
Non-Parametric Estimation of Multiple Embeddings
for Link Prediction on Dynamic Knowledge Graphs

Yi Tay,1 Luu Anh Tuan,2 Siu Cheung Hui3
1, 3 Nanyang Technological University

School of Computer Science and Engineering, Singapore
2 Institute for Infocomm Research, Singapore

Abstract

Knowledge graphs play a significant role in many intelligent
systems such as semantic search and recommendation sys-
tems. Recent works in this area of knowledge graph embed-
dings such as TransE, TransH and TransR have shown ex-
tremely competitive and promising results in relational learn-
ing. In this paper, we propose a novel extension of the transla-
tional embedding model to solve three main problems of the
current models. Firstly, translational models are highly sensi-
tive to hyperparameters such as margin and learning rate. Sec-
ondly, the translation principle only allows one spot in vec-
tor space for each golden triplet. Thus, congestion of entities
and relations in vector space may reduce precision. Lastly, the
current models are not able to handle dynamic data especially
the introduction of new unseen entities/relations or removal
of triplets. In this paper, we propose Parallel Universe TransE
(puTransE), an adaptable and robust adaptation of the transla-
tional model. Our approach non-parametrically estimates the
energy score of a triplet from multiple embedding spaces of
structurally and semantically aware triplet selection. Our pro-
posed approach is simple, robust and parallelizable. Our ex-
perimental results show that our proposed approach outper-
forms TransE and many other embedding methods for link
prediction on knowledge graphs on both public benchmark
dataset and a real world dynamic dataset.

Introduction

Knowledge Graphs (KG) are represented in the form
(head,relation,tail). Recently, representational learning on
KGs which involves learning vector representations of en-
tities (head or tail) and relations in a knowledge graph has
become extremely popular. A simple and effective model in
this line of work is the translational model in which each tail
entity vector (denoted as t) is represented as a translation re-
lation vector (denoted as r) from its head entity vector (de-
noted as h) for each golden triplet. Popular embedding mod-
els based on the translation principle include TransE (Bordes
et al. 2013), TransH (Wang et al. 2014) and TransR (Lin et
al. 2015) which learn embeddings using a margin-based ob-
jective function. Given the learned vector representations of
entities and relations, one can compute the probability of all
triplet permutations existing in the KG. This is also known
as the classic knowledge base completion task where we

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

augment existing facts with new ones generated by link pre-
diction. In addition, link prediction is also useful in search,
recommendation and other IR tasks.

Despite promising results, translational embedding meth-
ods suffer from several major weaknesses. Firstly, embed-
ding methods are known to suffer from sensitivity to hy-
perparameters. For example, the learning rate and margin
can critically impact performance. The difficulty in parame-
ter tuning can inevitably lead to sub-optimal solutions. With
only one embedding space, there can be only one global con-
figuration of hyperparameters. Secondly, by the translation
principle, the objective of ‖h+ r − t‖ = 0 may be too geo-
metrically restrictive since the golden spot is only one point
in vector space. TransH and TransR have proposed relation-
specific vector/matrix projections to alleviate this problem
but come with an extra computational cost and complex-
ity. Empirically, we also found that the performance in these
extension models are often poor unless they are initialized
with pre-trained TransE embeddings. In addition, the cur-
rent methods lack adaptability to dynamic data. There is no
way to incrementally update the existing models especially
for triplet deletion and inclusion of new entities since they
require a fixed index during training. Thus, all other mod-
els have to be retrained. In conjunction with the problem of
hyperparameter sensitivity, the optimal hyperparameters are
likely to change given a sizable update which requires re-
tuning again after each update. This is costly and impractical
for applications in dynamic domains.

In this paper, we propose puTransE (Parallel Universe
TransE), an online and robust adaptation of TransE to solve
the above mentioned problems. Our proposed approach ex-
plicitly generates multiple embedding spaces via semanti-
cally and structurally aware triplet selection scheme and
non-parametrically estimates the energy score of a triplet.
The intuition for our approach is that, in every parallel uni-
verse embedding space, we impose a constraint on triplets
in terms of count and diversity such that each embedding
space observes the original knowledge graph from a differ-
ent view. We outline the key advantages of our approach as
follows:

• Our approach eliminates the need for hyperparameter tun-
ing of TransE. This is because we no longer depend on
one global configuration. We show that our approach is
more robust in general and across dynamic updates.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1243

• By implementing a constrained triplet selection scheme
in each embedding space, we are also able to alleviate the
congestion problem.

• puTransE is easy to train, parallelize and orchestrate over
multiple machines. Our approach is also simple and ro-
bust.

• puTransE is able to cope with dynamic knowledge graphs.
Since we create new embedding spaces once new data ar-
rives, we are able to adapt to new data. puTransE also
allows new entities and relations to be added on the fly.

• Our approach is able to perform fast learning on large
web-scale knowledge graphs. We will show that we are
able to extract meaningful predictions in less than a
minute.

Finally, we evaluate the performance of our approach for
incremental learning on knowledge graphs by experiment-
ing on a time-aware multi-relational dataset based on real
world social networks. We show that puTransE outperforms
TransE and many other embedding models on the task of
link prediction.

Related Work

Link Prediction on knowledge graphs have attracted intense
research focus in recent years. Embedding methods that
learn latent features are generally considered to be the state-
of-the-art. There are a myriad of models for doing so. For
the sake of simplicity, we simply classify them under Trans-
lational Models and Others (Non-Translational Models).

Translational-based Models

In this section, we introduce TransE, TransH and TransR.
Before we proceed, we formally introduce the notations used
in this paper. We denote a triplet as (h, r, t) and likewise
their vectors as h, r and t respectively. The scoring energy
function is represented by Er(h, t) and the training objective
is that ‖h+ r − t‖ = 0 for each golden triplet.

TransE In TransE (Bordes et al. 2013), a relation r is rep-
resented in vector space as a translation from h and t. In
other words, the vector (h+r) is close to t if a triplet (h, r, t)
exists in the knowledge graph. Therefore, the energy score
function of TransE is as follows:

Er(h, t) = −‖h+ r − t‖L1/L2 (1)

TransE is simple and efficient and has performed extremely
well given its simplicity. However, its training objective is
geometrically restrictive. We refer to this phenomena as
over-congestion in vector space. This is because for each
pair (h+r) or (r− t), only one entity can be accommodated
in the golden spot of ‖h+ r − t‖ = 0. Without a doubt, this
flaw will cause problems especially in obtaining strictly ac-
curate prediction results. Furthermore, TransE cannot handle
complex relation types such as 1− to−N , N − to− 1 and
N − to−N .

TransH and TransR In attempts to fix the flaws of
TransE, TransH (Wang et al. 2014) was proposed. In
TransH, the vector representation of each entity is depen-
dent on the relation-specific hyperplane. The energy score
function of TransH is defined as:

Er(h, t) = −‖h⊥ + r − t⊥‖L1/L2 (2)

where h⊥ = w�
r hwr and t⊥ = w�

r twr. Naturally, constraints
such as ‖wr‖ = 1 and

∥∥w�
r dr

∥∥ / ‖d+ r‖2 ≤ ε are enforced
to ensure that dr (the translation vector), h⊥ and t⊥ are on
the hyperplane.

TransE and TransH both proposed embedding entities and
relations in the same vector space. However, TransR (Lin et
al. 2015) proposed that entities and relations should exist
in different vector spaces. TransR utilizes a relation-specific
projection matrix Mr to project entities into a relation spe-
cific subspace. The energy scoring function of TransR is de-
fined as:

Er(h, t) = −‖Mrh+ r −Mrt‖L1/L2 (3)

where Mr is a relation-specific matrix projection. TransR
has shown better performance as compared to TransE and
TransH. However, TransR does not scale well due to its ex-
pensive matrix-vector operations. Furthermore, there is extra
memory cost in storing M matrices if |r| is large.

Generally, the current Translational Models lack scala-
bility and adaptability. Even in TransE which has the low-
est computational costs, larger scale KGs involving more
triplets will simply cause the congestion problem to worsen.
Therefore, TransE is intrinsically not scalable despite its ef-
ficiency. Furthermore, there is no present way to adapt to dy-
namic data. KGs may change over time due to learning new
facts, combining with other KGs from related domains or
simply change naturally in a volatile domain. Finally, these
models often require extensive hyperparameter tuning. This
makes adapting to dynamic KGs a harder problem, i.e., be-
sides retraining the model, an extensive parameter tuning
process has to be undertaken once there is substantial up-
date to the knowledge graph.

Other Models

Besides Translational Models, there are many other meth-
ods that can be used in similar applications. However, ear-
lier embedding methods like Unstructured (Bordes et al.
2013), Structured Embeddings (Bordes et al. 2011), Se-
mantic Matching Energy (Glorot et al. 2013), Latent Fac-
tor Model (Jenatton et al. 2012) have all been surpassed
by Translational Models in recent years. The most complex
and expressive models include RESCAL (Nickel, Tresp, and
Kriegel 2011), a collective Matrix Factorization approach
that represents KGs as multi-dimensional arrays (tensors)
and the Neural Tensor Network (Socher et al. 2013) which
models the second-order correlations using a non-linear neu-
ral network. However, these complex models take a long
time to train. Thus, it is difficult to adopt them in dynamic
domains despite good performance. Due to the lack of space,
we refer interested readers to their respective papers.

1244

Parallel Universe TransE

In this section, we introduce puTransE, a novel online and
robust embedding approach for link prediction on knowl-
edge graphs. Algorithm 1 and Figure 1 outline the procedure
for learning puTransE.

Figure 1: Proposed Approach puTransE

Triplet Selection Scheme

The crux of puTransE is to learn multiple embedding spaces
where each embedding space implements a triplet constraint
both in count and diversity. For each embedding space Δi ∈
Δ, we denote χi as the set of observed triplets for embed-
ding space Δi. Let βi be the triplet constraint in embedding
space Δi. Note that βi is often much smaller than nt, the
total number of triplets. Let Ei and Ri be the set of entities
and relations in Δi.

Semantically-Aware Triplet Selection In order to enable
effective relational learning despite the constraints on triplet
count, the selected triplets (and entities that form them)
should be semantically relevant to each other. To do so, we
sample a relation r from R and generate a set Ef

r of all en-
tities containing r as either an outgoing or incoming edge.
(lines 3-4) r is regarded as the semantic focus of Δi.

Structurally-Aware Triplet Selection Next, we adopt the
bidirectional Random Walk (RW) Model using the entities
selected as starting nodes. (Lines 7-13) The use of RW is
analogous to events unfolding in the canonical interpreta-
tion of the parallel universe theory. In puTransE, each par-
allel embedding space contains a slightly different event se-
quence and thus, observes the knowledge graph from a dif-
ferent view. This is exactly why we name our model Parallel
Universe TransE, taking inspiration from the canonical in-
terpretation of Parallel Universe. Alternatively, this can also
be seen as diversifying features which is prevalent in ensem-
ble methods such as Random Forests (Breiman 2001). There
are several advantages to adopting RW. First, in each embed-
ding space, entities and relations are structurally relevant to
each other as they are connected by the walk. Second, RW
is simple, efficient and easily parallelizable.

Balance between Semantics and Structure Naturally,
Ef

r > βi may occur. Therefore, we have to strike a balance
between semantics and structure. Here we set a hyperparam-
eter θ ∈ [0, 1] to control the balance between semantics and
structure. In short, θ × βi is allocated to semantics. In prac-
tice, we found that a value between 0.25 and 0.5 works well
and does not critically affect performance.

Generating Random Configuration Instead of relying
on one global configuration, we can simply assign a differ-
ent hyperparameter configuration to each embedding space.
For each Δi, we randomly generate values for not only the

original hyperparameters of TransE (margin μ and learning
rate) but also for θ, βi and number of training epochs.

Learning puTransE

The training process of puTransE minimizes the following
margin based loss function:

L =
∑

Δi∈Δ

∑

ξ∈Δi

∑

ξ′ �∈Δi

max(0, El(ξ) + γ − El(ξ
′)) (4)

where ξ is a triplet that exists in parallel embedding space Δi

and ξ′ is a triplet that does not exist within Δi. The training
of embeddings within each embedding space is the same as
TransE albeit restricted to the set of triplets χi ∈ Δi, and the
set of entities and relations Ei and Ri respectively. El(ξ) is
the local energy score of the triplet in its embedding space.

Algorithm 1 Learning Parallel Universe TransE (puTransE)
Input: Training Tuples T = {(h, r, t)}, sets E and R, embeddings dimension k,

number of embeddings num
Output: Set of Generated Embedding Spaces φ

1: φ ← Initialize Empty Set for Embedding Spaces
2: while num > 0 do

3: Sr ← sample relation from R

4: Vr ← select semantically relevant entities
5: μ, lr, β, θ, itr ← generate random hyperparameters
6: χ ← ∅ // Initialize empty set for selected triplets
7: while |χ| ≤ β do

8: for v ∈ Vr do

9: t ← form triplet with randomly selected neighbor η(v)
10: χ ← χ ∪ t // add selected triplet
11: end for

12: Vr ← all entities collected in the last iteration
13: end while

14: Ei, Ri ← all entities and relations in χ respectively
15: e, r ← Initialize uniform (− 6√

k
, 6√

k
) for e ∈ Ei, r ∈ Ri

16: while itr > 0 do

17: for (h, r, t) ∈ χ do

18: (h′, r,′ t′) ← S(h,r,t) // Sample corrupted triplet
19: end for

20: update params w.r.t
∑

ξ∈χi

∑
ξ′∈χi

max(0, El(ξ)+γ−El(ξ
′))

21: itr ← itr − 1

22: end while

23: Δ ← (Ei, Ri) // Trained Parameters are saved as one embedding space
24: φ ← φ ∪ Δ // Add Embedding Space to Set
25: num ← num − 1

26: end while

Non-Parametric Energy Estimation

In this section, we introduce the combination scheme
for performing link prediction across parallel embedding
spaces.

Non-Parametrically Estimated Global Energy For pu-
TransE, we define the final global energy score (across all
embedding spaces) of a triplet as:

Gr(h, t) = max
(h,r,t)∈Φ

−‖h+ r − t‖ (5)

where Φ is the set of all embedding spaces that contain h, r, t
and ‖.‖ is either the l1 or l2 norm. Algorithm 2 outlines the
procedure for combining energy scores during test time.

1245

Algorithm 2 Non-Parametric Energy Estimation
Input: Δ set of embedding spaces from trained puTransE, test tuples T = (ei, ri)

Output: Global Predictions G
1: G ← {} // Initialize empty Dict of global energy scores
2: for (eti, r

t
i) ∈ T do

3: for Δi ∈ Δ do

4: Ei, Ri ← get embeddings from Δi

5: if eti ∈ Ei and rti ∈ Ri then

6: for ei ∈ Ei do

7: El(e
t
i, r

t
i , ei) ← ∥

∥eti + rti − ei
∥
∥
L1/L2

//Local Score

8: G[eti, r
t
i , ei] ← max(G[eti, r

t
i , ei], El(e

t
i, r

t
i , ei))

9: end for

10: end if

11: end for

12: end for

In short, for each given test tuple, we loop through all Δi ∈
Δ. Whenever the entities/relations from the test tuple exists
in the index of Δi, we calculate all scores within Δi that
are relevant to the testing pair and add them to the global
score. Lastly, we introduce how puTransE is able to handle
dynamic knowledge graphs.

Proposed Architecture for Online Link Prediction Fig-
ure 2 shows the proposed architecture for Online Link Pre-
diction. As in Figure 2, embedding spaces are created from
left to right. The blue spaces denote the initial embedding
spaces at a particular time step and the green spaces are gen-
erated after a KG update and likewise the red for update 2.
Note that we are able to use a randomized configuration for
each embedding space. Finally, on-demand, predictions are
non-parametrically1 estimated from embedding spaces.

Figure 2: Proposed Architecture for Online Link Prediction

Handling Deletion of Triplets In practice, triplets can be
either inserted or deleted during an online update of the KG.
Deletion of triplets is one of the main reasons why current
margin based embedding methods are fundamentally unable
to handle online updates. Since deleted triplets were once
facts in the KG and have been reinforced countless times as

1The term non-parametric is only used loosely. puTransE, as a whole, is non-
parametric in the sense where there are no fixed parameters.

a positive example, it would be difficult for models to un-
learn this information. puTransE handles this effectively be-
cause it has decoupled parallel embedding spaces. There are
two ways to handle this in our approach. For domains with
highly dynamic data, we simply maintain a constant flow
of embedding spaces. Alternatively, we can simply choose
to selectively negate the embedding spaces containing the
deleted triplet at prediction time. However, this is an appli-
cation dependent decision and is out of scope for this paper.

Experiments
We evaluate our proposed puTransE on several experiments.
We first evaluate our model on standard Link Prediction with
benchmark static datasets. Second, we design a second ex-
periment using a dynamic dataset which is constructed from
real world data to test our approach’s ability to handle incre-
mental updates. Finally, using a web-scale knowledge graph,
we show that our approach is able to extract meaningful
predictions within a short period of time. All experiments
were conducted on an Quad-core i7-6700 CPU@3.40GHz
machine running Linux with 64GB of RAM.

Datasets

We introduce the datasets used in our experiments. Each
dataset is aimed to test a certain quality of our approach.
• WN18 is a commonly used benchmark dataset con-

structed from WordNet (Miller 1995). WordNet is a large
lexical knowledge graph where Entities in WordNet are
synonyms which express distinct concepts and Relations
in WordNet are conceptual-semantic and lexical relations.

• GS26k is a time-aware dataset constructed from real
world social network data (Twitter, Foursquare, Insta-
gram). We name our dataset GeoSocial (GS26K) since
our dataset focuses on real time check-in data of users
albeit in knowledge graph form. We use GS26k test the
ability of puTransE to handle dynamic changes in the
dataset. Therefore, GS26k comprises an initial set and
three different snapshots denoted as Snapshot {1, 2, 3}. In
GS26, entities are users, places, tweets, check-ins, posts
and hash-tags. Examples of relations include (hasVisited-
Location), (lastVisitedPlace), (currentlyVisitedMost) and
(hasHashTag). We construct our train/test split in a time-
aware manner according to month.

• YAGO (Hoffart et al. 2013) is a web-scale semantic KG
that extracts data from a huge variety of sources. We use
YAGO to test our approach’s ability to generate predic-
tions quickly on large KGs. Since we perform qualitative
analysis on YAGO, we do not have test and validation
sets.

Dataset #Triplets #Entities #Relations #Test #Validation

WN18 112,581 40,943 18 5000 5000
GS26K 101,188 57023 9 1000 1000

Snapshot 1 165,487 26,000 10 1000 1000
Snapshot 2 319,638 60,640 10 1000 1000
Snapshot 3 787,034 83,559 10 1000 1000

YAGO 5,628,166 2,635,315 37 - -

Table 1: Dataset Characteristics

1246

Experiment 1 - Link Prediction

In this section, we briefly describe our experimental proto-
col, setup, datasets used as well as baselines for comparison.

Experimental Setup We compare puTransE with many
state-of-the-art methods in the task of link prediction on
WN18. We compare with Unstructured, RESCAL, Struc-
tured Embeddings (SE), Semantic Matching Energy (SME),
Latent Factor Model (LFM), TransE, TransH and TransR.
We use the results reported in (Lin et al. 2015) directly since
the dataset is the same. For puTransE, we define a reasonable
range for each hyperparameter. We use a randomized mar-
gin of γ ∈ [1, 4] and the initial learning rate in the ranges of
lr ∈ [0.01, 0.1]. We set β ∈ [500, 2000]. Each embedding
space is trained with AdaGrad (Duchi, Hazan, and Singer
2011) for a fixed number of iterations whereby the number
of epoch for each embedding space is also set to a random-
ized range of [50, 200]. For puTransE, we stop generating
embedding spaces once we have converged on the valida-
tion set (filtered hits@10).

Evaluation Metrics We follow the evaluation protocol of
(Bordes et al. 2013) and report on two evaluation metrics.

• Mean Rank is the average position of all testing triplets.
• HITS@N is the number of testing triplets that appear

within the top N ranks.

For both metrics, we take two settings, raw and filter. For the
filter setting, we simply remove all triplets from the ranking
that exist in the training set.

Experimental Results

Table 2 shows the results of our link prediction experiments.

Dataset WN18

Method Mean Rank Hits@10
Raw Filter Raw Filter

Unstructured 315 304 35.3 38.2
RESCAL 1180 1163 37.2 52.8

SE 1011 985 68.5 80.5
SME (Linear) 545 533 65.1 74.1

SME (Bilinear) 526 509 54.7 61.3
LFM 469 456 71.4 81.6

TransE 263 251 75.4 89.2
TransH 318 303 75.4 86.7
TransR 232 219 78.3 91.7

puTransE 39 29 88.1 94.9

Table 2: Experimental Results for Link Prediction on WN18

On WN18, we see that puTransE2 achieves state-of-the-art
performance. In terms of precision, it has surpassed more
complex models such as TransH and TransR. It is good to
note that the precision of puTransE is much higher than that
of TransE alone. The most notable increase in performance
is in the metric of Mean Rank (Filter and Raw) where we
reduce it to a mere 29. This is because our random walk

2Empirically, we also found that semantic and structural selection of triplets is
mandatory. Random bagging of triplets that are irrelevant to each other does not learn
anything useful, i.e, mean rank ≫ 5k.

model prunes the search space. We obtain the above results
of our model with ≈ 5000 embedding spaces and noticed a
direct correlation between number of embedding spaces and
precision. This proves that our divide-and-conquer approach
works, i.e., learning from local regions in knowledge graphs
and then combining them is an effective method of relational
learning. Note that the time taken (on our machine) to en-
tirely train a single embedding space is ≈ 2− 3s on WN18
which is comparable/faster than a single epoch of TransE
and TransR.

Evaluation on Absolute Precision and Robustness The
robustness of an embedding method is critical especially in
dynamic domains since parameter tuning is a cost incurred
that should be factored in practical applications. To observe
the sensitivity of methods like TransE and TransR to hy-
perparameters, we conduct further experiments. Using the
source code3 of (Lin et al. 2015), we trained several models
TransE and TransR of varying margin γ amongst {1, 2, 4},
learning rate amongst {0.1, 0.01, 0.001} using a dimension
of 50. Table 3 shows the best, average and worst result from
each method on WN18. Generally, we found a huge dras-
tic gap in performance in TransE/TransR if the hyperpa-
rameters are not tuned properly. This brings further merit
to our model since our model provides a performance guar-
antee without requiring hyperparameter tuning. Hence, our
model is more robust. Finally, we observe that our model
increases the HITS@1 rate by almost 6 times as compared
to TransE/TransR with optimal hyperparameters. This is due
to a de-congesting effect since we have lesser triplets in each
embedding space. We also note that our model produces
an unnaturally high raw HITS@1 result. This is interest-
ing because testing samples are being retrieved at higher
priority over training samples/ground truths. This can be
attributed by how we split the KG into smaller local sub-
graphs whereby there are less truths/triplets in each embed-
ding space. This allows a higher chance for testing samples
to be chosen over ground truths.

Method
Mean Rank Hits@10 Hits@1
Raw Filt Raw Filt Raw Filt

TransE (Worst) 982 967 32.5 34.6 1.3 1.6
TransE (Avg) 788 698 40.5 84.2 3.1 6.2
TransE (Best) 471 404 79.2 94.1 5.3 10.2

TransR (Worst) 20211 20203 0.02 0.02 0.0 0.0
TransR (Avg) 912 850 71.2 89.5 1.2 3.1
TransR (Best) 343 341 80.9 94.1 6.9 7.8

puTransE 39 29 88.1 94.9 39.8 60.0

Table 3: HITS@1 and Robustness on WN18

Experiment 2 - Evaluation on Real World Dynamic
Dataset

In this section, we show the effectiveness of online learning
of puTransE with an experiment that models a real world ap-
plication of Place Recommendation using GS26K. Table 5

3Unfortunately, we were not able to reproduce the optimal results for TransR from
(Lin et al. 2015) even with their code. We obtained a better HITS@10 result at the
expense of Mean Rank. Meanwhile, The worst performance of TransR was produced
with γ = 4, lr = 0.1 and 1440 mini-batches and trained with the best TransE model.

1247

Time Step Method FMR F-Hits@10 F-Hits@1 Training Time

GS26k (Base)

TransE 83 46.9 20.4 ≈ 20 mins +2 hrs
TransR 223 49.3 18.2 ≈ 5 hrs + 40 hrs

puTransE 27 43.5 10.2 ≈ 30 mins +0 hrs

Snapshot 1

TransE 3867 15.3 4.6 ≈ 20 mins
TransR 12884 23.6 3.7 ≈ 5.5 hrs

puTransE 61 27.5 5.5 ≈ 10 mins

Snapshot 2

TransE 9913 15.4 4.6 ≈ 35 mins
TransR 14485 17.8 5.4 ≈ 7 hrs

puTransE 81 23.7 17.6 ≈ 10 mins

Snapshot 3

TransE 21 58.3 19.4 ≈ 1 hr
TransR 90 60.6 23.5 ≈ 8 hrs

puTransE 19 67.0 56.7 ≈ 15 mins

Total

TransE 3233 35.3 12.0 ≈ 2 hrs + 2 hrs
TransR 6921 37.8 12.7 ≈ 25 hrs + 40 hrs

puTransE 43 40.1 20.8 ≈ 1hr

Table 4: Performance Results for Dynamic Link Prediction on GS26K

shows the details on the incremental update of each snapshot
in GS26k.

Date #triplets #Updates #Add #Del Predict

Base Jan-Feb 101,188 - - - Mar-15
S1 Mar 165,487 64,299 64,299 0 Apr-15
S2 Apr 319,638 158,087 155,987 2100 May-15
S3 May-Jul 787,034 473,432 469,496 3936 Aug-Oct

Table 5: Characteristics of GS26K and Online Updates

Experimental Setup We evaluate our model on the task
of predicting check-in of users in social media. The testing
set comprises of triplets of relation (hasVisitedLocation) and
aims to predict the check-ins of a user for the subsequent
month. For this experiment, we only consider the filtered
hits as it can be interpreted as new place recommendation
problem. We compare our approach with TransE and TransR
in terms of precision and runtime using the same metrics as
Experiment 1. Since all the other models cannot handle in-
cremental updates, we are only able to compare if we retrain
each model at each update of the dataset. We tune the hyper-
parameters of TransE and TransR using grid search where
we set the learning rate amongst {0.1, 0.01, 0.001}, and
margin γ amongst {1, 2, 4}. For both TransE and TransR,
we use a dimensionality of 50 and set the max epoch to 500.
TransR is initialized with the embeddings from TransE. We
tune the hyperparameters at the Base Set and use the same
hyperparameters for training the subsequent snapshots. For
puTransE, we use the same setting as in Experiment 1. We
allow our model to learn 500 embedding spaces for each
month to model a real world application. We report the Fil-
tered Mean Rank, HITS@10, HITS@1 and time taken for
each update step of GS26K.

Experimental Results Table 4 shows the results of our
dynamic link prediction experiments. The last column in Ta-
ble 4 shows the time taken to train the model and +n refers
to the time taken to tune the hyperparameters. First, we see

that TransE and TransR are unstable, i.e., we see that the
Mean Rank results for TransE and TransR fluctuate drasti-
cally over the different snapshots of the dataset. This shows
that we are not able to simply assume the same optimal hy-
perparameters apply given an update to the KG. On the other
hand, our approach maintains the same consistency through-
out snapshot updates and is therefore more robust. Next, we
consider the size of each KG. TransE and TransR outper-
forms puTransE on smaller datasets (base set) but performs
worst in comparison as the size of the dataset increases. This
shows that TransE is intrinsically not scalable due to the
congestion problem. On the other hand, our approach per-
forms consistently well across all incremental updates espe-
cially in the metric of mean rank. Finally, note that the time
taken to incrementally train puTransE is often very small
(≈ 10 − 20 mins) and the time to entirely train an embed-
ding space is about 2− 5s.

(a) On GS26k (b) On WN18

Figure 3: Effect of Embedding Spaces on Performance

Effect of Embedding Spaces Figure 3 shows the influ-
ence of creating new embedding spaces on WN18 and
GS26K. We see that increasing the number of embedding
spaces increases the precision. We show that we are able
to collectively combine energy scores across embedding

1248

spaces. This opens up possibilities even for aggregating en-
ergy scores across a variety of knowledge graphs.

Experiment 3 - Fast Learning on Web-Scale
Knowledge Graphs (Qualitative Analysis)

In the last experiment, we evaluate puTransE qualitatively
on its ability to perform fast learning on large knowledge
graphs (YAGO). At 30s, we sample 10000 triples and take
the top 10 best global scores. Table 6 shows the results of
our example predictions. Note that these are facts that do
not exist in the original dataset. Therefore, we conclude that
our approach is able to learn quickly even from extremely
large datasets. This is an important feature because KGs are
often very large.

Relation Example Predictions in Global Top-10

livesIn (Charles K.Kao,Germany), (Barack Obama,
United States)

worksAt
(Adolf von Baeyer, Humboldt Univer-
sity),(Edward Witten, Princeton University),
(Robert Bunsen, University of Gottingen)

Table 6: Qualitative Analysis Results

Discussion We noticed that within 30s, our approach
can learn patterns such as graduatedFrom(x, y) →
worksAt(x, y) which seems to occur at a high chance in
our dataset. Moreover, our approach is able to learn general-
izations. For example, (Barack Obama, livesIn, Chicago) is
the only triplet that exists originally containing information
about where Barack Obama lives. Then, we are able to learn
that living in Chicago implies that Barack Obama lives in
the United States as well. We find this result remarkable as
it shows that our approach is able to learn quickly even from
large knowledge graphs.

Conclusion

In this paper, we propose a robust and online adaptation
of the translational embedding model. puTransE is simple,
easily parallelizable and handles dynamic updates to knowl-
edge graphs effectively. The key discovery is that divide-
and-conquer approaches are viable in relational learning.
Our approach has not only outperformed many methods on
the task of link prediction but is also suitable for dynamic
domains.

References

Bordes, A.; Weston, J.; Collobert, R.; and Bengio, Y. 2011.
Learning structured embeddings of knowledge bases. In
Proceedings of the Twenty-Fifth AAAI Conference on Arti-
ficial Intelligence, AAAI 2011, San Francisco, California,
USA, August 7-11, 2011.
Bordes, A.; Usunier, N.; Garcı́a-Durán, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for modeling
multi-relational data. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neu-
ral Information Processing Systems 2013. Proceedings of

a meeting held December 5-8, 2013, Lake Tahoe, Nevada,
United States., 2787–2795.
Breiman, L. 2001. Random forests. Machine Learning
45(1):5–32.
Duchi, J. C.; Hazan, E.; and Singer, Y. 2011. Adaptive
subgradient methods for online learning and stochastic opti-
mization. Journal of Machine Learning Research 12:2121–
2159.
Glorot, X.; Bordes, A.; Weston, J.; and Bengio, Y. 2013. A
semantic matching energy function for learning with multi-
relational data. CoRR abs/1301.3485.
Hoffart, J.; Suchanek, F. M.; Berberich, K.; and Weikum,
G. 2013. YAGO2: A spatially and temporally enhanced
knowledge base from wikipedia: Extended abstract. In IJ-
CAI 2013, Proceedings of the 23rd International Joint Con-
ference on Artificial Intelligence, Beijing, China, August 3-9,
2013, 3161–3165.
Jenatton, R.; Roux, N. L.; Bordes, A.; and Obozinski, G.
2012. A latent factor model for highly multi-relational data.
In Advances in Neural Information Processing Systems 25:
26th Annual Conference on Neural Information Processing
Systems 2012. Proceedings of a meeting held December 3-6,
2012, Lake Tahoe, Nevada, United States., 3176–3184.
Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; and Zhu, X. 2015. Learn-
ing entity and relation embeddings for knowledge graph
completion. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, January 25-30, 2015,
Austin, Texas, USA., 2181–2187.
Miller, G. A. 1995. Wordnet: A lexical database for english.
Commun. ACM 38(11):39–41.
Nickel, M.; Tresp, V.; and Kriegel, H. 2011. A three-way
model for collective learning on multi-relational data. In
Proceedings of the 28th International Conference on Ma-
chine Learning, ICML 2011, Bellevue, Washington, USA,
June 28 - July 2, 2011, 809–816.
Socher, R.; Chen, D.; Manning, C. D.; and Ng, A. Y. 2013.
Reasoning with neural tensor networks for knowledge base
completion. In Advances in Neural Information Processing
Systems 26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meeting held
December 5-8, 2013, Lake Tahoe, Nevada, United States.,
926–934.
Wang, Z.; Zhang, J.; Feng, J.; and Chen, Z. 2014. Knowl-
edge graph embedding by translating on hyperplanes. In
Proceedings of the Twenty-Eighth AAAI Conference on Arti-
ficial Intelligence, July 27 -31, 2014, Québec City, Québec,
Canada., 1112–1119.

1249

