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Abstract

Low-rank matrix approximation has been widely used for
data subspace clustering and feature representation in many
computer vision and pattern recognition applications. How-
ever, in order to enhance the discriminability, most of the ma-
trix approximation based feature extraction algorithms usu-
ally generate the cluster labels by certain clustering algorithm
(e.g., the kmeans) and then perform the matrix approxima-
tion guided by such label information. In addition, the noises
and outliers in the dataset with large reconstruction errors will
easily dominate the objective function by the conventional �2-
norm based squared residue minimization. In this paper, we
propose a novel clustering and feature extraction algorithm
based on an unified low-rank matrix factorization framework,
which suggests that the observed data matrix can be approx-
imated by the production of projection matrix and low di-
mensional representation, among which the low-dimensional
representation can be approximated by the cluster indicator
and latent feature matrix simultaneously. Furthermore, we
have proposed using the �2,1-norm and integrating the man-
ifold regularization to further promote the proposed model.
A novel Augmented Lagrangian Method (ALM) based pro-
cedure is designed to effectively and efficiently seek the opti-
mal solution of the problem. The experimental results in both
clustering and feature extraction perspectives demonstrate the
superior performance of the proposed method.

Introduction

Low-rank matrix factorization, as a promising technique to
find two or more lower dimensional matrices whose product
provides a good approximation to the original one and by
which to capture the underlying low-dimensional structures
of data, plays an important role in many computer vision
and pattern recognition applications, e.g., dimension reduc-
tion, clustering and classification (Zhang and Zhao 2013;
la Torre 2012; Zhang et al. 2015a). As one of the stan-
dard approaches for low-rank matrix approximation with
a given data matrix and a preindicated rank r of the ap-
proximation, the well-known principal component analy-
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sis (PCA) is nothing but a truncated singular value de-
composition (TSVD) applied on re-centered data (Zhang
and Zhao 2013). The low-rank representation (LRR) model
(Liu, Lin, and Yu 2010; Liu et al. 2013), which shares the
same assumption that the observed data matrix should be
approximately of low-rank and seeks the lowest-rank rep-
resentation of all data jointly, has attracted great deal of
attention in recent years and in particular employed for
data clustering and segmentation (Liu, Lin, and Yu 2010;
Yin et al. 2015). As another famous matrix factorization
technique, the nonnegative matrix factorization (NMF) (Lee
and Seung 2001) aims to find two nonnegative matrices
whose product provides a good approximation to the orig-
inal one, has also received considerable attention due to its
psychological and physiological interpretation of naturally
occurring data whose representation may be parts based in
the human brain (Cai et al. 2011).

In the literature, the matrix factorization methods can be
directly considered as the feature extraction algorithms by
letting the factor matrices as the projection matrix and low-
dimensional representation, respectively (Guan et al. 2011;
2012; Zhang et al. 2015b). Additional regularizers are ac-
cordingly suggested to match the certain data structure or
priori knowledge, e.g., the manifold regularization (Zhang
and Zhao 2013; Cai et al. 2011), the loss of a classifier
(Gupta and Xiao 2011), the model constraint (Chen et al.
2015), and sparsity (Zheng et al. 2012). As an alternate point
of view, it have been demonstrated that the NMF is equiva-
lent to the kmeans clustering by interpreting the factor ma-
trices as the cluster indicator and latent feature matrix, re-
spectively (Ding et al. 2005; Ding, Li, and Jordan 2010).
Pioneered by this idea, an orthogonal nonnegative matrix
tri-factorization algorithm is developed for clustering, which
addresses the orthogonality constraint and leads to rigorous
clustering interpretation (Ding et al. 2006), and it has been
further generalized to a high-order co-clustering framework
for simultaneous clustering of multi-type relational data with
a fast version to deal with large scale data (Wang et al. 2011).
Moreover, an embedded unsupervised feature selection al-
gorithm is proposed by using a novel constraint on the latent
feature matrix (Wang, Tang, and Liu 2015).
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Despite above achievements on low-rank matrix factor-
ization for data clustering and feature extraction, there are
still a few drawbacks for current algorithms: (1) due to the
lack of label information in the clustering task, one com-
monly used criterion is to let the data similarity to be pre-
served by the predicted labels (He et al. 2011). Although
some methods apply sparsity constraints into the matrix
factorization to achieve feature dimension reduction (Qian
and Zhai 2013), these methods usually generate the clus-
ter labels by certain clustering algorithm (e.g., the kmeans)
and then transform unsupervised dimension reduction into
the sparsity regularized matrix approximation guided by
such cluster labels. (2) In the conventional �2-norm based
squared residue minimization version of matrix factoriza-
tion, the noises and outliers in the dataset with large recon-
struction errors will easily dominate the objective function
(Huang et al. 2014; Han et al. 2015). Although the �1-norm
based robust matrix factorization has been proposed to alle-
viate this issue (Ke and Kanade 2005), it fails to maintain
feature rotation invariance. There are also �2,1-norm based
methods for robust NMF (Kong, Ding, and Huang 2011;
Huang et al. 2014), but only address the single task of clus-
tering. (3) The standard low-rank matrix factorization ig-
nores the possible nonlinearity inherent in the data. To pre-
serve the local geometrical structures embedded in low-rank
matrix factorization, some researchers assume that if two
data points are close in the input high-dimensional feature
space, then their low-dimensional representations should be
close as well (Zhou, Tao, and Wu 2010; Guan et al. 2011;
Cai et al. 2011; Zhang and Zhao 2013; Lu et al. 2013). How-
ever, it is also essential to assume that if two data points are
close in the intrinsic manifold of the data distribution, then
their cluster labels should also be close as well (Ng, Jordan,
and Weiss 2001).

To relieve above issues in existing low-rank matrix factor-
ization based approaches, in this paper, we propose a novel
clustering and feature extraction algorithm based on an uni-
fied low-rank matrix factorization framework, i.e., the ro-
bust manifold matrix factorization (RMMF). In detail, sev-
eral highlighted contributions of the proposed approach are
summarized as follows.

• We propose a unified low-rank matrix factorization frame-
work that combines clustering and feature extraction in a
novel way. In particular, the observed data matrix is ap-
proximated by the production of projection matrix and
low-dimensional representation, among which the low
dimensional representation can be approximated by the
cluster indicator and latent feature matrix simultaneously.

• We suggest the �2,1-norm based matrix factorization in
our framework to obtain the robust solution against the
noises and outliers. Different from other �2,1-norm based
NMFs for clustering and feature extraction (Huang et al.
2014; Wang, Tang, and Liu 2015), in our method, cluster-
ing is performed on the robust low-dimensional represen-
tation rather than the input data matrix, which helps our
model to better capture the underlying low-dimensional
structure and enhance the clustering performance.

• We incorporate the manifold regularization terms on both

the low-dimensional feature representation and the cluster
labels, to better encode the local geometrical information
existing in the data.

The new constraint (i.e., the �2,1-norm) in our model
makes the conventional auxiliary function optimization
method no longer applicable for our RMMF problem. There-
fore, an Augmented Lagrangian Method (ALM) based pro-
cedure is designed to effectively and efficiently seek the op-
timal solution of the objective function. The rest of the pa-
per is organized as follows: section 2 introduces our RMMF
algorithm in detail, section 3 proposes an efficient optimiza-
tion procedure for RMMF. Then, the experimental results
on both clustering and feature extraction perspectives are re-
ported in section 4, followed by the conclusions in section
5.

Robust Manifold Matrix Factorization

Let X ∈ Rl×n to be the input data matrix in which n and
l are the number of data instances and the original feature
dimensionality of each instance, respectively. By a certain
linear subspace projection, X can be low-dimensional repre-
sented as Y = PTX , in which P ∈ Rl×d and Y ∈ Rd×n are
the projection matrix and the low-dimensional feature rep-
resentation, respectively. Now we consider the PCA based
low-rank matrix factorization under a least-squares frame-
work (la Torre 2012), denote xi ∈ Rl and yi ∈ Rd as in-
stances of X , Y in vector form, respectively, then we have
yi = PTxi, and the PCA minimizes the following recon-
struction error by using the optimal orthogonal basis:

ε =
∑N

i=1

∥∥xi − P (PTxi)
∥∥2
2
, (1)

in which P is a subset of orthogonal basis of X . Eq. (1) has
its matrix formulation as:

ε =
∥∥X − P (PTX)

∥∥2
F
. (2)

By minimizing the approximation error with a preindi-
cated subspace dimensionality d, the objective of PCA based
low-rank matrix approximation can be rewritten as follow-
ing:

argmin
P,Y

‖X − PY ‖2F , s.t. PTP = I. (3)

Eq. (3) gives the low-rank matrix approximation of a
data matrix based on the feature extraction point of view,
in which P is the projection matrix for feature mapping. As
an alternate point of view, a data matrix can be clustered
into k clusters under an NMF based matrix factorization
framework (Ding et al. 2005; Ding, Li, and Jordan 2010).
In this paper, we propose to perform such low-rank matrix
approximation on the low-dimensional representation Y , but
with the relaxed orthogonality constraint on U (Tang and Liu
2012):

arg min
P,Y,U,V

‖X − PY ‖2F +
∥∥Y − V UT

∥∥2
F
,

s.t. PTP = I, UTU = I, U ≥ 0,
(4)

where U ∈ Rn×k is the cluster indicator and V ∈ Rd×k is
the latent feature matrix (or the cluster centroid). Moreover,
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in this paper, we propose to further add a �2,1-norm on V
to perform feature selection from Y and enhance the robust-
ness of our model (Nie et al. 2010):

arg min
P,Y,U,V

‖X − PY ‖2F +
∥∥Y − V UT

∥∥2
F
+ β ‖V ‖2,1

s.t. PTP = I, UTU = I, U ≥ 0,
(5)

in which the �2,1-norm of a matrix A is defined as ‖A‖2,1 =∑n
i=1

√∑m
j=1 A

2
ji =

∑n
i=1 ‖Ai‖, in order to enforce some

columns of V close to 0 and achieve the feature selection
from Y .

In the objective function eq. (5), the errors for each
data point enters the approximations ‖X − PY ‖2F and∥∥Y − V UT

∥∥2
F

are squared residue errors in the form of �2-
norm. Therefore, the noises and outliers in the dataset with
large reconstruction errors will easily dominate the objective
function because of the squared errors. Note in our proposed
low-rank matrix approximation, both P , Y and U , V are un-
known, thus the impact of the outliers may be more compli-
cate than the simpler convex case. To make our model robust
to these instances, we replace the loss functions in eq. (5)
by the �2,1-norm as ‖X − PY ‖2,1 and

∥∥Y − V UT
∥∥
2,1

, re-
spectively. In this robust matrix factorization, the errors for
each data point are ‖xi − Pyi‖ and

∥∥yi − V UT
i

∥∥, respec-
tively, which is not squared, and thus the large errors due to
the noises and outliers in the dataset do not dominate the ob-
jective function because they are not squared (Kong, Ding,
and Huang 2011). Therefore, we have the following robust
low-rank matrix factorization:

arg min
P,Y,U,V

‖X − PY ‖2,1 +
∥∥Y − V UT

∥∥
2,1

+ β ‖V ‖2,1
s.t. PTP = I, UTU = I, U ≥ 0.

(6)

Finally, we expect similar data instances from original
data matrix X should have similar low-dimensional rep-
resentation as well as clustering labels, according to the
spectral analysis (von Luxburg 2007). Therefore, we incor-
porate the manifold regularization terms on both the low-
dimensional feature representation and the cluster labels, to
better encode the local geometrical information existing in
the data:

argmin
Y,U

tr(Y LY T) + tr(UTLU), (7)

where L = D−W is the Laplacian matrix and D is a diag-
onal matrix with its elements defined as Dii =

∑n
i=1 Wii,

and W ∈ Rn×n is the relation matrix of X weighted by the
RBF kernel (Belkin and Niyogi 2003):

Wij = e
−‖xi−xj‖2

σ2 . (8)

Putting eq. (6) and eq. (7) together, the proposed objective

function of RMMF is:

arg min
P,Y,U,V

‖X − PY ‖2,1 +
∥∥Y − V UT

∥∥
2,1

+ α(tr(Y LY T) + tr(UTLU)) + β ‖V ‖2,1
s.t. PTP = I, UTU = I, U ≥ 0.

(9)

RMMF Optimization

The objective function in above eq. (9) is not convex in
four variables but is convex if we update the four variables
alteratively. Thus, we use Augmented Lagrangian Method
(ALM) to optimize the objective function. By introducing
four auxiliary variables E1 = X − PY , E2 = Y − V UT,
Z1 = Y and Z2 = U . The objective function can be rewrit-
ten into the following equivalent problem:

arg min
P,Y,U,V,E1,E2,Z1,Z2

‖E1‖2,1 + ‖E2‖2,1
+ α(tr(Z1LY

T) + tr(ZT
2 LU)) + β ‖V ‖2,1

s.t. E1 = X − PY,E2 = Y − V UT, Z1 = Y

Z2 = U,PTP = I, UTU = I, Z2 � 0,

(10)

which can be solved by the following ALM problem:

arg min
P,Y,U,V,E1,E2,Z1,Z2,λ1,λ2,λ3,λ4,μ

‖E1‖2,1 + ‖E2‖2,1
+ α(tr(Z1LY

T) + tr(ZT
2 LU)) + β ‖V ‖2,1

+ < λ1, X − PY − E1 > + < λ2, Y − V UT − E2 >

+ < λ3, Z1 − Y > + < λ4, Z2 − U >

+
μ

2
(‖Z1 − Y ‖2F + ‖Z2 − U‖2F

+ ‖X − PY − E1‖2F +
∥∥Y − V UT − E2

∥∥2
F
)

s.t. PTP = I, UTU = I, Z2 � 0,
(11)

where λ1, λ2, λ3, and λ4 are the Lagrangian multipliers and
μ is a regularity coefficient to control the penalty for the four
violation of equality constraints in eq. (11). Since the ob-
jective function above carries eight variables and additional
multipliers, we adopt an alternative optimization method to
reduce it to a few manageable subproblems with the closed-
form solution, each minimizes the objective function with
respect to one variable while fixing the other variables. The
detailed information is given in Appendix.

Experimental Analysis

In this section, we evaluate the performance of the proposed
RMMF method on the benchmark datasets (Tables 1 and 2).
We divide this section into two parts to report the experi-
mental results of clustering and feature extraction, respec-
tively (Tables 3 and 4). In each subsection, we firstly intro-
duce the datasets and experimental settings, then compare
the proposed RMMF with the state-of-the-art algorithms in
detail.
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Table 1: Description of datasets for clustering.

Dataset Classes Samples Features
PIE10P 10 210 2420
COIL20 20 1440 1024
USPS 10 930 256

Movement 15 360 90
Glass 6 214 9
Seeds 3 210 7

Table 2: Description of datasets for feature extraction.

Dataset Classes Samples Features
Yale 15 165 1024
ORL 20 1440 1024

MINST 10 930 256
Iohosphere 15 360 34

Sonar 6 214 60
Landsat 3 210 36

Clustering

The clustering experiments are conducted on 6 publicly
available benchmark datasets, including a face image dataset
(PIE10P), an object image dataset (COIL20), a digit dataset
(a subset of USPS), and three non-image datasets from the
UCI machine learning repository, i.e., Movement, Glass, and
Seeds. The statistics of the datasets used in the clustering ex-
periments are summarized in Table 1.

As indicated in our RMMF algorithm, in this subsection,
we consider U as the cluster indicator for clustering. We
compare the RMMF with the following representative data
clustering algorithms: (1) kmeans in the original input fea-
ture space, (2) graph regularized nonnegative matrix factor-
ization (GNMF) (Cai et al. 2011), (3) embedded unsuper-
vised feature selection (EUFS) (Wang, Tang, and Liu 2015),
(4) clustering with adaptive neighbors (CAN) (Nie, Wang,
and Huang 2014), and (5) sparse manifold clustering and
embedding (SMCE) (Elhamifar and Vidal 2011). In all the
clustering methods, we set the number of clusters equal to
the ground truth class number for all the datasets. To fairly
compare different methods, we tune the regularization pa-
rameters for all methods by a “grid-search” strategy from the
same range of 10[−5,−4,...,5]. In addition, the EUFS, SMCE,
and RMMF are joint dimension reduction and clustering al-
gorithms, which require the subspace dimensionality d as an
input, in the experiments, we tune this parameter by using
the candidate values which are no more than l/2 for various
datasets respectively, and report the best performance. The
accuracy (ACC) is employed as evaluation metrics to eval-
uate the performance of clusters (He et al. 2011), the larger
scores suggest the better clustering performance. It is also
worth noting that the kmeans, GNMF, and EUFS are depend
on initialization in optimization, following previous works,
we repeat the related experiments ten times and the average
results with standard deviation are reported.

Table 3 summarizes the clustering performance for each
method on six datasets. We can see that RMMF algorithm
outperforms other clustering methods in ACC. In particular,

the PIE dataset is a well known dataset that contains a lot
of occluded and light-varying images, thus it is often used
for robust face recognition (Wright et al. 2009). The signif-
icant performance on all these datasets, especially the PIE
dataset, meets the major advantages of our method. In de-
tail, comparing to the state-of-the-art data clustering meth-
ods, the superiority of the proposed RMMF algorithm lies
in the following: (1) the objective function uses the uni-
fied low-rank matrix factorization on the input data matrix
and the low-dimensional feature representation, which can
better capture the underlying low-dimensional structure and
enhance the clustering performance, (2) the adopted �2,1-
norm based matrix factorization alleviates the outlier issue
that is common among other clustering methods such as the
kmeans and GNMF, (3) the manifold regularization terms
which incorporate the geometric and manifold information
on both low-dimensional feature representation and cluster
labels further promote the clustering performance and ro-
bustness of the RMMF model. In addition, as pointed in ta-
ble 3 and many literatures, most of the conventional clus-
tering algorithms (e.g., kmeans, NMF based methods, and
EUFS) suffered from the fact of uncertain initialization in
optimization, which makes the clustering results difficult to
be exactly reproduced. On the contrary, the performance of
our proposed RMMF clustering is efficient and stable by our
suggested optimization procedure.

Feature Extraction

We would like to show that our RMMF model also applies to
feature extraction task and benefits for subsequent classifica-
tion. In this subsection, there are six datasets used for exper-
imental evaluation, including two face image ones: Yale and
ORL, a digit dataset (MINST), and other three non-image
datasets from the UCI machine learning repository, i.e., Io-
hosphere, Sonar, and Landsat. Again, the information about
the number of classes, samples, and features in each dataset
is given in Table 2.

As indicated in our RMMF algorithm, in this subsection,
we consider P as the projection matrix for feature extrac-
tion. We provide experimental results on the classification
task of datasets above to test the performance of our pro-
posed RMMF algorithm, and compare it to the state-of-the-
art feature dimension reduction methods including the PCA,
kernel PCA (KPCA), locality preserving projections (LPP)
(He and Niyogi 2004), and neighborhood preserving embed-
ding (NPE) (He et al. 2005). For each algorithm, after the
feature embedding is obtained, a lazy classifier, i.e., the k-
nearest-neighbor with k=1 is used for classification. Also,
the kNN classification using the original high-dimensional
feature representation is performed as a baseline for all the
feature extraction methods.

In the experiment, the parameter setting of RMMF is
the same as mentioned in the above subsection, while for
LPP and NPE, we search the parameter k in the range of
[2,4,...,20] and the parameter t in the range of 10[−3,−2,...,3]

for LPP. The dimensionality of feature embedding d is crit-
ical in feature extraction algorithms, in our experiments,
we tune it by using different candidate sets according to
the original feature size of each dataset and show the best
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Table 3: Clustering results of different methods by the measurement of ACC in percentage.

Dataset kmeans GNMF EUFS CAN SMCE RMMF
PIE10P 29.90±2.43 41.19±2.36 65.71±3.56 52.38 69.05 73.81
COIL20 54.94±4.10 49.44±3.62 60.23±4.04 84.58 71.60 86.94
USPS 62.62±4.62 67.31±3.63 68.06±5.44 70.00 64.73 76.56

Movement 43.64±2.88 40.28±2.71 49.44±5.11 51.67 52.66 54.44
Glass 50.79±3.98 54.67±2.91 56.54±3.11 51.40 56.07 61.68
Seeds 72.14±6.48 84.29±4.10 86.67±0.49 88.10 87.62 90.48

Table 4: Feature extraction and classification results of different methods by the measurement of OA in percentage.

Dataset kNN PCA KPCA LPP NPE RMMF
Yale 63.33 (1024) 66.67 (100) 68.89 (30) 70.00 (20) 67.78 (30) 74.44 (50)
ORL 76.43 (1024) 76.79 (100) 77.14 (100) 79.64 (30) 80.36 (30) 82.85 (150)

MINST 68.00 (256) 73.00 (20) 75.56 (30) 75.22 (20) 71.56 (10) 73.56 (30)
Iohosphere 73.41 (34) 75.23 (8) 76.13 (4) 73.41 (8) 74.92 (16) 81.27 (10)

Sonar 61.17 (60) 62.23 (30) 64.36 (10) 65.96 (20) 69.15 (10) 73.94 (22)
Landsat 69.64 (36) 73.09 (4) 76.29 (18) 71.65 (6) 72.01 (6) 73.56 (12)

performance along with the best number of d, the detailed
candidate sets are as following: [10:10:150], [10:10:150],
[10:10:100], [2:2:16], [2:2:30] and [2:2:18], for six datasets,
respectively. Finally, for the kNN classification, we select
the first [5, 3, 10, 10, 10, 10] samples for each class as train-
ing set for six datasets, respectively, and the other samples
are left for testing.

The classification overall accuracies (OA) of all the fea-
ture embedding algorithms are reported in Table 4. In the
table, the number in parentheses is the number of features
when the best performance is achieved. From this table we
learn that the classification accuracies using the extracted
features are always improved compare to the original kNN.
We also find that most of the time, the proposed RMMF al-
gorithm outperforms other methods in more than 3 percent-
ages, which demonstrates the effectiveness of our RMMF
algorithm for feature extraction.

Conclusion

In this paper, we propose a robust manifold matrix factoriza-
tion (RMMF) for joint clustering and feature extraction. The
RMMF is an unified low-rank matrix factorization frame-
work which combines clustering and feature extraction in a
novel way, furthermore, the �2,1-norm is applied to the ma-
trix factorization to obtain the robust solution against the
noises and outliers, and the manifold regularization term
is introduced to better incorporate the geometric and man-
ifold information on both low-dimensional feature repre-
sentation and cluster labels. The proposed model can per-
form both data clustering via U and feature extraction via
P , experimental results on numerous of datasets (including
face, object, and digit image datasets and other non-image
datasets) demonstrate the superior performance of the pro-
posed method in both clustering and feature extraction per-
spectives. For future work, the proposed method can be fur-
ther extended to more challenging tasks such as multi-view
and cross-view data clustering and feature extraction.
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Appendix

To optimize eq. (11), the following steps are repeated until
convergence.

Update E1

To update E1, we fix other variables except E1 and re-
move terms that are irrelevant to E1. Then eq. (11) becomes:

argmin
E1

1

μ
‖E1‖2,1 +

1

2

∥∥∥∥E1 − (X − PY +
1

μ
λ1)

∥∥∥∥
2

F

.

(12)

This equation has a closed form solution (Liu, Ji, and Ye
2009). Let B = X−PY + 1

μλ1, then E1 can be updated as:

E1i =

{
(1− 1

μ‖Bi‖ )Bi, if ‖Bi‖ ≥ 1
μ

0, otherwise.
(13)

Update E2

To update E2, we fix other variables except E2 and re-
move terms that are irrelevant to E2. Then eq. (11) becomes:

argmin
E2

1

μ
‖E2‖2,1 +

1

2

∥∥∥∥E2 − (Y − V UT +
1

μ
λ2)

∥∥∥∥
2

F

.

(14)

Similar to above step of update E1, we let C = Y −
V UT + 1

μλ2, then E2 can be updated as:

E2i =

{
(1− 1

μ‖Ci‖ )Ci, if ‖Ci‖ ≥ 1
μ

0, otherwise.
(15)
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Update V
To update V , we fix other variables except V , then the

objective function in eq. (11) reduces to:

argmin
V

β ‖V ‖2,1 +
μ

2

∥∥∥∥Y − V UT − E2 +
1

μ
λ2

∥∥∥∥
2

F

,

(16)

By considering the constraint of UTU = I , we can
rewrite it as:

argmin
V

β

μ
‖V ‖2,1 +

1

2

∥∥∥∥V − (Y − E2 +
1

μ
λ2)U

∥∥∥∥
2

F

,

(17)

Similar to above step of update E1, if we denote M =
(Y − E2 +

1
μλ2)U , then we have:

Vi =

{
(1− β

μ‖Mi‖ )Mi, if ‖Mi‖ ≥ β
μ

0, otherwise.
(18)

Update Y
Optimizing eq. (11) with respect to Y yields the equation:

argmin
Y

< λ1, X − PY − E1 > + < λ2, Y − V UT − E2 >

+
μ

2
(‖Z1 − Y ‖2F + ‖X − PY − E1‖2F

+
∥
∥
∥Y − V UT − E2

∥
∥
∥

2

F
) + αtr(Z1LY

T)

(19)

By considering the constraint of PTP = I , we can refor-
mulate the above function as:

argmin
Y

< λ1, X − PY − E1 > + < λ2, Y − V UT − E2 >

+
μ

2
(‖Z1 − Y ‖2F +

∥
∥
∥Y − PT(X − E1)

∥
∥
∥

2

F

+
∥
∥
∥Y − V UT − E2

∥
∥
∥

2

F
) + αtr(Z1LY

T)

(20)

By letting the Lagrangian function of eq. (20) to 0, we
have:

Y =
1

3μ
((PTλ1 − λ2 + μ(Z1 + PT(X − E1)

+ (V UT − E2))− αZ1L)).

(21)

Update Z1

The proposed objective function with respect to Z1 yields
the equation:

argmin
Z1

αtr(Z1LY
T)+ < λ3, Z1 − Y > +

μ

2
(‖Z1 − Y ‖2F ),

(22)

by letting the Lagrangian function of eq. (22) to 0, we have:

Z1 =
μY − λ3 − αY L

μ
(23)

Update Z2

Optimizing Equation eq. (11) with respect to Z2 is re-
duced to the following equation:

arg min
Z2≥0

αtr(ZT
2 LU)+ < λ4, Z2 − U > +

μ

2
‖Z2 − U‖2F ,

(24)

which can be further reduced as following:

arg min
Z2≥0

‖Z2 −K‖2F , (25)

where K = (U − 1
μλ4 − α

μLU). Eq. (25) can be further
decomposed to element-wise optimization problem as:

arg min
Z2ij≥0

∥∥Z2ij −Kij

∥∥2
F
. (26)

Therefore, the optimal solution of Z2 should be:

Z2ij = max(Kij , 0). (27)

Update P
Optimizing eq. (11) with respect to P yields the equation:

arg min
PTP=I

< λ1, X − PY − E1 > +
μ

2
(‖X − PY − E1‖2F ),

(28)

Eq. (28) can be further rewritten as:

arg min
PTP=I

μ

2

∥∥∥∥X − PY − E1 +
1

μ
λ1

∥∥∥∥
2

F

. (29)

If we define Θ = (X−E1+
1
μλ1)Y

T, then eq. (29) equals
to:

arg min
PTP=I

‖P −Θ‖2F . (30)

which can be solved as P = NpQ
T
p in which Np and Qp

are the left and right singular vectors of the singular value
decomposition of Θ (Huang et al. 2014).

Update U
The proposed objective function with respect to U yields

the equation:

arg min
UTU=I

αtr(ZT
2 LU)+ < λ4, Z2 − U >

+ < λ3, Y − V UT − E2 >

+
μ

2
(‖Z2 − U‖2F +

∥∥Y − V UT − E2

∥∥2
F
).

(31)

Then, by removing the irrelevant terms and defining Ψ =
1
μλ4+ZT

2 − β
μLZ2+(Y −E2)

T(V − 1
μλ3), eq. (31) arrives

at:

min
UTU=I

μ

2
‖U‖2F − μ < Ψ, U > (32)

and it can be further simplified as:

min
UTU=I

‖U −Ψ‖2F . (33)

Similar to the solution of eq. (30), we have U = NuQ
T
u

where Nu and Qu are the left and right singular vectors of
the singular value decomposition of Ψ.

Update ALM Parameters
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Finally we need to update the ALM parameters, i.e., λ1,
λ2, λ3, λ4 and μ. According to (Boyd and Vandenberghe
2004), they should be updated as following:

λ1 = λ1 + μ(X − PY T − E1) (34)

λ2 = λ2 + μ(Y − UV T − E2) (35)

λ3 = λ3 + μ(Z1 − Y ) (36)

λ4 = λ4 + μ(Z2 − U) (37)

μ = ρμ (38)
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