the h-th ele-
ment s;p is the coefficient projecting s; to pattern h. Sim-
ilarly, the projection vector from the customer point ¢; to
the H latent patterns is denoted as ¢; € R. As a result,
we have two projection matrices S = [s1,892,...,8p] €
R¥XM and C = [y, ca, ..., cn] € REXN for service and
customer points, respectively. We then model X using S and
Cas

X =S"C+E;,
where E; is an error matrix.

We adopt a Gaussian observation noise to model E;.
That is, for each element e;; in E;, we have e;;
N(0,0%,),V 4,j. Hence, the conditional distribution over
the sampled elements in X is defined as
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Since a service point usually absorbs customers who live
in the neighborhood, it is intuitive that most of the elements
of X are zeros, i.e., X is a sparse matrix. As a result, it is
reasonable to assume zero-mean Laplace priors on the pro-

jection vectors s; and c;, which gives

M
P(S‘O—%) = Hﬁ(si‘070§1)7
=1
- 4)

According to the Bayes’ theorem as well as Eq. 3 and
Eq. 4, the log posterior distribution of the projection vectors
can be formulated as
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Therefore, the Maximum A Posteriori (MAP) estimation of
S and C is to minimize the objective function 77 as

1 2 1 1
= — HYQ(X_STC)HF+T||S“1T||C||17
X1 g TR
(6)
where ||.||% is the Frobenius Norm, ||.||1 is the L1 Norm, and

© 1s the Hardamard Product.

Geographical Regression for Explicit Correlations

We here propose a regression-based matrix factorization
method for the modeling of explicit geographical factors.
Suppose we altogether have K — 1 explicit geographi-
cal factors that could make impact on the footfall from
a customer point to a service point. That is, for any
z;; € X, we have a geographical feature vector a;; =

T .
[aijl, ey Qigky e aij(K,l)] , where Qijk 18 the k-th fea-
ture of footfall z;;. As aresult, we can use a linear regression
to model the relations between x;; and a;; as

LL’Z‘j = W—r

a;; + b, )
where w = [wq,..., Wg,... ,wK_l]T is a weight vector
to learn from Eq. 7. For the sake of concision, we define
aijx = 1 and wx = b, which gives: z;; = w ' a;;,V 4, j.
Furthermore, if we regard a;; as the (3, j) fiber of a tensor
A, the linear regression in Eq. 7 can be rewritten as an order-

unsymmetrical matrix factorization form:
X =Axpw+E;, ®)

where Xj is the k-mode product (Kolda and Bader 2009)
between tensor A and vector w, i.e., a KX X 1 matrix W.
Again we adopt a Gaussian observation noise with variance
0% to model the error Eo. The conditional distribution over
the sampled entries in X is given by

M N

)=TTTT W

i=1j=1

P(X|w, 0%, ziilw ai;,0%,))" . (9)

We then introduce a zero-mean Gaussian prior on the re-
gression weight vector, which gives

K
) = [T NV (wrlo, o).

k=1

P(w|od, (10)

According to the Bayes’ theorem, the log posterior distri-

bution over the regression weight vector is calculated by

P(X|w,0%,) P(w|ofy,)
P(X)

Zwk
(1

Therefore, the MAP estimation of w is equivalent to mini-
mizing the objective function 75 as
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Now we remain to identify some useful geographical fac-
tors to feed Eq. 12. Specifically, three types of geographical
features are adopted in our study as follows.

Geographical Relation. Geographical relation means the
geographic relationship between service points and cus-
tomer points, which in our paper includes:

1. Reciprocal of square distance from the customer point ¢;

to the service point s;, i.e., d2 , where d;; is the distance
from c; to s;, which follows the assumption of the gravity
model (Zipf 1946).

2. Geographical competition of the service point s; with
other service points to the customer point c¢;, which is

measured by ﬁ, where u;; is the number of service
ij
points located nearer than s; to c¢;.

3. Geographical competition of the customer point c¢; with
other customer points to the service point s;, which is
measured by o +1’ where v;; is the number of customer

points located nearer than cj to s;.

Geographical Similarity. Geographical similarity means
the footfall similarity among customer-service point pairs
that are geographically close. The features about geographi-
cal similarity we introduced include:

1. The average footfall to the service point s; from the five
customer points nearest to the customer point c;;

2. The average footfall from the customer point c; to the five
service points nearest to the service point s;.

If any of the above two features is unavailable, we use av-
erage footfall from the five customer points nearest to ¢; to
the five service points nearest to s; as an alternate.

Social Geography Features. Social geography means so-
cial connections between customer and service points. The
features about social geography we introduced include:

1. Whether the customer point c¢; and the service point s; are
in the same administrative region;

2. The population flow intensity from the block of the cus-
tomer point ¢; to the block of the service point s; (which
is approximated by the taxi flow between the two blocks
in our study).

It is very easy to extend the above features using other
useful geographical information, which we will not elabo-
rate any more.

Modeling Unobserved Volumes

In both the probabilistic matrix factorization model and the
geographical regression model, we only considered the ob-
served footfall samples in X with y;; = 1. However, X
could be a huge matrix with majority of unobserved ele-
ments (unknown footfalls). In order to model these elements,
we introduce a coupling item to calibrate the probabilistic
matrix factorization model with that of the geographical re-
gression results on the footfalls with y;; = 0,V 4, j.

Specifically, for the footfall elements with y;; = 0, we
require

STC=Ax,w+E;, (13)
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where the error E3 is also a Gaussian noise. The conditional
distribution over the elements in the reconstructed matrix
ST C with yi; = 0 is thus defined as

[111 v

i=1j=1

Yij
P(Sv C|W7U{2/V2) = (SiTCj|WTa’ij70'12/‘/2)) ! y
(14
where §;; is negation of y;;, i.e., J;; = 1 — 45,V 4, j. The
log posterior distribution over S and C is thus given as

log P(S, Clw, 0,5) Zyw sic;—w a;)?

(15)
Therefore, the MAP estimation is to minimize a sum-of-
squared errors objective function [J3 as
1 _
Js=—5|[YO(Ax,w-8"C)
Ova

e a6

GR-NMF: Integrated Model for Footfall Prediction

We here integrate all the above objective functions 71, Jo
and J3 to get a joint model titled Geographical Regression
and Non-negative Matrix Factorization (GR-NMF) for foot-
fall prediction. The objective function of GR-NMF is

min 7 = [Y o (X -STO)||%,

+allYo (X -Ax,w)l|5

+8|Yolxw-sTo); (D
+llwlls + Sl + ¢ lCl,
5t.S>0,C>0,w >0,
Wherea:”§<17ﬁ_ X177_ Xl 5—”X17<_a)§7
%2 Twa 1 S 0%

which can be well estimated in advance by minimizing Ji,
J» and J3 separately. In other words, these parameters are
to be set before the optimization of 7. Also note that since
all elements in the footfall matrix are nonnegative and the
geographical features are positively related to footfalls, we
introduce non-negativity constraints to the projection matri-
ces and the geographical features weight vector.

To predict unknown customer volumes, i.e., x;; with
yi; = 0, is straightforward using S and C estimated from
Eq. 17. Thatis, 2;; = s, ¢;,V i,4,y;; = 0.

Inference of GR-NMF

In this section, we introduce an Alternating Proximal Gra-
dient Descent (APGD) method to solve Eq. 17. While 7 is
not jointly convex w.r.t. S, C and w, it is convex w.r.t. each
of these variables with the other two fixed. Therefore, we
can update S, C and w alternatively in an iterative algo-
rithm. Moreover, since J contains non-differentiable parts,
i.e., L1-norms of S and C, we introduce a Proximal Gradient
Descent method to update each variable (Xu and Yin 2013).
For easier discussion, we here express the objective function
as J = F + H, where

F=|[YoX-STO)|L+a|Y®X-4x,w)|%

+B|[Y 0 (A xpw—STC)% +7 w3

18)



is the differentiable part and
H =4Sl +<lCl,

is the non-differentiable part.
In the Proximal Gradient Descent method, the variable Z
of the objective function at the ¢-th iteration is updated as
+H(Z),

_1 9F
LZ, 1 ) ||,
(20)

where 7 is a quadratic approximation of the objective func-

19)

Z; = argmzinj(Z,Zt_l)
L ?
= argmin 3 HZ — <Zt_1

tion, and L is a Lipschitz constant of %’ namely
oF  oF |? )
— || <L|Zn -7 VZi,Z4. (21
H DZe  0Ze | = |Z¢1 2llp V2, 2. (21)
Leto (Zs 1) =Z¢ 1 — %Bgtf_l . The updates of S and C

at the ¢-th iteration are then given as

St — max (0, g (St—l) - 5) 5

22
Ct :maX(0,0'(Ct_l) *C), ( )
and w is given as
w; = max (0,0 (w¢—1)), (23)
where a max operator is introduced to satisfg the nonneg-
ative constrains. Specifically, the gradients azi - in Eq. 20
for S and C are given as
g—g =-2[C(Y'oXT-C"S))]
<T
~28[C(Y @ (Axew)T - CT8)),
ooy D] B
— =-2[S(Yo((X-S'C
e =—2[S(Y o )]
—28[S(Y® Ax,w—S'C))],
and for w the k-th element is given as
oOF
o —QQZ [yij(@ij — a;w)aii]
Y (25)
—2p Z [gjij (a;rjw — s;rcj)aijk] + 29wy
ij
Experiments
Experimental Setup
Dataset: We perform our experiments on an outpatient

service data set collected from the public hospital system
of Shenzhen, a major city in southern China'. In the data
set, service points are all public hospitals of Shenzhen, and
customer points are all residential zones of Shenzhen. The
data set contains all outpatient records of 321 public hospi-
tals from January to December, 2014, whose patients came
from 1343 residential zones. As a result, we finally obtain a

"https://en.wikipedia.org/wiki/Shenzhen
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Figure 1: Influence of dimensionality of latent space.

321 x 1343 patients volume matrix X, with a high sparsity
(the ratio of zero elements) equal to 94.87%. Note that we
only select common diseases without hospitalization, such
as cold, cough, and upper respiratory infection. For these
diseases, the service qualities of all hospitals are very close
so that their service ability differences can be neglected.

Baselines: In the experiments, we adopt the following
methods as baselines to the GR-NMF model.

e Linear Regression (LR): This baseline uses a linear
combination of the geographical features to predict cus-
tomer volumes for every customer-service point pair. The
objective function is: min Zy,-,jzl(xij —w'a;;)2

e Singular Value Decomposition (SVD): This baseline de-
composes the customer volumes matrix as an inner prod-
uct of two matrices (U, V) that respectively project cus-
tomer and service points into orthogonal latent spaces,
and a diagonal component weight matrix (33). The objec-
tive function is: min ||[Y ©® (X — UXV ")]|2.

e Basic Non-Negative Matrix Factorization (bNMF):
This baseline models the customer volumes matrix as an
inner product of two nonnegative projection matrices that
project customer and service points into nonnegative la-
tent spaces. The objective function is

min [|[Y © (X — STC)\\%7
5.6.8>0,C > 0.

e Sparse Non-Negative Matrix Factorization (sNMF):
This baseline introduces a sparse prior for the projection
matrices S and C compared with bNMF. The objective
function is

min [[Y © (X - STC)|% + a[S|: + 8/ Clh,
5t.8>0,C>0.

Note that LR only uses explicit geographical correlations
for modeling, while the rest three baselines use only the im-
plicit correlations hidden inside X. By comparing GR-NMF
with these baselines, we can evaluate the benefit from cou-
pling both implicit and explicit information.

Dimensionality of Latent Space: The selection of the di-
mensionality H in the latent space is essentially a tradeoff
between model precision and computational complexity. A
very low dimensionality will lead to a big lost of detailed
information about the customer volume matrix and result
in poor predictions. A very high dimensionality, however,
will incur unaffordable computational costs. To set a proper
H, therefore, we take a “warmup” experiment on a sampled



dataset with 10% of all hospitals, and watch the predictive
precision of GR-NMF with H varying from 5 to 40. As can
be seen from Fig. 1 , when H > 20 the increasing trend of
the predictive precision of GR-NMF tends to be flattened.
As aresult, we set I = 20 as the default setting in the fol-
lowing experiments.

Evaluation Measure: We evaluate the predictive power
of competing models by comparing the predicted customer
volumes with the ground truths. Specifically, we adopt Root
Mean Square Error (RMSE) as the evaluation measure,
which is defined as

1 2
RMSE = | —— (w35 — Z45)",
\/Zm‘ Yij yg_:o ’ ’

where Z;; is the predictive patients volume from residential
zone c; to the hospital s; and z;; € X is the ground truth
with y;; = 0. This means that unsampled elements in X are
to be served as ground truths for performance evaluation.

Performance in General Scenario

We here test the prediction power of GR-NMF on the pa-
tients volumes in X. To this end, we first set the binary sam-
pling matrix Y as an all-one matrix, and then do random
sampling on it and turn the sampled elements to zeros. In
this way, each (4, j) element of X with y;; = 0 is treated
as “unknown” patient volume (test data), and its true value
245 is treated as the ground truth. We increase the sampling
rate gradually from 10% to 50%, and watch the performance
variation of the competing methods, as shown in Fig. 2(a).
Note that for each sampling rate, we repeat the experiment
10 times and return the average result.

As can be seen from Fig. 2(a), while all the methods show
declining performance with increasing unknown rates, GR-
NMF consistently outperforms the competitors in all cases.
This well demonstrates the advantage of GR-NMF gained
by coupling both the implicit and explicit correlations be-
tween residential zones and hospitals. It is also interesting
to see that LR outperforms all other baselines, which im-
plies higher value of explicit information than implicit infor-
mation for the customer volume prediction problem. This is
somewhat unexpected when we recall the dominant position
of matrix factorization methods in various matrix comple-
tion applications in recent years. Nevertheless, the implicit
correlations yet take effects — that is why GR-NMF can
beat LR, although the margins are small in all cases. Finally,
the much worse performances of SVD testify the necessity
of setting non-negative constraint to matrix factorization.

Performance in Location Selection Scenario

In this section, we further evaluate GR-NMF in a more dif-
ficult scenario of location selection. In this scenario, we as-
sume the Shenzhen government is planning to build a new
public hospital that can serve as many people as possible.
As a result, we need to predict the patients volumes from
different residential zones given each candidate hospital lo-
cation and then select the one with a highest sum. To simu-
late this scenario, we do random sampling on the hospitals
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in the hospital set .S, and then set the row vector y; in all-one
Y as a zero vector if hospital s; is sampled. In this way, the
location of each sampled hospital s; is treated as a candi-
date location for the new hospital, and all the true values of
Zi5,7 = 1,...,1343, are treated as the ground truths for the
predicted patient volumes to s;. We also vary the sampling
rate from 10% to 50%, and for each setup we again repeat
the experiment 10 times so as to return the average result.

Fig. 2(b) shows the predictive performances of the com-
peting methods. As can be seen from the figure, in general
the prediction accuracies of all models exhibit very similar
trends as the ones in the general scenario. Compared with the
baseline methods, the GR-NMF model again achieves the
best prediction performance, and the second best is still LR,
which is followed by the three matrix factorization meth-
ods. This observation nicely verifies the finding in the gen-
eral scenario; that is, while explicit information seems more
valuable than implicit one in customs volume prediction,
coupling both of them into GR-NMF can result in the best
performance.

Furthermore, it is also interesting to compare the per-
formances of the models in different scenarios. By putting
Fig. 2(a) and Fig. 2(b) together for comparison, we can see
that for each same sampling rate (which means the numbers
of sampled y;; elements are equal), all the methods seem
perform worse in the location selection scenario, especially
for the three matrix factorization baselines. This implies that
to predict all the patient volumes to a hospital (i.e., an empty
row in X) in the location selection scenario is more chal-
lenging. This phenomenon is in fact not surprising since
matrix factorization models usually have problems in pro-
cessing matrices with empty rows or columns, which is also
described as the intractable cold-start problem from a rec-
ommender systems perspective. This, in turn, illustrates the
importance of coupling implicit correlations with explicit
geographical correlations; that is, the generation of explicit
geographical features are immune to the cold-start problem.
This well explains why GR-NMF and LR show more evi-
dent superiority to the other three baselines in the location
selection scenario.

Performance in Market Investigation Scenario

We here continue to evaluate GR-NMF from a market inves-
tigation perspective. In this scenario, we assume an agency
is investigating specific patient volumes of every residen-
tial zones to all hospitals in Shenzhen. However, given the
limited budget, they can only obtain the patient volumes of
some sampled hospitals and residential zones. We therefore
need to predict the patient volumes from unsampled residen-
tial zones to unsampled hospitals. To simulate this scenario,
we first set Y as an all-zero matrix, and then do random
sampling on hospitals and residential points, respectively. If
the hospital s; is sampled, we turn all the elements in the
i-th row of Y to one. Analogously, if the residential zone c;
is sampled, all the elements in the j-th column of Y will be
set to one. We vary the sampling rate for both hospitals and
residential zones from 10% to 50%, and return the average
results of ten repetitions.

The comparison results of GR-NMF and baseline meth-
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ods are shown in Fig. 2(c). As shown in the figure, GR-
NMF achieves the highest prediction power compared with
the baseline methods. Moreover, the performance improve-
ment of GR-NMF to LR is obviously higher than that in
the location selection scenario. This is due to the fact that
the sampling method for the market investigation scenario
keeps more implicit correlation information between differ-
ent hospitals. As a result, GR-NMF can obtain more implicit
knowledge to improve the prediction performance.

Validation of Parameter Setting Method

When introducing the GR-NMF model above, we proposed
an approximate method to set the parameters «, f3, v, J, and
¢. We here verify its effectiveness by comparing it with a
traversal method. In this traversal method, we alternately
traverse the optimal value of each parameter while keeping
other parameters fixed. In this way, we get a set of quasi-
optimal parameters. The experiment is over the market in-
vestigation scenario and the sampling rate is 30%.

Fig. 3(a) shows a group of GR-NMF prediction results,
with « and (3 varying from O to 1, and ~, § and ( set to the
quasi-optimal values. Fig. 3(b) shows the results with quasi-
optimal v and 3 but varying -, 6 and (. The red dash lines
indicate our approximate method. As shown in the figures,
the performance of our approximate method is just slightly
worse than the optimal performance of the traversal method.
Further considering the huge advantage in computational
complexity of the approximate method, we adopt it as a de-
fault way to set parameters in practice.
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Related Work

Customer volume prediction plays a key role in various ap-
plication domains such as consumer market analysis (Fu et
al. 2014b) and business location selection (Xu et al. 2016).
In recent years, data-driven approaches become very pop-
ular in this area (Qu and Zhang 2013; Wang et al. 2015).
For instance, Geo-spotting (Karamshuk et al. 2013) adopts
nine geographic features including density, neighbors en-
tropy, competitiveness, etc., for mining online LBS data for
optimal retail store placement. The study in (Li et al. 2015)
adopts average travel time calculated from real traffic GPS
trajectory data to optimize location selection of ambulance
stations. The works in (Fu et al. 2014a; 2014b) exploit geo-
graphic contexts for real estate appraisal. The work in (Xu et
al. 2016) mines service requirement information from LBS
search engine query data for store location selection. Most of
these approaches, however, are based on explicit geographic
contexts, and few methods have the ability to exploit implicit
correlations in data.

Matrix factorization is widely admitted as a very power-
ful model to mine hidden correlations, with explicit correla-
tions often formulated as regularization to introduce exter-
nal knowledge (Baltrunas, Ludwig, and Ricci 2011). For in-
stance, PHF-MF (Cui et al. 2011b; 2011a) is a hybrid-factor
matrix factorization model to mine latent correlations of a
user-post matrix, and two regularization factors are intro-
duced to fuse explicit user-user and post-post correlations
into the model. The Geo-MF model (Lian et al. 2014) in-
tegrates hidden correlations in user visiting data with spa-
tial clustering phenomena to recommend points of interests.
The study in (Cheng et al. 2012) fuses hidden geographical
influences with a social influence regulation to achieve per-
sonalized POI recommendation. The CLAR model (Zheng
et al. 2010a) exploits location-activity information, location-
feature, and activity-activity correlation for mobile recom-
mendation, which is extended as UCLAF (Zheng et al.
2010b; 2012) with a tensor framework. This kind of mod-
els often treat implicit correlations as the most important
knowledge and use explicit information as their regulations.
In our GR-NMF model, however, both implicit and explicit
correlations are treated equally and inter-calibrated on unob-
served customer volumes, which enables the cold-start loca-
tion selection nicely.



Conclusions

In this paper, a novel model called GR-NMF is proposed
for integrating implicit footfall knowledge and explicit ge-
ographical knowledge into a unified matrix factorization
framework for customer volume prediction. Experiments on
a real-world outpatient dataset from Shenzhen City demon-
strate the advantages of GR-NMF to the competitive base-
lines, which is even more evident in the location selection
scenario with cold-start problem.
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