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Abstract

Evolution of Knowledge Bases (KBs) consists of incorpo-
rating new information in an existing KB. Previous studies
assume that the new information should be fully trusted and
thus completely incorporated in the old knowledge. We sug-
gest a setting where the new knowledge can be partially trusted
and develop model-based approaches (MBAs) to KB evolu-
tion that rely on this assumption. Under MBAs the result of
evolution is a set of interpretations and thus two core problems
for MBAs are closure, i.e., whether evolution result can be
axiomatised with a KB, and approximation, i.e., whether it
can be (maximally) approximated with a KB. We show that
DL-Lite is not closed under a wide range of trust-sensitive
MBAs. We introduce a notion of s-approximation that im-
proves the previously proposed approximations and show how
to compute it for various trust-sensitive MBAs.

Introduction

Recent years have witnessed a strong and increasing interest
in Description Logic (DL) knowledge bases (KBs) (Baader et
al. 2003) as a mechanism for representing structured knowl-
edge; in particular, DLs became the foundation for OWL 2,
the standard ontology language of the Semantic Web. A DL
KB K consists of a TBox T that models at the intensional
level the static and structural aspects of an application do-
main, and an ABox A that models at the extensional level the
current state of affairs or data about individuals.

In many applications KBs are subject to changes, for
instance, when they are constructed from evolving Web
pages (Suchanek and Weikum 2013) or databases (Furche et
al. 2012), or created collaboratively (Bollacker et al. 2008;
Stearns et al. 2001). A typical scenario for such applications
is to incorporate in a given KB K an acquired KB N that ex-
presses new information. In the case where N interacts with
K in an undesirable way, e.g., by causing the KB or relevant
parts of it to become unsatisfiable, N cannot simply be added
to K. Different ways to address this problem are possible,
corresponding to different approaches for KB evolution.
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Knowledge evolution in the context of DL KBs has
recently attracted a lot of attention from both practical
and foundational perspectives, see e.g. (Fridman Noy et
al. 2004; Haase and Stojanovic 2005; Flouris et al. 2008;
Konev, Walther, and Wolter 2008; Cuenca Grau et al. 2012;
Wu and Lécué 2014). Model-based approaches (MBAs) are
the most commonly studied. Under MBAs, the result of evolu-
tion is the set of first-order interpretations M that are models
of N , minimally distant from the models of K. The latter con-
dition corresponds to a widely accepted principle of minimal
change (Eiter and Gottlob 1992). Depending on how mini-
mality and distance are defined, one can obtain various evo-
lution semantics and a number of them have been introduced
and studied (Qi and Du 2009; Calvanese et al. 2010; Wang,
Wang, and Topor 2010; Kharlamov and Zheleznyakov 2011;
Liu et al. 2011; Kharlamov, Zheleznyakov, and Calvanese
2013; Zhuang et al. 2014; Qi et al. 2015; Wang et al. 2015;
Zhuang et al. 2016).

To the best of our knowledge, all previous studies of KB
evolution assume that the new knowledge N should be fully
trusted and thus completely taken on board (see Related
Work section). However, this assumption does not hold in a
wide range of important applications (Suchanek and Weikum
2013) where N comes from a partially trusted source, e.g.,
from the Web or from a source with a limited expertise.

In this work we address this issue for MBAs and study
how an external notion of trust could be used in order to
determine how new knowledge should be integrated with ex-
isting knowledge. Following Hunter and Booth (2015), who
studied trust in the context of propositional belief revision,
we assume that the knowledge provider has expertise that
is restricted to a particular area and thus cannot distinguish
between certain states of the application domain—first-order
interpretations in our case. We formalise such a notion of trust
as an equivalence relation on first-order interpretations and
introduce four natural classes of trust. Then we use trust as
an external mechanism to relativise arbitrary interpretations
(not necessarily models of N ) to models of N by considering
equivalence classes of the latter’s models. This allows us to
define the result of evolution as a set of minimally distinct
interpretations M selected from these equivalence classes
instead of just models of N as in classical MBAs. Our trust-
sensitive evolution is generic in the sense that it is applicable
to KBs of any DL, and is backwards-compatible with classi-
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cal MBAs in the sense that it coincides with them whenever
the model of trust assumes that the knowledge provider is an
expert in everything.

Since evolution under MBAs is defined as a set of in-
terpretations M, in practice one would want to efficiently
axiomatise this M as a KB or, whenever this is impossible,
to efficiently ‘closely’ approximate it with a KB. Thus, the
two core KB evolution problems for a given DL L and MBA
semantics are closure of L under the semantics, i.e., whether
and how for every K and N in L, the corresponding M under
the semantics can be axiomatised in L, and approximation of
the semantics in L whenever L is not closed.

We study the closure and approximation problems for
DL-Lite—a tractable DL behind the QL profile of OWL 2—
under trust-sensitive MBAs for various models of trust.
Firstly, we show that DL-Lite is not closed under any
trust-sensitive semantics. It was known that DL-Lite is not
closed under many classical MBAs (Calvanese et al. 2010;
Kharlamov, Zheleznyakov, and Calvanese 2013; Qi et al.
2015) and our results in particular imply the non-closure of
DL-Lite under those classical MBAs for which this problem
remained open.

We next turn our attention to the approximation problem
for DL-Lite and an important practical setting of ABox evo-
lution where the TBox is static and only the ABox evolves.
A widely studied approach for this setting is sound approx-
imation, where M is approximated with a KB whose set
of models contains M. For classical MBAs De Giacomo et
al. (2009), Kharlamov, Zheleznyakov, and Calvanese (2013),
and Qi et al. (2015) proposed algorithms to compute maxi-
mal sound approximations for various semantics. Here we
propose the notion of s-approximation—a KB that may use
special predicates and constants—and show that in general it
improves sound approximations by better capturing M for
both classical and trust-sensitive MBAs. Moreover, we show
that s-approximations are also better in preserving Boolean
queries satisfied by M and we determine an important class
of such queries. Finally, we develop polynomial time al-
gorithms to compute maximal sound s-approximations for
several trust-sensitive and classical evolution semantics.

Preliminaries
Description Logics. We assume standard definitions of
first-order logic signature, sentences, interpretations, satisfi-
ability, and entailment. We further assume a fixed signature
with disjoint countable sets of unary and binary predicates
and constants, and that all interpretations are over this sig-
nature and the same countable domain Δ. Let PW (Possible
Worlds) denote the class of all such interpretations. Whenever
convenient we treat interpretations as sets of atoms.

In DLs (Baader et al. 2003), the doman of interest is mod-
elled by means of concepts, that are formulae with one free
variable, denoting sets of objects, roles, that are formulae
with two free variables, denoting binary relations between
objects, and constants, denoting objects. In order to support
such modelling, DLs provide a specialised variable-free syn-
tax and operators for constructing concepts and roles from
unary predicates (called atomic concepts) and binary predi-
cates (called atomic roles). A DL KB K = (T ,A) consists

of a TBox T that is a finite set of sentences (called TBox
assertions) over concepts and roles, and an ABox A that is a
finite set of sentences (called ABox or membership assertions)
of the form C(a) and R(a, b), where C is a concept, R is a
role and a, b are constants. A DL L is a recursive set of KBs
closed under renaming of constants and the subset relation.

All the logics of the DL-Lite family have the following
constructs for complex concepts and roles (Calvanese et al.
2007): (i) B ::= A | ∃R, (ii) C ::= B | ¬B, and (iii)
R ::= P | P−, where A and P are an atomic concept and
role, B and C are basic and general concepts, and R is a basic
role. A DL-Litecore TBox consists of concept inclusions as-
sertions B � C. DL-Lite extends DL-Litecore by allowing
in a TBox role inclusion assertions R1 � R2 and functional-
ity assertions (funct R) in a way that if R1 � R2 appears in
a TBox, then neither (functR2) nor (functR−2 ) appears in
the TBox.1 This syntactic restriction ensures the tractability
of the logic. ABoxes in DL-Litecore and DL-Lite consist of
membership assertions of the form C(a) and P (a, b).

The semantics for concepts and roles is defined in the
standard way under an assumption that aI = a for each
constant a. That is, AI ⊆ Δ, P I ⊆ Δ × Δ, (P−)I =
{(b, a) | (a, b) ∈ P I}, (¬B)I = Δ\BI , and (∃R)I = {a |
there exists b s.t (a, b) ∈ RI}. The semantics of assertions
is also defined in the standard way: I |= D1 � D2 if
DI1 ⊆ DI2 , I |= (funct R) if the relation RI is a function,
I |= C(a) if aI ∈ CI , and I |= P (a, b) if (aI , bI) ∈ P I .

For ξ a concept, role, (set of) assertions(s), or (set of)
interpretation(s), pred(ξ) denotes the set of atomic concepts
and roles in ξ. Mod(K) denotes the set of all interpretations
I that are models of K, i.e., I |= ϕ for each assertion ϕ in K.

Classical Model-Based Evolution. A classical evolution
setting consists of an old KB K and a new KB N . Under
classical MBAs, the evolution result is the subset of Mod(N )
that is minimally distant from Mod(K). We now formally
introduce classical MBAs (Calvanese et al. 2010).

Let I and J be interpretations. Recall that I � J denotes
the symmetric difference (I \ J ) ∪ (J \ I). A distance
function dist between I and J can be defined in one of
the following ways. Distances based on atoms are defined
as (i) a set I � J , denoted dista{}(I,J ), or (ii) a number
|I � J |, denoted dista#(I,J ). Distances based on predi-
cates are defined as (i) a set {α | α is a predicate and αI 	=
αJ }, denoted distp{}(I,J ), or (ii) a number |distp{}(I,J )|
denoted distp#(I,J ). Distances returned by distx{}, where
x ∈ {a, p} are sets and thus can be compared via set in-
clusion: distx{}(I1,J1) ≤ distx{}(I2,J2) if distx{}(I1,J1) ⊆
distx{}(I2,J2). Distances returned by distx# are natural num-
bers and thus can be compared numerically.2

Let S and S ′ be sets of interpretations and dist a distance
function. The subset mindist,S(S ′) of S ′ that consists of in-
terpretations minimally distant from S is defined as follows:

1In (Calvanese et al. 2010) this DL is referred to as DL-LiteFR.
2Note that for infinite distx{}(I,J ), we assume that: for any

I′ and J ′ if distx{}(I′,J ′) is (i) finite, then distx{}(I′,J ′) <
distx{}(I,J ), or (ii) infinite, then distx{}(I′,J ′) = distx{}(I,J ).
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{J ∈ S ′ | there is I ∈ S s.t. for each I ′ ∈ S, and
for each J ′ ∈ S ′ it holds dist(I ′,J ′) 	< dist(I,J )}.

We now define selectors that choose those interpretations
of S ′ that are minimally distant from S.
Definition 1. A selector, denoted S, is a function that maps
each pair (S,S ′) of sets of models into 2S

′
. We consider the

following selectors, where x ∈ {a, p}, and y ∈ {{}, #}:
• a global selector induced by distxy , denoted G

x
y , is defined

as mindistxy ,S(S ′);
• a local selector induced by distxy , denoted L

x
y , is defined

as ∪I∈Smindistxy ,{I}(S
′).

Finally, classical evolution semantics for K and N is de-
fined as S(Mod(K),Mod(N )). Note that, in terms of Kat-
suno and Mendelzon (1991), semantics based on local selec-
tors correspond to knowledge update, and semantics based
on global selectors correspond to knowledge revision.

Trust-Sensitive Model-Based Evolution

In this section we introduce four models of trust and define
how they can be incorporated in MBAs.

Models of Trust. Our models of trust reflect the assump-
tion that the knowledge provider has a restricted area of
expertise, and thus we do not trust facts that are outside this
area. In terms of interpretations this means that if two in-
terpretations disagree only on such facts, then the provider
cannot distinguish between them.
Definition 2. A model of trust is an equivalence relation ≡
on models. We consider four classes of models of trust:
• total trust, denoted TT, consists of one equivalence relation

≡TT defined as I1 ≡TT I2 iff I1 = I2;
• total distrust, denoted TD, consists of one equivalence rela-

tion ≡TD defined as I1 ≡TD I2 for each I1 and I2;
• assertion trust, denoted AT, consists of one equivalence

relation ≡Φ for each finite set of assertions Φ which is
defined as I1 ≡Φ I2 iff either I1 |= ϕ and I2 |= ϕ or
I1 	|= ϕ and I2 	|= ϕ for each ϕ ∈ Φ.

• predicate trust, denoted PT, consists of one equivalence
relation ≡P for each finite set of predicates P which is
defined as I1 ≡P I2 iff pI1 = pI2 for each p ∈ P .

Example 3. Consider a scenario about places where
famous researchers Einstein (Ein) and Mendeleev
(Men) live (livesIn). Consider the two following
models of trust: ≡Pex∈ PT and ≡Φex∈ AT, where
Φex = {livesIn(Ein, us), ∃livesIn(Men)} and
Pex = {livesIn}. In ≡Pex

we trust that the knowl-
edge provider is an expert in places of residence in general,
while in ≡Φex

we trust that they can tell whether or not
Einstein lives in the USA and Mendeleev lives somewhere.
Consider two interpretations I1

ex = {livesIn(Ein, us)}
and I2

ex = {livesIn(Ein, us), livesIn(Ein, ru)}. It is
easy to see that I1

ex 	≡Pex
I2
ex, while I1

ex ≡Φex
I2
ex.

We will use models of trust to relativise interpretations to
a given one using the following extender function.

Definition 4. An extender, denoted E, is a function that maps
each pair (≡, I) where ≡ is a model of trust and I is an
interpretation, into 2PW in the following way:

E(≡, I) = {J ∈ PW | J ≡ I}.
For a set of interpretations S, E(≡,S) =

⋃
I∈S E(≡, I).

Clearly, for each S it holds that S ⊆ E(≡,S), while
E(≡,S) ⊆ S does not hold in general.

Example 5. E(≡Pex
, I1

ex) and E(≡Φex
, I1

ex) are, resp.:

{I ∈ PW | {(Ein, us)} = livesInI} and
{I ∈ PW | I |= livesIn(Ein, us), and I �|= ∃livesIn(Men)}.

Trust-Sensitive Evolution Settings and Semantics. We
distinguish between KB and ABox evolution. In the former
case the whole KB changes, while in the latter case the TBox
is fixed and only the ABox evolves. The following definition
of evolution settings reflects this distinction.
Definition 6. Let L be a DL and C a class of models of trust.
• An (L, C)-setting E for KB evolution is a quadruple
(T ,A,N ,≡), where (T ,A) and N are satisfiable L-KBs
and ≡ is a model of trust in C.

• An (L, C)-setting E for ABox evolution is a quadruple
(T ,A,N ,≡), where N is an L-ABox, (T ,A) and (T ,N )
are satisfiable L-KBs, ≡ is a model of trust in C.
We will refer to E as just a C-setting (resp., setting) when

L is (resp., L and C are) clear or not important.
Example 7. Consider Eex = (Tex,Aex,Nex,≡Φex

), a
(DL-Lite, AT)-setting for ABox evolution, where the TBox is
Tex = ∅, ABox is Aex = {livesIn(Men, ru)}, and the new
ABox is Nex = {livesIn(Ein, us), livesIn(Men, us)}.

We are now ready to show how models of trust can pro-
vide an external mechanism to guide evolution semantics.
Intuitively, models of trust work like filters that are applied
to the (models of the) new knowledge N before performing
the evolution. Recall that the classical MBAs ‘pick’ inter-
pretations J from Mod(N ) that comes from the knowledge
provider. In our case, however, we know that the knowledge
provider cannot distinguish between any two ≡-equivalent
interpretations, i.e., any J ′ that is ≡-equivalent to J is as
‘good’ as J , and therefore, trust-sensitive evolution ‘picks’
interpretations from E(≡,Mod(N )) that extends Mod(N )
with all such J ′s. This approach corresponds to how Hunter
and Booth (2015) introduced trust in the evolution of propo-
sitional theories.
Definition 8. Let S be a selector. Then a trust-sensitive evo-
lution semantics semS maps each setting E = (T ,A,N ,≡)
to a set of interpretations S

(
Mod(T ,A),E(≡,M′)

)
, where

M′ is equal to Mod(N ) if E is for KB evolution and to
Mod(T ,N ) if E is for ABox evolution.
Example 9. Consider two sets of interpretations: Mex =
Mod(Tex,Aex), M′

ex = Mod(Tex,Nex). Then, the evo-
lution result semGa

{}
(Eex) = G

a
{}(Mex,E(≡Φex

,M′
ex)) is

equal to

{J ∈ PW | {livesIn(Ein, us), livesIn(Men, ru)} ⊆ J }.
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For classical MBAs the evolution result for Eex under Ga
{} is:

{J ∈ PW | {livesIn(Ein, us), livesIn(Men, ru),
livesIn(Men, us)} ⊆ J }.

In practice one would expect the result of evolution to
be a KB. Thus, a natural problem to study for MBAs is
how evolution results can be axiomatised. Observe that the
result of trust-sensitive evolution from Example 9 can be
axiomatised respectively as

(∅, {livesIn(Ein, us), livesIn(Men, ru)}),

while the evolution result from Example 9 under the classical
MBA G

a
{} can be axiomatised as

(∅, {livesIn(Ein, de), livesIn(Men, ru), livesIn(Men, us)}).

In the classical case, the resulting KB is the union of the old
Aex and the new knowledge Nex. In the trust-sensitive case,
the semantics rejects the new knowledge about Mendeleev
since there is no trust in the fact that he is a US born.

Closure of DL-Lite Under Evolution

We now turn our attention to DL-Lite and show that evolution
results in general cannot be axiomatised as DL-Lite KBs. We
start with a definition of the closure problem.

Definition 10. Let L be a DL, C a class of models of trust,
and sem a trust-sensitive evolution semantics. Then, L is
closed under sem for C if for every (L, C)-setting E there is
an L-KB K such that Mod(K) = sem(E).

Total Trust and Total Distrust. The main reason why we
introduce TT and TD is to verify on these extreme cases
whether trust-sensitive evolution semantics behave in an in-
tuitive way. In particular, we expect backward compatibility
of trust-sensitive MBAs with the classical ones, that is, semS
should coincide with the corresponding classical semantics
S in the case of TT. The following proposition confirms that
this is indeed the case.

Proposition 11. Let E=(T ,A,N ,≡TT) be a (L, TT)-setting
for some DL L. Then for any selector S, it holds that semS(E)
= S(Mod(T ,A),M′), where M′ is equal to Mod(N ) if E
is for KB and Mod(T ,N ) if E is for ABox evolution.

The proposition implies that all non-closure results for
DL-Lite under classical MBAs are inherited by trust-
sensitive MBAs for TT. In particular, it is known that for
ABox evolution DL-Lite is not closed under six out of eight
MBAs: Calvanese et al. (2010) showed the non-closure under
L
a
{} and L

a
#, Kharlamov, Zheleznyakov, and Calvanese (2013)

under Lp
{} and L

p

#, and finally Qi et al. (2015) under Ga
{} and

G
a
#. For KB evolution Calvanese et al. (2010) showed the

non-closure under all eight MBAs. Thus, the remaining open
problem for trust-sensitive MBAs for TT is the closure un-
der Gp

{} and G
p

# for ABox evolution. The following theorem
closes this gap.

Theorem 12. For ABox evolution, DL-Lite is not closed
under semS for TT, where S ∈ {Gp

{},G
p

#}.

Proof (Sketch).. Regarding G
p
{}, one can check that for the

TT-setting with A = {¬∃R−(a)}, N = {∃R−(a)}, and
T = {A � ∃R, ∃R � A}, the set of interpretations obtained
by evolution satisfies ∀x.R(x, a) → ∃y.(y 	= a ∧ R(x, y)).
One can show that this set is not axiomatisable in DL-Lite.
The non-closure for the case of Gp

# can be shown similarly.

In the case of TD, regardless of the DL L, selector S, and
(L, TD)-setting E = (T ,A,N ,≡TD), it is easy to see that
semS(E) = Mod(T ,A) for both KB and ABox evolution.
Thus, semS satisfies our intuition: it rejects the new informa-
tion N as it is distrusted.

Assertion and Predicate Trust. We denote with S the set
of all introduced semantics: S =

⋃
x,y,Z{semZx

y
}, where x ∈

{a, p}, y ∈ {{}, #}, and Z ∈ {L,G}.
Observe that for each (L, TT)-setting ETT=(T ,A,N ,≡TT)

one can construct an (L, PT)-setting EPT = (T ,A,N ,≡P),
where P = pred(T ∪A∪N ), such that for each sem ∈ S we
have sem(ETT) = sem(EPT). Therefore, all the non-closure
results for TT are inherited by PT.

Finally, we turn our attention to AT and show the non-
closure of DL-Lite under various trust-sensitive semantics.

Theorem 13. For AT it holds that:
• For KB evolution and each sem ∈ S, DL-Lite is not closed

under sem; this holds already in the case when the new
information consists of one TBox assertion.

• For ABox evolution and each sem ∈ S DL-Lite is not
closed under sem.

In order to prove these results one can show that for each
semantics sem considered in the theorem, there is a setting E ,
such that sem(E) is a set of models that satisfies a so-called
genuine disjunction. That is, sem(E) satisfies ϕ∨ψ, for some
ABox assertions ϕ and ψ, but does not satisfy either ϕ or
ψ. By Lemma 1 from (Calvanese et al. 2010) such a set of
interpretations is not axiomatisable in DL-Lite.

Approximation of Evolution in DL-Lite

Since DL-Lite is not closed under the trust-sensitive MBAs,
we turn our attention to approximation of evolution results. In
this section we focus on ABox evolution and thus all settings
are for ABox evolution.

A sound approximation of sem(E) is a KB K such that
sem(E) ⊆ Mod(K), and it is maximal if no other sound
approximation K′ exists s.t. Mod(K′) ⊂ Mod(K). Sound
approximation of evolution in the context of DLs has been
studied for classical MBAs by De Giacomo et al. (2009),
Kharlamov, Zheleznyakov, and Calvanese (2013), and Qi et
al. (2015). We extend the notion of sound approximation by
considering s-approximations which we introduce next. In
order to define them, we use the following notation. Let Σ be
a signature, then I|Σ is a sub-interpretation of I consisting
of all atoms of I whose predicates are in Σ, and for a set
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of models S, we define S|Σ as {I|Σ | I ∈ S}. Finally,
S ⊆Σ S ′, if S|Σ ⊆ S ′|Σ.

Definition 14. Let S be a set of interpretations, and K a
knowledge base. Then, K is a sound s-approximation of S
if S ⊆pred(S) Mod(K). Moreover, K is a maximal sound
s-approximation of S if no other sound s-approximation K′
of S exists such that Mod(K′) ⊂pred(S) Mod(K). Finally, K
is an s-axiomatisation of S if S = Mod(K)|pred(S).

Note that s-approximations coincide with sound approxi-
mations when pred(S) = pred(K).

Total Trust

In this section we will study semS evolution in case of TT
and S ∈ {Ga

{},G
a
#} and use the following notations: clT (A)

is the set of membership assertions ϕ s.t. A ∪ T |= ϕ and
cl(T ) is the set of TBox assertions ϕ s.t. T |= ϕ. It is
known (Calvanese et al. 2007) that in DL-Lite clT (A) and
cl(T ) are finite and can be computed in polynomial time.

Let E = (T ,A,N ,≡TT) be a TT-setting. Qi et al. (2015)
showed that the algorithm AtAlg, introduced by Kharlamov
and Zheleznyakov (2011), computes a maximal sound ap-
proximation K′ of S(Mod(T ,A),Mod(T ,N )), where S ∈
{Ga

{},G
a
#}. Given E , AtAlg returns an ABox N ∪A′, where

A′ is the maximal subset of clT (A) such that (T ,N ∪A′)
is satisfiable. By Proposition 11, K′ is also a maximal sound
approximation of semS(E). However, K′ is not necessarily
their maximal sound s-approximation, as illustrated next.

Example 15. Consider a TT-setting E2
ex = (T 2

ex,A2
ex,

N 2
ex,≡TT) over the signature Σex = {livesIn, place},

where T 2
ex = {∃livesIn− � place}, A2

ex =
{∃livesIn(Men)}, and N 2

ex = {¬∃livesIn(Men)}. The
maximal sound approximation obtained with AtAlg is
(T 2

ex,N 2
ex). However, any model J from Mod(T 2

ex,N 2
ex) with

placeJ = ∅ is not in M = semGa
{}
(E2

ex). We can rule out
such models by introducing a fresh role P that would ‘en-
force’ the existence of an element from Δ in the interpre-
tation of place. Indeed, consider a KB Ks = (T s,As),
where T s = T 2

ex ∪ {∃P− � place} and As = {∃P (a∗)}
with P and a∗ a fresh role and constant, respectively.
Note also that Ks is a sound s-approximation of M and
Mod(Ks) ⊂Σex

Mod(K) holds as no model J of Ks is such
that placeJ = ∅.

In contrast to AtAlg, for a given TT-setting E , Algorithm 1
(TT-SApprox) provides a maximal sound s-approximation
for semS(E), where S ∈ {Ga

{},G
a
#}. One can follow the steps

of the algorithm in Example 15. TT-SApprox first computes
the maximal sound approximation using AtAlg (Line 1).
Then, in the spirit of Example 15, the algorithm finds general
concepts C whose interpretations should not be empty in the
resulting set of models (Line 8) and ensures that this will not
happen via introducing new TBox and ABox assertions with
fresh roles and constants (Lines 6 and 9) as in the example.
Finally, if an interpretation of C should contain at least n
constants, then the algorithm ensures that by making disjoint
the non-empty ranges of the introduce properties that are
‘pointing’ to C (Lines 10-11).

Algorithm 1: TT-SApprox
INPUT : a (DL-Litecore , TT)-setting E = (T ,A,N ,≡TT)
OUTPUT: a DL-Litecore KB (T ′,A′)

1 set T ′ = T and A′ = AtAlg(E)
2 introduce a fresh constant a∗ not occurring in T , A, nor N
3 for each basic role R over pred(A, T ) do
4 introduce a fresh atomic role PR /∈ pred(E)
5 if ∃R(a) ∈ clT (A) for some a then
6 set A′ = A′ ∪ {∃PR(a

∗)}
7 for each ∃R− 	 C ∈ cl(T ) for some general concept C

do
8 if ∃R(a) ∈ clT (A) for some a and either

¬∃R(a) /∈ clT (N ) or there is no constant b s.t.
C(b) ∈ clT (A) and ¬C(b) ∈ clT (N ) then

9 set T ′ = T ′ ∪ {∃P−
R 	 C}

10 for each pair of introduced roles PR and PS do

11 if ∃R− 	 ¬∃S− is in cl(T ) then set

T ′ = T ′ ∪ {∃P−
R 	 ¬∃P−

S }
12 return (T ′,A′ ∪N )

The following theorem shows that TT-SApprox efficiently
computes maximal sound s-approximations.
Theorem 16. Let E = (T ,A,N ,≡TT) be a
(DL-Litecore , TT)-setting. Then, TT-SApprox(E) is a maxi-
mal sound s-approximation of semS, where S ∈ {Ga

{},G
a
#}.

Moreover, TT-SApprox runs in time polynomial in
|T ∪ A ∪N|.

A practical benefit of sound s-approximations is that they
preserve important queries that may be lost by sound approx-
imations. We will now introduce a class of such queries. An
example query from this class is:

Is it true that a university has at least five (distinct)
researchers r1, . . . , r5 such that r1, r2, r3 work on the
first project, r2, r3, r4 on the second one, and r1, r5 on
the third one?
Let Θ(x) be a formula recursively defined as follows:

Ψ(x) ::= A(x) | ∃x′R(x, x′) | ∃x′R(x′, x),

Θ(x) ::= Ψ(x) | ¬Ψ(x).

Then, Q is the class of queries of the following form:

∃x1, . . . , xn

(∧
i�=j

(xi 	= xj) ∧
m∧

k=1

∧
i∈Xk

Xk⊆{1,...,n}

(Θk(xi))
)
.

Theorem 17. Let q ∈ Q and sem = semGa
y

be an evolution
semantics, where y ∈ {{}, #}. Then, there exists a TT-setting
Eq such that sem(Eq) |= q and TT-SApprox(Eq) |= q, but
AtAlg(Eq) 	|= q.

Predicate Trust

Let (T ,A) be a DL-Lite KB and ≡P∈ PT for some
P . A natural approach to this case would be to capture
E(≡P ,Mod(T ,A)) with some theory, thus reducing the
problem to the TT case. On the first glance, it would be
sufficient just to remove assertions that are over the ‘wrong’
signature from clT (A). This, however, is not enough as
shown in the following example.
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Algorithm 2: PT-ExtendSAx

INPUT : a DL-Litecore KB (T ,A),
a finite set of predicates P

OUTPUT: a DL-Litecore KB (T ′,A′)

1 set T ′ = T and A′ = ∅
2 introduce a fresh constant a∗ not occurring in T nor A
3 for each α ∈ clT (A) do
4 if the predicate of α is in P then set A′ = A′ ∪ {α}
5 for each basic role R over pred(T ,A) do
6 introduce a fresh atomic role PR /∈ pred(T ,A)
7 if ∃R(a) ∈ clT (A) for some constant a then
8 set A′ = A′ ∪ {∃PR(a

∗)}
9 for each ∃R− 	 C in cl(T ) with C ∈ P do

10 set T ′ = T ′ ∪ {∃P−
R 	 C}

11 for each pair of fresh atomic roles PR and PS do

12 if ∃R− 	 ¬∃S− is in cl(T ) then set

T ′ = T ′ ∪ {∃P−
R 	 ¬∃P−

S }
13 return (T ′,A′)

Example 18. Consider ≡P3
ex
∈ PT, where P3

ex = {person}
and (T 3

ex,A3
ex), where T 3

ex = {∃livesIn− � ¬person},
A3

ex = {person(Men), ∃livesIn(Men)}. Consider also
A′ = {person(Men)}, a subset of clT (A3

ex) consisting of
all the membership assertions over P3

ex. One can see that
I = {person(x) | x ∈ Δ} is a model of (T 3

ex,A′), while
I /∈ E(≡P3

ex
,Mod(T 3

ex,A3
ex)). However, we can still cap-

ture E(≡P3
ex
,Mod(T 3

ex,A3
ex)) with (T s,As), where T s =

T 3
ex ∪ {∃P− � ¬person} and As = A′ ∪ {∃P (a∗)} for

a fresh role P and constant a∗. Indeed, one can check that
E(≡P3

ex
,Mod(T 3

ex,A3
ex)) = Mod(T s,As)|pred(T 3

ex,A3
ex)

.

E(≡P ,Mod(K)) can still be captured using s-
axiomatisation. Consider Algorithm 2 (PT-ExtendSAx)
that, for a given (T ,A) and P , returns a maximal sound
s-approximation of E(≡P ,Mod(T ,A)). One can follow
the steps of the algorithm in Example 18: it finds concepts
C whose interpretation should not be empty in each
I of E(≡P ,Mod(T ,A)) (Line 10) and ensures their
non-emptiness (Lines 8 and 9). Finally, as in Algorithm 1,
PT-ExtendSAx guarantees that the minimal number of
constants in C is as required (Lines 11-12).

Theorem 19. Let (T ,A) be a DL-Litecore KB and
let ≡P ∈ PT for some finite set of predicates P .
Then PT-ExtendSAx(T ,A,P) is an s-axiomatisation of
E(≡P ,Mod(T ,A)). Moreover, PT-ExtendSAx runs in time
polynomial in |T ∪ A ∪ P|.

Finally, we will show that PT-ExtendSAx can be used
to compute maximal sound s-approximations of semS for
S = L

a
{}, that corresponds to a widely accepted Winslett’s

evolution semantics (De Giacomo et al. 2006; Winslett 1990).

Theorem 20. Let P be a finite set of predicates and
EP = (T ,A,N ,≡P) a (DL-Litecore , PT)-setting. Let
also (T ′,N ′) = PT-ExtendSAx((T ,N ),P) and ETT =
(T ′,A,N ′,≡TT) be (DL-Litecore , TT)-setting. Then, if K is
a maximal sound s-approximation (resp., s-axiomatisation) of
semLa

{}
(ETT), then K is also a maximal sound s-approximation

(resp., s-axiomatisation) of semLa
{}
(EP).

Algorithm 3: AT-ExtendAx

INPUT : a DL-Lite KB K = (T ,A),
a finite set of membership assertions Φ

OUTPUT: a DL-Lite KB (T ,A′)

1 set A′ = ∅
2 for each α ∈ clT (A) do
3 if either α or ¬α is in Φ then set A′ = A′ ∪ {α}
4 return (T ,A′)

Assertion Trust

Let (T ,A) be a DL-Lite KB and ≡Φ∈ AT for some finite
set of membership assertions Φ. Firstly, observe that the set
of models E(≡Φ,Mod(T ,A)) can be axiomatised and Algo-
rithm 3 (AT-ExtendAx), where ¬α = ¬B(a) if α = B(a)
and ¬α = B(a) if α = ¬B(a) for some basic concept B,
provides this axiomatisation. The algorithm keeps assertions
of clT (A) such that they or their negations are in Φ. The
following theorem shows the correctness of AT-ExtendAx.
Theorem 21. Let (T ,A) be a DL-Lite KB and ≡Φ∈
AT for some finite set of membership assertions Φ. Then,
E(≡Φ,Mod(T ,A)) = Mod(AT-ExtendAx(T ,A,Φ)), and
AT-ExtendAx runs in time polynomial in |T ∪ A ∪ Φ|.

An immediate consequence of the theorem is that each
AT-setting E can be transformed into a TT setting ETT with
the same evolution result under semS with any selector S.
Corollary 22. Let S be a selector and Φ a finite set
of membership assertions. Let EΦ = (T ,A,N ,≡Φ)
and ETT = (T ,A,NTT,≡TT) be (DL-Lite, AT) and
(DL-Lite, TT)-settings, respectively, where (T ,NTT) =
AT-ExtendAx(T ,N ,Φ). Then, semS(EΦ) = semS(ETT).

Related Work and Discussions

Related Work. To the best of our knowledge, this is the
first work that combines trust and evolution in the context of
DLs. The closest research to ours is knowledge management
with preferences where either logical formulae or predicates
are ordered and thus less preferred elements can be seen
as less trusted. However, this rather corresponds to defining
levels of importance than trust. Bienvenu, Bourgaux, and
Goasdoué (2014) studied inconsistency-tolerant semantics
for querying inconsistent KBs. They rely on KB repairs
which are subsets of the ABox that are consistent with the
TBox, and use various models of preferences to determine
the most important repairs. Since they do not select repairs
that are of low importance, this can be seen as a trust-based
KB repairing. However, their approach is based on formulae
and thus closer to so-called formula-based evolution (Eiter
and Gottlob 1992) rather than to the model-based approach
that we study in this paper.

Qi and Du (2009) studied evolution under a modified ver-
sion of Gp

# selector that relies on predicate-based preferences
in selecting models of Mod(N ). The crucial difference be-
tween their and our work is that their evolution result M
is a subset of Mod(N ) that consists of the most important
models, while in our case we construct M by first extending
Mod(N ) according with the model of trust and then choosing
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minimally distant elements from this extended set regardless
their importance. Note that our approach can be combined
with the selector of (Qi and Du 2009), but this requires further
investigation.

Conclusion. We have formalised the notion of trust and
evolution semantics as operators E and S and have shown
how they can be composed to obtain trust-sensitive evolution
semantics. This approach can be generalised to any notions
of trust and evolution semantics that can be captured via oper-
ators. We have applied trust-sensitive MBAs to DL-Lite and
have shown that under all of them DL-Lite is not closed. On
the one hand, this is expected since DL-Lite has a limited
expressive power, and already in the case of classical MBAs
can return sets of models M whose axiomatisation requires
syntactic constructs beyond DL-Lite. On the other hand, this
is not selfevident since trust-sensitive MBAs in general return
sets of models that are very different from the ones of classi-
cal MBAs. Thus, for both classical and trust-sensitive MBAs
the main challenge is to find a ‘good’ notion of evolution ap-
proximation and to develop (efficient) algorithms to compute
‘optimal’ approximations. We have proposed a novel notion
of sound s-approximation that captures evolution results bet-
ter than sound approximations previously considered in the
evolution context (i.e., s-approximations always capture as
many and in some cases even more models, recall Example
15), and that preserve queries that may be lost by regular
approximations. We have provided polynomial-time algo-
rithms that compute maximal sound s-approximations for
classical and several trust-sensitive MBAs. Our algorithms
work either directly on trust-sensitive evolution settings or
they can be utilised as subroutines to reduce evolution from
trust-sensitive to classical settings. We see these algorithms
as a starting point for developing efficient procedures for au-
tomated knowledge update and revision. We also believe this
work is a timely contribution for the Semantic Web, where
applications may depend on third-party information that is
only partly trusted.

References

Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.; and Patel-
Schneider, P. F. 2003. The Description Logic Handbook: Theory,
Implementation, and Applications. DL Handbook.
Bienvenu, M.; Bourgaux, C.; and Goasdoué, F. 2014. Querying in-
consistent description logic knowledge bases under preferred repair
semantics. In AAAI, 996–1002.
Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; and Taylor, J. 2008.
Freebase: A Collaboratively Created Graph Database for Structuring
Human Knowledge. In SIGMOD, 1247–1250.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.; and
Rosati, R. 2007. Tractable Reasoning and Efficient Query Answer-
ing in Description Logics: The DL-Lite Family. J. Autom. Reasoning
39(3):385–429.
Calvanese, D.; Kharlamov, E.; Nutt, W.; and Zheleznyakov, D. 2010.
Evolution of DL-Lite Knowledge Bases. In ISWC.
Cuenca Grau, B.; Jiménez-Ruiz, E.; Kharlamov, E.; and
Zheleznyakov, D. 2012. Ontology Evolution Under Semantic
Constraints. In KR.

De Giacomo, G.; Lenzerini, M.; Poggi, A.; and Rosati, R. 2006. On
the Update of Description Logic Ontologies at the Instance Level.
In AAAI, 1271–1276.
De Giacomo, G.; Lenzerini, M.; Poggi, A.; and Rosati, R. 2009. On
Instance-level Update and Erasure in Description Logic Ontologies.
JLC 19(5):745–770.
Eiter, T., and Gottlob, G. 1992. On the Complexity of Propositional
Knowledge Base Revision, Updates, and Counterfactuals. In PODS,
261–273.
Flouris, G.; Manakanatas, D.; Kondylakis, H.; Plexousakis, D.; and
Antoniou, G. 2008. Ontology Change: Classification and Survey.
Knowledge Eng. Review 23(2):117–152.
Fridman Noy, N.; Kunnatur, S.; Klein, M.; and Musen, M. 2004.
Tracking Changes During Ontology Evolution. In ISWC, 259–273.
Furche, T.; Gottlob, G.; Grasso, G.; Gunes, O.; Guo, X.; Kravchenko,
A.; Orsi, G.; Schallhart, C.; Sellers, A.; and Wang, C. 2012. DI-
ADEM: Domain-Centric, Intelligent, Automated Data Extraction
Methodology. In WWW Demo, 267–270.
Haase, P., and Stojanovic, L. 2005. Consistent Evolution of OWL
Ontologies. In ESWC, 182–197.
Hunter, A., and Booth, R. 2015. Trust-Sensitive Belief Revision. In
IJCAI, 3062–3068.
Katsuno, H., and Mendelzon, A. 1991. On the Difference between
Updating a Knowledge Base and Revising It. In KR, 387–394.
Kharlamov, E., and Zheleznyakov, D. 2011. Capturing Instance
Level Ontology Evolution for DL-lite. In ISWC, 321–337.
Kharlamov, E.; Zheleznyakov, D.; and Calvanese, D. 2013. Cap-
turing Model-Based Ontology Evolution at the Instance Level: The
Case of DL-Lite. J. Comput. Syst. Sci. 79(6):835–872.
Konev, B.; Walther, D.; and Wolter, F. 2008. The Logical Difference
Problem for Description Logic Terminologies. In IJCAR, 259–274.
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