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Abstract

Knowledge base(KB) plays an important role in artificial in-
telligence. Much effort has been taken to both manually and
automatically construct web-scale knowledge bases. Com-
paring with manually constructed KBs, automatically con-
structed KB is broader but with more noises. In this paper, we
study the problem of improving the quality for automatically
constructed web-scale knowledge bases, in particular, lexi-
cal taxonomies of isA relationships. We find that these tax-
onomies usually contain cycles, which are often introduced
by incorrect isA relations. Inspired by this observation, we
introduce two kinds of models to detect incorrect isA rela-
tions from cycles. The first one eliminates cycles by extract-
ing directed acyclic graphs, and the other one eliminates cy-
cles by grouping nodes into different levels. We implement
our models on Probase, a state-of-the-art, automatically con-
structed, web-scale taxonomy. After processing tens of mil-
lions of relations, our models eliminate 74 thousand wrong
relations with 91% accuracy.

Introduction

Machine intelligence relies on a variety of knowledge bases,
which are constructed manually or automatically. Examples
of manually constructed knowledge bases include Word-
Net (Miller 1995) and Cyc (Lenat and Guha 1989), and
examples of automatically constructed ones include Know-
ItAll (Etzioni et al. 2004), NELL (Mitchell et al. 2015), and
Probase (Wu et al. 2012). Manually constructed knowledge
bases are highly precise, but are limited in scale, while auto-
matically constructed ones have high coverage but relatively
low accuracy.
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The goal of this paper is to design algorithms to detect
and eliminate errors in automatically constructed knowledge
bases. In particular, we focus on lexical taxonomies, an im-
portant type of knowledge base consisting mainly of isA re-
lations, such as apple isA fruit, where the “isA” refers to
the hyponymy relation. Taxonomies are important because
they map instances to concepts, thus enabling the machine
to obtain the ability of generalization and specialization
when understanding the text. Consequently, taxonomies, es-
pecially those machine-generated ones with a larger cover-
age, have been widely used in various text understanding
tasks. Thus, detecting and eliminating errors in taxonomies
are essential to improve machine intelligence.

In this work, we use a state-of-the-art, data-driven tax-
onomy, Probase (Wu et al. 2012), as an example for taxon-
omy cleansing. Although we focus on Probase, our solutions
are applicable to other data-driven taxonomies. Probase con-
tains 16 million isA relations, which are automatically ex-
tracted from 1.7 billion web pages by using mainly the
Hearst syntactic patterns (Hearst 1992). In Probase, each
isA relation is associated with a frequency observed in the
web corpus. The accuracy of Probase is reported to be
92% (Wu et al. 2012), which is lower than WordNet. Ta-
ble 1 shows some errors in Probase. Most of the errors are
caused by errors in the corpus, or mistakes made by infor-
mation extraction algorithms. For example, a typo (as should
be an) in the following sentence "... make Paris such
as exciting city" leads to the extraction of exciting
city isA Paris by algorithms that use the such as pattern
for extraction.

Entity isA Concept Entity isA Concept

exciting city isA paris battery isA fuel cell
automobile isA lead acid battery cause isA tsunami
music video isA youtube video sweet isA glucose
world cup isA football grape isA purple

college isA basketball juice isA tomato

Table 1: Examples of incorrect isA relations in Probase

To address the problem, we need to first detect the sus-
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picious isA relations in the taxonomy. There are two naive
approaches for this problem.
• Use frequency. Relations with a low frequency may be

suspicious, because the relations introduced by typos or
algorithmic extraction problems are seldom observed in
the corpora. However, frequency information of isA rela-
tions itself follows a power-law distribution with a long
tail, which implies that most relations with or without er-
rors both have a low frequency. For example, about 7 mil-
lion edges have frequency 1 in Probase. But our sample
test shows that 78% of them are correct. Thus, we can
not simply identify all relations with a low frequency as
suspicious edges.

• Use external knowledge. Another method is employing
external knowledge bases available to eliminate the con-
flicts and improve the quality of the taxonomy. However,
some knowledge bases such as Probase have many spe-
cific concepts which do not exist in many other knowl-
edge bases. As a result, the membership relations of an
instance to a specific concept will be missing in external
knowledge bases. For example, Probase has 2.7 million
concepts while Yago has only 0.48 million types and DB-
pedia has only 700 types. Due to the huge gap between
the concept coverage of Probase and external knowledge
bases, it is impossible to use them to find conflicts in
Probase.
In this paper, we propose to use structural information.

The key difference between manually and automatically
constructed taxonomies is whether it is a directed acyclic
graph (DAG), i.e. there are no cycles in the taxonomy. Fig-
ure 1 illustrates a DAG taxonomy where many specific enti-
ties, such as iphone 6, nexus 5, shanghai are placed in
the lower level while more abstract concepts, such as thing,
concept, object are in the higher level.

?

thing concept

mobile phone apple device

iphone 6nexus 5 ...

...

...

shanghai paris

cityLe
ve

l

Abstract

Specific

exciting city

place

phone

device

Figure 1: An ideal taxonomy example

Main sources of cycles in Probase are:
• Ambiguity: A word or phrase may have multiple senses,

which are not differentiated in Probase. As a result, word
may refer to Microsoft Word, which is a software (as
an entity), or its literal meaning as an abstract concept.
Hence, both word isA software and software isA
word are correct and exist in Probase. These two relations
constitute a cycle.

• Wrong isA relations: A wrong isA relation may be
extracted, such as exciting city isA paris, which
causes a cycle (as shown in Figure 2).

Cycles are important sources of locating suspicious re-
lations. We sampled 100 of the entire Probase cycles of
size 2 and 3, respectively, and compared them with a null
model of randomly sampling 100 subgraphs of size 2 and
3 (with or without cycles) respectively. Then we manually
judge whether each subgraph contains wrong isA relations.
We report the z−score, which shows the degree of devia-
tion between the samples from cycles and null models. The
result is shown in Table 2. We can see that most cycles con-
tain wrong isA relations, which is statistically significant
since the corresponding random substructure tends to have
a smaller number of wrong isA relations and the z-score is
sufficiently large. We also illustrate examples of cycles with
wrong relations in Figure 2.

word

software

isA isA

exciting 
city

paris

isA wrong
isA

accessory

crystal

isA

wrong
isAjewelry

isA

subject

writing

isA

wrong
isA

communication 
skill

isA

Figure 2: Cycle examples

Size Have error Null model z-score p-value

2 97% 15% 22.96 <0.0001
3 96% 24% 16.86 <0.0001

Table 2: Cycle statistics in Probase

Inspired by the above observation, we use cycle elimina-
tion methods to identify wrong isA relations. Though this
problem has been studied before, existing solutions cannot
be applied due to the following challenges:

1. First, enumerating all cycles in a graph is computation-
ally hard. The number of cycles in a graph is exponen-
tial in the worst cases. A brute-force enumerating method
for detecting all cycles in a graph is computationally pro-
hibitive on web-scale data-driven taxonomies.

2. Second, not all the isA relations in cycles are wrong. We
thus need a metric to quantify trustworthiness to deter-
mine which relation is wrong.

To overcome the above challenges, we explore two kinds
of methods and propose an efficient solution for each model.
The first one aims to extract a DAG from the given graph, for
which we propose an efficient method (maximal feedback
arc set: MFAS) to minimize the trustworthy metric of the
removed edges. And the alternative one models the problem
as assigning levels (an integer) to each node in the taxonomy
so that a specific concept or instance has a low level and an
abstract concept has a high level. Thus, we can eliminate the
edges from high level nodes (abstract concepts) to low level
nodes (specific entities) as wrong isA relations. In summary,
we made the following contributions:

• First, we show that cycles are good indicators to find
wrong isA relations in data-driven taxonomies.
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• Second, we propose graph based models as well as their
algorithmic solutions to find wrong isA relations in cy-
cles.

• Third, we validate our solutions by processing a real-life
web-scale taxonomy.

DAG Decomposition based Model

An ideal taxonomy is cycle-free and bears a structure of
DAG as discussed in the previous section. This motivates
us to model our problem by the DAG decomposition frame-
work (See Def 1). Hence, the identification of wrong isA
relations is equivalent to the identification of an acyclic sub-
graph.
Definition 1 (DAG Decomposition) Given a directed
graph G(V,E), find a subgraph D(V,ED) of G such that
D is acyclic and q(ER) is minimized, where ER = E \ ED

and q(ER) is a penalty function of ER.

Since ED and ER are complementary to each other, we
can just focus on the evaluation of ER for simplicity. In gen-
eral, we hope that most members in ER are truly wrong isA
relations without false positives. Thus, a general principle to
define q(ER) is the sum of the trustworthiness of each mem-
ber in ER. As a result, minimizing q(ER) is the appropriate
objective for finding most suspicious isA relations without
removing the highly reliable edges.

MFAS Model and Algorithm

One way to define q(ER) is, when w(e) is the trustworthi-
ness of an edge e, q(ER) =

∑
e∈ER

w(e). That is , the sum
of the trustworthy score of all edges in ER. The formalized
problem is in Def 2. This model is a weighted minimum feed-
back arc set problem (weighted MFAS problem), which is a
classical NP-Hard problem (Even et al. 1998).
Definition 2 (MFAS) Given a weighted directed graph
G(V,E), where each edge is associated with a weight w(e),
find an edge subset ER ⊆ E such that (1) D(V,E \ ER) is
a DAG and (2) the weight sum of ER (i.e.,

∑
e∈ER

w(e)) is
minimized.

Since the problem is NP-Hard, we focus on an efficient
approximate algorithm. Specifically, we propose a greedy
algorithm: repeatedly find a cycle and remove all edges with
the lowest weight until there are no cycles in the remain-
ing graph. Obviously, the resulting graph must be a DAG.
However, too many edges might have been removed so that
the accumulated weight of the removed edges is far away
from the optimal. Demetrescu et al. (Demetrescu and Finoc-
chi 2003) proposed a subtle heuristic to improve it. The algo-
rithm has two steps. The first step is same as the basic greedy
strategy. In the second step, it checks the edges removed one
by one in the descending order of edge weight. For each edge
removed, it tries to add the edge back to the graph and judges
whether a cycle is created by the addition. If not, the edge
is added back. Clearly, this algorithm removes fewer edges
to generate a DAG than the basic greedy algorithm. Actu-
ally, it was proven that this improved algorithm achieves a
λ-approximation, where λ is the length of the longest cy-
cle in the graph. The time complexity of this algorithm is

wf range Accuracy

1 78%
2-10 86%

11-100 94%
> 100 100%

Table 3: Effectiveness of wf
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Figure 3: Effectiveness of Ph

O(nm) (Demetrescu and Finocchi 2003), where n is the
number of the nodes and m is the number of edges in the
graph.

Trustworthiness Metric

Our next step is defining edge weights to quantify trustwor-
thiness. First, we present a basic metric that uses frequency
for isA relations in Probase. Then we propose how to im-
prove this metric.

Basic Metric: Frequency Recall that each isA relation X
isA Y in Probase is associated with a frequency that the
isA relation is observed in corpus. We use wf (e) to denote
the frequency of edge e. Intuitively, a larger weight implies
higher trustworthiness. Example 1 illustrates this. Our em-
pirical study shows that wf is effective in characterizing
trustworthiness of isA relations. We randomly sample 50
edges from some frequency ranges respectively in Probase,
and then manually judge their correctness. Table 3 shows
that a larger frequency implies higher trustworthiness.

Example 1 The frequency of china isA country in
Probase is 10,723, which means that there are 10,723 sen-
tences containing this isA relation. In contrast, the frequency
of exciting city isA paris is only one. Obviously, the
former is much more trustworthy than the latter.

Improved Metric: Using Hyponym Numbers However,
the above metric has a significant weakness: it is less dis-
criminative for edges with low frequency. Among the 7 mil-
lion edges with frequency 1, only a small part of them is
wrong. Hence, we need to integrate more signals besides fre-
quency.

A simple observation on data-driven taxonomies is that
abstract concepts always have many hyponyms (words of
more specific meaning), but specific concepts or entities al-
ways have few or no hyponyms. Example 2 illustrates these
facts.

Example 2 (Hyponyms) In Probase, concept has 18,832
hyponyms. In contrast, a more specific concept like
exciting city has 30 hyponyms such as paris, london,
shanghai. Moreover, most specific entities such as
shanghai have no hyponyms.

Thus, given an isA relation X isA Y , Y in general is more
abstract than X and Y ’s hyponym number is supposed to
be larger than X’s. The larger the difference is, the more
trustworthy the edge is. More formally, let hypo(X) be the
number of hyponyms of X , we define Ph to represent our
belief about the correctness of an isA relation:

Ph(X isA Y ) = log (1 +
hypo(Y )

hypo(X)
) (1)
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where the larger Ph is, the more likely the isA relation is
true. Note that Ph is undefined when hypo(X) = 0. How-
ever, we will show in the next subsection that we only need
to handle nodes in strong connected components in the tax-
onomy, which always have a hypo value larger than 0.

We multiply Ph with wf to derive a new metric wfh in
Eq 2. Clearly, Ph plays a role of a modified factor. We use
it to discriminate the edges with the same frequency. Exam-
ple 3 illustrates the effectiveness of the new metric.

wfh(e) = wf (e)× Ph(e) (2)

Example 3 (Effectiveness of wfh) e1=juice isA tomato
and e2=tomato isA traditional food in Probase both
have frequency 1. However, Ph(e1) = 0.34 and Ph(e2) =
1.85. (hypo(juice) = 173, hypo(tomato) = 69,
hypo(traditional food) = 372). Ph score indicates
that e2 is more trustworthy than e1. Hence, Ph is helpful
in the discrimination of edges with the same weight.

We further use a statistical study to show the effectiveness
of Ph. We randomly sample 100 edges with frequency 1, and
manually judge their correctness. We sort them by Ph in de-
scending order, and then measure Error@K (the proportion
of errors in the top-K results) for each K. The result, shown
in Figure 3, reveals a clear correlation between Error@K
and K. In general, a higher Ph leads to a higher precision.
When K ≤ 34, almost 100% precision is achieved. The fact
strongly proves Ph’s effectiveness.

Level Assignment based Model

An alternative way to solve the problem is clustering nodes
into levels, such that correct edges only exist from specific
nodes to abstract nodes, which ensures a DAG.

Preliminary of Level Assignment

An ideal taxonomy can be arranged level by level, as shown
in Figure 1. More generally, a directed graph G has a level-
wise layout once a level is assigned for each node. We de-
fine level assignment (LA) function for nodes in a directed
graph G (see Def 3). For each LA function, we can con-
struct a unique acyclic subgraph of G, which consists of all
edges from low level nodes to high level nodes (see Def 4
and Lemma 1). Hence, once we find a level assignment for
the directed graph G, we derive a unique DAG, which im-
plies a unique remaining edge set. Thus, alternatively, we
can find wrong isA relations by looking for a good level
assignment function. Then our model is: Given a taxon-
omy G(V,E), find a level assignment function l with min-
imal q(ER), where ER = E \ ED and D(V,ED) is the
acyclic subgraph implied by l. This model is closely related
to the DAG based model. The LA based model actually can
be considered as an additional step to specify a DAG.

Definition 3 (Level Assignment (LA)) Given a directed
graph G(V,E), node level assignment function l : V → N
is a mapping from V to N such that each l(v) is a non-
negative integer representing the level of v.

Definition 4 (Subgraph implied by LA) Given a directed
graph G(V,E) and an LA function l defined on G, we refer

to the graph D(V,E \ ER) with ER = {(x, y)|(x, y) ∈
E, l(x) ≥ l(y)} as the subgraph of G implied by l.
Lemma 1 (Acyclicity) For a directed graph G(V,E) and
an LA function l defined on G, the subgraph implied by l is
acyclic.

The benefit of modeling our problem by LA is that we can
use the level information to infer the wrong isA relations
directly. Since we use all forward edges x isA y such that
l(x) < l(y) to construct the DAG, all the backward edges
x isA y such that l(x) ≥ l(y) will be returned as errors. A
good LA ensures that an abstract concept has a high level
and an entity (or a specific concept) has a low level. Hence,
any edges from high level nodes to low level nodes tend to
be wrong isA edges. We use topological sorting as a baseline
to find a good level assignment. To adjust topological sorting
for a directed graph that might have cycles, we remove the
node with minimum degree instead of the node with zero
degree in each loop.

Agony Model

The baseline based on topological sorting does not consider
the weight information of isA relations. Next, we incorpo-
rate the weights to derive a better level assignment.

Penalty Metric Recall that our basic idea is using an LA
l to identify all the backward edges as the wrong isA rela-
tions. In general, we hope to minimize the number of false
positives. That means an isA relation of higher trustworthi-
ness should be penalized more if it is identified as the back-
ward edge by the LA. We resort to such penalties to help find
the best level assignment. We consider the following princi-
ples to define the penalty. We illustrate these principles in
Example 4.

1. First, the more errors incurred, the higher the penalty is.
2. Second, the more reliable the edge is in terms of other

signals (such as edge weight), the higher the penalty is.
Example 4 (Penalty Metric) apple isA fruit has a very
high weight in Probase, which is a strong evidence that
apple is more specific than fruit. If an LA gives apple an
abstract level, this LA should be punished. The more penalty
should be given if 1) the level difference between apple
and fruit in this LA is more significant; 2) the weight of
this edge is larger.

The simplest way to measure how much error is incurred
for a correct isA relation x isA y is the level difference, de-
fined as follows:

d(x, y) = l(x)− l(y) + 1. (3)

A positive d(x, y) means that x is more abstract than y . We
add 1 to d(x, y) because we still have to penalize an edge x
isA y when l(x) = l(y). To reflect the second principle, we
reuse the two metrics adopted in the previous section. We
still use w(e) to represent one of them. By combining the
above two factors, the final penalty for an edge x isA y is:

penalty(x, y) = d(x, y)w(x, y) (4)

This metric clearly punishes more for a bad assignment on a
reliable isA relation.
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Problem Model Given the penalty metric, our problem is
reduced to finding an LA such that the penalty sum over all
edges in ER is minimized. More formally, our problem is:

argmin
l

∑

(x,y)∈ER

d(x, y)w(x, y) (5)

Obviously, this optimization objective prohibits the highly
reliable edges to be backward edges. The objective function
can be transformed into the sum over all edges in E when
we assign zero value to d(x, y) for all forward edges:

∑

(x,y)∈ER

d(x, y)w(x, y) =
∑

(x,y)∈E

max{0, d(x, y)}w(x, y) (6)

Definition 5 Given a weighted directed graph G(V,E), and
edge weight w(e) for each e ∈ E, find an level assignment
function l∗ on G such that

∑

(x,y)∈E

max{0, d(x, y)}w(x, y)

is minimized, where d(x, y) = l∗(x)− l∗(y) + 1.

Given above objective functions, we formalize our prob-
lem in Def 5, which is known as the Agony (Gupte et al.
2011) model and is widely used to find a hierarchy from a
directed graph. The good news is that Agony problem is in P
and many efficient solutions are available (Tatti 2014) when
the weights are natural numbers.

Algorithm It was proved that Agony problem has a dual-
problem known as circulation problem (Tatti 2015). Hence,
we first solve the circulation problem by the algorithm pro-
posed by (Edmonds and Karp 1972). With some optimiza-
tions, the time complexity is O(n2m), where n and m are
the number of nodes and edges in the graph, respectively.
The algorithm is guaranteed to have an integer-based so-
lution when the weight is integer. In our setting, we have
two options for the weight: wf (e) and wfh(e). Clearly,
wfh(e) is not necessarily an integer. To use wfh(e), we
round 100×wfh(e) to the nearest integer for each edge and
feed the integers into the algorithm.

Optimization: Agony+ In the previous solution, we re-
move all backward edges after we got a level assignment.
This method might remove too many edges that are not nec-
essarily to be deleted to derive a DAG. The reason is that the
removal of a backward edge might break another cycle. In
order to reduce the number of false positives, we modify the
generic algorithm in two aspects: (1) We remove backward
edges (x isA y such that l(x) ≥ l(y)) in the ascending order
by l(y) − l(x) (which is a negative or zero value), and use
the edge weight to break the tie (also in ascending order); (2)
For each backward edge, we only remove it when it still lies
in a cycle in the remaining taxonomy. We use l(y) − l(x)
as the heuristic to select backward edge to remove with a
high priority. The reason is that a smaller l(y)− l(x) means
a larger probability that x isA y is a wrong isA relation. The
time complexity is O(km), where k is the number of back-
ward edges and m is the edge number of the graph. We refer
to this improved implementation as Agony+.

Experiments

In this section, we systematically evaluate the effectiveness
and efficiency of the models and solutions proposed in pre-
vious sections.

Exp 1: Results on Probase

In this experiment, we report the results of our solutions in
a state-of-the-art web-scale data-driven taxonomy Probase.
We use Probase’s core version, which has 10,390,064 con-
cepts or entities, and 16,285,394 isA relations. To run our
solutions on a taxonomy with tens of millions of nodes is
a big challenge. Fortunately, most real taxonomies includ-
ing Probase can be split into a collection of SCCs (strongly
connected components) and the largest SCC usually is sig-
nificantly smaller than the entire taxonomy. For Probase, the
largest SCC has only 0.1M nodes and 1.4M edges. Hence,
we use SCC decomposition to run our solutions in accept-
able time.

Metrics and Settings Specifically, we evaluate the preci-
sion, recall, and running time of different solutions:
• Precision is the proportion of the truly wrong isA rela-

tions in all detected wrong isA relations. We randomly
sample 300 wrong isA relations produced by each solu-
tion, and then ask volunteers to manually judge whether
they are really wrong.

• Recall measures how many truly wrong isA relations are
found. The recall is hard to be computed because we do
not know the total number of truly wrong isA relations.
Hence, we use the maximal number of truly wrong isA
relations detected by all competitive solutions as the de-
nominator to compute the recall. Thus, we actually report
relative recall.

• Running time is used to show the scalability of different
solutions. We run all solutions on a server with Intel(R)
Xeon(R) E5-2632 CPU and 128GB RAM.
Competitors We compare our solutions MFAS, Agony

and Agony+ to the topological sorting based baseline so-
lution. For each of our model, we have two edge trustwor-
thiness metrics. We use #1 to denote wf and #2 to denote
wfh. Baseline+ is an improved version of the topological
sorting based baseline. Similar to Agony+#2, Baseline+ re-
moves the backward edges with the optimized strategy.

Setting Time # removed Precision # truly wrong
Baseline 3min 281.1K 71.0% 199.5K

Baseline+ 1.1h 260.7K 72.3% 188.5K (94.5%)
MFAS#1 1.9h 67.1K 86.0% 57.7K (28.9%)
MFAS#2 10.6h 68.7K 90.7% 62.3K (31.2%)
Agony#1 43h 89.5K 83.7% 74.9K (37.5%)
Agony#2 89h 102.3K 84.7% 86.7K (43.4%)

Agony+#1 43h 55.0K 85.7% 47.1K(23.6%)
Agony+#2 89h 74.2K 91.3% 67.7K(33.9%)

Table 4: Evaluation results on Probase. The # truly wrong is
estimated by multiplying precision and # removed. And the per-
centage in the last column is the relative recall, which is # truly
wrong of each method divided by the maximal one (199.5K).
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Experiment Result & Analysis The experimental result
on Probase is shown in Table 4.

• Precision & Recall It is easy to see that the baseline
model is worst in terms of precision, although it produces
more results. In real applications, we want to avoid the
removal of too many correct isA relations. Hence, base-
line approach in general is unusable due to its 71% preci-
sion. The comparison also reveals that wfh is always bet-
ter than wf in both precision and recall. This suggests that
Ph performs well in differentiating edges with the same
frequency. In general our Agony+#2 model achieves the
highest precision and a relatively higher recall.

• Running Time From Table 4, we can see that our meth-
ods in general can process web-scale taxonomies in ac-
ceptable time. The performance of MFAS model is better
than that of Agony (Agony+), implying that the greedy
algorithm designed for MFAS is efficient. The compari-
son also reveals that the computation of wfh in general is
slower than that of wf . This is obvious since the compu-
tation of wfh is more complicated.

Case Studies We give some wrong isA relations found by
our highest precision method in Table 1. All these isA re-
lations are obviously wrong, which will cause serious prob-
lems when we understand the entities by their concepts.

Exp 2: Effectiveness of Level Assignment

A side product of our solutions is the level assignment. In
MFAS-based methods, we use topological sorting to gener-
ate the levels since their remaining graph is a DAG. Hence,
we conduct this experiment to show that the levels gener-
ated by our solution on automatically constructed lexical
taxonomies are correlated with that on ideal taxonomies.

We use the levels generated from WordNet (Miller 1995)
as the ground truth. Since WordNet is a prefect DAG,
we directly use topological sorting to derive the level for
each synset. We randomly sample 1000 chains in WordNet,
such as neural network → reticulum → network →
system. For each node in the chain, we calculate their lev-
els in Probase and WordNet respectively. Then we compute
Pearson’s correlation coefficient (r) between them. Finally,
we report the average over 1000 sampled chains.

Setting Pearson’s r (avg ± std)

Baseline 0.568 ± 0.38
MFAS#1 0.669 ± 0.38
MFAS#2 0.651 ± 0.40
Agony#1 0.639 ± 0.42
Agony#2 0.692 ± 0.37

Agony+#1 0.623 ± 0.39
Agony+#2 0.684 ± 0.38

Table 5: Evaluation on level assignment

The result is shown in Table 5. It is obvious that all our
models have a mean Pearson’s correlation coefficient larger
than 0.6, which suggests a high correlation between our
level and WordNet level. Furthermore, the Agony+#2 model
achieves the best.

Exp 3: Evaluation on WikiTaxonomy

In this experiment, we show the universality of our meth-
ods. We repeat Exp 1 on another auto-constructed taxonomy
WikiTaxonomy (Ponzetto and Strube 2008), which is a tax-
onomy auto-constructed from Wikipedia corpus. Since the
Wikipedia corpus is much clearer and smaller than free web
corpus, WikiTaxonomy is more accurate but much smaller
than Probase, with only about 100 thousand concepts and re-
lations. However, it also contains cycles and wrong isA rela-
tions. The experiment setting is similar to Exp 1 except that
WikiTaxonomy does not contain relation weights. Hence,
we must use wfh with wf ≡ 1.

Setting Time # result Truly wrong Precision

MFAS ∼1sec 108 100 92.6%
Agony ∼1sec 112 102 91.1%

Agony+ ∼1sec 108 101 93.5%

Table 6: Evaluation on WikiTaxonomy

The result is shown in Table 6. It shows that WikiTax-
onomy contains only hundreds of wrong isA relations and
our solution can consistently achieve high precision (over
90%) on this dataset. This result sufficiently shows that our
methods are effective to cleanse a wide range of data-driven
taxonomies.

Related Work

Taxonomy Construction Many taxonomies have been
constructed manually or automatically. Early taxonomies
such as WordNet (Miller 1995) and Cyc (Lenat and Guha
1989) are constructed by human experts. They are highly
precise but limited in scale, which motivated automatic con-
struction of larger taxonomies. Existing efforts consider dif-
ferent sources, such as texts and tables. First, isA relations
from Web corpus are extracted using Hearst (Hearst 1992)
patterns and other isA patterns, generating taxonomies of
billions of nodes such as Probase (Wu et al. 2012) or
Google isA databases. WikiTaxonomy (Ponzetto and Strube
2008) and Yago (Suchanek, Kasneci, and Weikum 2007) are
extracted from Wikipedia corpus. Alternatively, structured
HTML tables (Dalvi, Cohen, and Callan 2012) or semi-
supervised extractors can be trained (Kozareva and Hovy
2010) for specific domains. However, removing cycles is a
common challenge for both categories, which is addressed
in this work.

Conflict Resolution in Knowledge Bases In the context
of manually constructed knowledge and databases, find-
ing and resolving conflicts in data integration is important.
Naiman et al. (Naiman and Ouksel 1995) identify and clas-
sify types of semantic conflicts in heterogeneous databases.
Lu et al. (Lu et al. 1998) use correlation analysis and sta-
tistical regression analysis in order to detect and resolve se-
mantic conflicts in multiple data source integration and in
data mining aspect. Li et al. (Li and Ling 2004) use OWL-
based method to detect several conflict types and resolve
them in RDF knowledge base integrations. However, these
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methods cannot be applied to noisy automatically generated
taxonomies.

Hierarchy Generation in Directed Graphs Extracting a
DAG subgraph from the graph, or finding an estimated hier-
archy, has been studied in various contexts. One such exam-
ple is studying hierarchy in social network (Clauset, Moore,
and Newman 2008; Gupte et al. 2011; Henderson et al. 2012;
Maiya and Berger-Wolf 2009). Estimating the high-level
node, in the social network (Cherkassky and Goldberg 1999;
Even et al. 1998; Jameson, Appleby, and FREEMAN 1999)
is useful to find a person with influence. Some intuition and
algorithms used in these works inspire our solution.

Discussion and Conclusion

As future works, we will further study the following three
problems. First, how to aggregate the different models pro-
posed in this paper to achieve a better performance. Second,
some (but few) cycles detected might be reasonable. How to
identify them is an interesting problem. Third, our models
might have multiple solutions. Which one of them is best
deserves a further study.

We studied the problem of identifying wrong relations
from automatically constructed taxonomies. Our key obser-
vation is that a cycle is highly likely to contain a wrong
relation. We thus abstract our problem as enumerating cy-
cles and eliminating the relation with low trustworthy score,
using two models, of extracting a DAG or estimating a hi-
erarchy from the graph, and proposing efficient solutions,
namely MFAS and Agony schemes, from each model re-
spectively. We validate our solutions by processing real-life
web-scale taxonomies.
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