
Randomized Mechanisms for Selling Reserved Instances in Cloud

Jia Zhang,1,2 Weidong Ma,3 Tao Qin,3 Xiaoming Sun,1,2 Tie-Yan Liu,3
1CAS Key Lab of Network Data Science and Technology,

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China

3Microsoft Research, Beijing, China
{zhangjia, sunxiaoming}@ict.ac.cn, {weima,taoqin,tyliu}@microsoft.com

Abstract

Selling reserved instances (or virtual machines) is a basic ser-
vice in cloud computing. In this paper, we consider a more
flexible pricing model for instance reservation, in which a
customer can propose the time length and number of re-
sources of her request, while in today’s industry, customers
can only choose from several predefined reservation pack-
ages. Under this model, we design randomized mechanisms
for customers coming online to optimize social welfare and
providers’ revenue.
We first consider a simple case, where the requests from
the customers do not vary too much in terms of both length
and value density. We design a randomized mechanism that
achieves a competitive ratio 1

42
for both social welfare and

revenue, which is a improvement as there is usually no rev-
enue guarantee in previous works such as (Azar et al. 2015;
Wang et al. 2015). This ratio can be improved up to 1

11
when

we impose a realistic constraint on the maximum number of
resources used by each request. On the hardness side, we
show an upper bound 1

3
on competitive ratio for any ran-

domized mechanism. We then extend our mechanism to the
general case and achieve a competitive ratio 1

42�log k��log T�
for both social welfare and revenue, where T is the ratio of
the maximum request length to the minimum request length
and k is the ratio of the maximum request value density to
the minimum request value density. This result outperforms
the previous upper bound 1

CkT
for deterministic mechanisms

(Wang et al. 2015). We also prove an upper bound 2
log 8kT

for any randomized mechanism. All the mechanisms we pro-
vide are in a greedy style. They are truthful and easy to be
integrated into practical cloud systems.

Introduction

Cloud computing is transforming today’s IT industry and
more and more enterprise customers and personal customers
have moved their computational tasks from local devices to
cloud. Among all kinds of cloud service models, infrastruc-
ture as a service (IaaS) is the most basic one; among many
IaaS services, virtual machines/instances are the most ba-
sic ones. Two pricing models1 are adopted to sell virtual in-
stances, the pay-as-you-go model for on-demand instances

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1There is another one, the spot pricing, which is not widely
adopted by cloud providers.

and the subscription model for reserved instances. The first
model charges customers a fixed per-instance-hour rate for
their utilization of instance hours. Compared with the first
model, the subscription model offers two benefits to cus-
tomers: (1) Customers enjoy a much lower per-instance-hour
price by reserving instances in advance; (2) it is more re-
liable to reserve some instances before hands for expected
future usage, since there may be no on-demand instances
available if one goes to the cloud to request on-demand in-
stances in the last minute.

A limitation of the current subscription model in prac-
tice is that there are only a few reservation options avail-
able to customers. For example, Amazon’s EC2 only pro-
vides 1-year and 3-year reservations for customers2. How-
ever, many cloud customers demand short-term and flexible
reservations. For example, a researcher needs to run many
experiments in the last week before the paper deadline of
an academic conference and wants to reserve 100 virtual in-
stances for that week. Certainly, she does not want to reserve
for 1 or 3 years3. In this work, we study a more flexible pric-
ing model in which the customers can define the reservation
option by themselves.

Model

We first formally define the model studied in this work and
introduce some notations for further use.

Consider a cloud provider with C reserved instances to
be sold to customers. Each customer has a request to re-
serve some instances. We denote this request as a reserva-
tion or a job. Each reservation j is characterized by a 5-tuple
(aj , dj , tj , cj , vj), where aj and dj are earliest start time4

and deadline respectively, tj is the reservation length (cer-
tainly, tj ≤ dj − aj), cj is the number of resources needed
by j, and vj is the value that the customer can obtain if j is
finished on time. For convenience, let ρj be the value density
of reservation j, i.e., ρj =

vj

cjtj
.

2This business model is still used when this paper is composed.
3Actually, this leads to the formation of (AWS) Reserved In-

stance Marketplace where users sell their redundant instances.
http://goo.gl/hwzXx9.

4aj is not the submission time of the reservation. Since we con-
sider reservation, the submission time of the reservation is assumed
to be no later than aj .

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

750



Considering that the length and value density of a reser-
vation cannot be arbitrary large/small in practice, we assume
ρj ∈ [ρmin, ρmax] and tj ∈ [tmin, tmax] for any reservation
j. We also denote k = ρmax

ρmin
and T = tmax

tmin
. Without loss of

generality we assume ρmin = tmin = 1. For any reservation
set S, we denote v(S) as

∑
j∈S vj .

We consider the online setting, in which customers come
one by one in online style and the cloud provider does not
have knowledge about future customers (or reservations).
When a customer comes and submits a reservation j, the
cloud provider needs to immediately and irrevocably decide
whether to accept this reservation or not and return a price
pj for this reservation if it is accepted. Immediate response
is necessary as customers usually do not have patience to
wait for response. Waiting for a long time will affect the
user experience. More seriously, a delayed rejection may be
a disaster for some tasks if their deadlines are approaching.

We assume all customers are rational, i.e., they are self-
interested and always trying to maximize their utilities. For
any customer, if her reservation j is rejected, her utility is
0; otherwise, the utility is vj − pj . The customer may cheat
the provider and misreport her reservation if doing so can
increase her utility. Suppose the reported information of j

is (âj , d̂j , t̂j , ĉj , v̂j). For a rational customer, we can safely
assume âj ≥ aj , d̂j ≤ dj , t̂j ≥ tj and ĉj ≥ cj ; other-
wise, the reservation j may terminate unexpectedly and be
charged even if it is not completed. We notice that these as-
sumptions are also adopted in (Hajiaghayi 2005) and (Wang
et al. 2015).

To avoid the strategic manipulations by the customers,
we consider truthful (or strategyproof) mechanisms in this
work. A mechanism is truthful if for any customer, she will
truthfully disclose her reservation, no matter how other cus-
tomers behave. This implies that truthful report will maxi-
mize the customer’s utility.

We focus on designing truthful mechanisms to optimize
both the social welfare and the provider’s revenue. For any
mechanism M , let J(M) stand for the reservations that
M accepts. The social welfare gained by M is denoted as
v(M), which equals the total value of reservations in J(M).
We use r(M) to stand for the revenue obtained from M ,
where r(M) equals

∑
j∈J(M) pj .

Our Contributions

To measure the performance of our mechanisms, we em-
ploy the concept of competitive ratio. Given any input
instance I (a sequence of reservations and correspond-
ing information), suppose OPT (I) is the optimal mecha-
nism. Let E(v(M(I))) stand for the expected social wel-
fare gained by a randomized mechanism M . We say M
achieves a competitive ratio c for social welfare if and only if
minI

E(v(M(I)))
v(OPT (I)) ≥ c. Similarly, we can define competitive

ratio for revenue.
In this work, we design randomized mechanisms for sell-

ing reserved instances. Our results are summarized as fol-
lows. 5

5Note that the base of all log terms in this work is 2 by default.

(i) We first consider a simple case, in which k ≤ 2 and T ≤
2. Although the constraint is strong, this case is useful
when reservations are not varying too much. For this case,
we design a truthful randomized mechanism that achieves
a constant ratio 1

42 for both social welfare and revenue.
When we impose a realistic constraint on the number of
resources used by each reservation j, i.e., cj

C ≤ α ≤ 1
2 ,

the ratio can be improved to 1−α
11−α . On the hardness side,

we prove an upper bound 1
3 on competitive ratio for all

randomized mechanisms.

(ii) We then extend our mechanism to general k and T , and
design a truthful mechanism whose competitive ratio is

1
42 log�k� log�T� while the upper bound of deterministic
mechanism is 1

CkT (Wang et al. 2015). The ratio works
for both social welfare and revenue. We also show an up-
per bound for the general case: no randomized mechanism
can achieve a competitive ratio better than 2

log 8kT .

The mechanisms proposed in this work have two advan-
tages.

• They can be easily integrated into real system. It is al-
ways a concern that randomized mechanisms are hard to
be implemented in practice. This is not a problem for
our mechanisms. After generating several random param-
eters, our mechanisms calculate a threshold price for ev-
ery reservation using the submitted parameters and accept
it if its value is larger than the price and we have enough
resources for it.

• They achieve the same performance guarantee for both
social welfare and revenue. Previous works in related
fields, such as (Azar et al. 2015; Wang et al. 2015;
Ghodsi, Haghpanah, and Hajiaghayi ), usually only care
about social welfare, and there is no guarantee for rev-
enue. Although social welfare is an important measure-
ment for mechanism design, clearly revenue is much more
important for cloud providers.

Related Work

Our work is related to both online mechanism design
(Witkowski 2011; Chandra et al. 2015) and cloud computing
(Wang et al. 2015; Zhang et al. 2015). We only review the
most related ones in this part.

In (Wang et al. 2015), the authors study the same model
as us. Truthful deterministic mechanisms are designed un-
der the condition that the number of resources used by each
reservation is constrained. For general case, an upper bound

1
CkT for deterministic algorithms is provided. As aforemen-
tioned, their mechanisms do not provide any guarantee to
provider’s revenue.

Truthful online mechanisms for reusable or time sensi-
tivity goods have been well studied (Friedman and Parkes
2003; Porter 2004; Lavi and Nisan 2005; Hajiaghayi 2005;
Gerding et al. 2011; Robu et al. 2013; Wu et al. 2014).
Among these works, auction based models are adopted in
(Friedman and Parkes 2003; Lavi and Nisan 2005; Haji-
aghayi 2005). In their models, the seller does not need to
make immediate responses to buyers: a buyer needs to wait

751



until the deadline of her reservation, and payment is de-
termined when the deadline passed. In (Porter 2004), the
author only considers the one resource case. Except (Haji-
aghayi 2005), the other three works only care about the so-
cial welfare and there is no guarantee for revenue. Compared
to these models, our setting (immediate response with both
social welfare and revenue guarantee) is more appropriate
for cloud computing.

There are many works that concern online resource al-
location for cloud computing (Zaman and Grosu 2012;
Zhang et al. 2013; Shi et al. 2014; Mashayekhy et al. 2015;
Zhang et al. 2015; Wang, Liang, and Li 2015). Among
these works, the pay-as-you-go model is considered in
(Mashayekhy et al. 2015), and authors in (Zhang et al.
2013) propose a framework for cloud resource allocation
when agents’ value functions are continuous and concave.
In (Zhang et al. 2015), a more general scheduling problem
is studied. The authors also take both social welfare and rev-
enue into consideration. However, the their competitive ra-
tios are related to the total amount of resources. In (Wang,
Liang, and Li 2015), the authors propose online strategies
to reserve instances without any a priori knowledge of fu-
ture demands. Those strategies are optimal when consider-
ing cost management.

In (Lucier et al. 2013; Jain et al. 2015; Azar et al. 2015),
mechanisms design for scheduling problem with commit-
ments is studied. Those mechanisms proposed either com-
plete a reservation or reject it when there is enough time
for this reservation to be completed before deadline. In (Jain
et al. 2015), the authors study offline settings and design a
near-optimal mechanism with commitments. In (Lucier et
al. 2013), a heuristic truthful mechanism for online schedul-
ing is proposed, but no formal bound of competitive ratio is
given. In (Azar et al. 2015), the authors follow (Lucier et al.
2013) and design truthful online mechanisms with a constant
competitive when reservations are slack enough.

In this work, the number of resources requested by a
reservation is fixed and determined by the customer. How-
ever, in some scenarios, the customer only provides the to-
tal size (number of resources times length) of her reserva-
tion, and it is the cloud scheduler that determines how many
resources are allocated to process this reservation. Those
reservations are called malleable reservations. There are
some works in this fields, such as (Carroll and Grosu 2010;
Kell and Havill 2014).

All upper bounds in this work are proved by employ-
ing Yao’s Min-Max Principle (Yao 1977). This method is
adopted in many works to show upper bounds of random-
ized algorithms, such as (Karp, Vazirani, and Vazirani 1990;
Mehta et al. 2007).

Warmup: A Simple Case

In this section, as a warmup, we investigate a simple case, in
which k = T = 2. That is, the reservations do not vary too
much in terms of their value densities and lengths: the max-
imal length (value density) is twice of the minimal length
(value density). We present a randomized mechanism that is
truthful and achieves a competitive ratio 1

42 for both social

welfare and revenue. The mechanism is shown in Algorithm
1 and we call it RANDOM-PRICING.

Algorithm 1: RANDOM-PRICING

Input : A sequence of reservations.
1 Uniformly choose a number from {0, 1}, and let it be

i.
2 while a reservation l comes online do

3 Set pl = ρmintl ·max
{(

C
2

)i
, cl

}
4 if vl ≥ pl and there are enough instances and

time for reservation l in [al, dl] then
5 Accept l and schedule it as early as possible.
6 Charge the price pl.
7 else Reject l.

As we can see, this mechanism is simple and clean. The
mechanism first generates a random bit, and for each reser-
vation, it sets a threshold price pl based on the random bit
and the information submitted. The reservation will be fil-
tered and rejected if its value is less than the threshold price.
It will be accepted if and only if it passes the filtration and
its requested resources are available during the reservation
period.

Note that the filtration by setting a random threshold price
is critical to guarantee the performance of the mechanism
in the worst case. Without the filtration, since the number
of resources requested by a reservation can vary from 1 to
C, accepting a low-value reservation may exclude a reserva-
tion with much more value, which leads to a low utilization
rate of the cloud and consequently, a bad performance in the
worst case. With the filtration, we can ensure the good uti-
lization of the cloud, which can be intuitively explained as
follows.

• When i = 1, we consider the case that all reservations
need more than C/2 machines. If a reservation l passes
the filtration but is rejected, this must be because another
accepted reservation has already occupied l’s time inter-
val. Because only reservation j with value no less than
ρmintj · max{C/2, cj} can pass filtration, the accepted
reservation has a relatively large value. Thus, the cloud is
well utilized.

• When i = 0, we consider the case that all reservations
need no more than C/2 machines. If a reservation l passes
the filtration but is rejected, since cl ≤ C/2, at least half
of the total resources has been occupied by other reserva-
tions. Thus, the cloud is well utilized.

To formally analyze the mechanism, we first define some
notations. Let OPT0 stand for the optimal allocation when
only those reservations needing no more than C/2 resources
are taken into consideration, and OPT1 denote the opti-
mal allocation when only those reservations needing more
than C/2 resources are considered. It is easy to see that
v(OPT0) + v(OPT1) ≥ v(OPT ). Let M be the alloca-
tion of reservations accepted by RANDOM-PRICING and let
M0 (resp. M1) denote the allocation of reservations when

752



i = 0 (resp. i = 1). Let E(v(M)) denote the expectation
of the total value of reservations accepted by RANDOM-
PRICING. Clearly, E(v(M)) = 1

2 (v(M0) + v(M1)). Let
Li = J(OPTi) \ J(Mi), for i ∈ {0, 1}.

Theorem 1. For k = 2 and T = 2, the mechanism
RANDOM-PRICING

(i) is truthful;
(ii) achieves a competitive ratio 1

42 for social welfare, i.e.,
E(v(M)) ≥ 1

42v(OPT ) and

(iii) achieves a competitive ratio 1
42 for revenue.

Proof. Recall that we have assumed ρmin = tmin = 1 with-
out loss of generality, thus ρmax = tmax = 2.
(i) Truthfulness. Since in our model we assume for any
reservation j, âj ≥ aj , d̂j ≤ dj , t̂j ≥ tj and ĉj ≥ cj (see
the model formulation part). We only need to show that j has
no incentive to report information with âj > aj , d̂j < dj ,
t̂j > tj or ĉj > cj . Setting âj > aj or d̂j < dj cannot im-
prove her utility; instead, it increases the risk that j will be
rejected, since RANDOM-PRICING will try to find an feasi-
ble interval to schedule in [âj , d̂j ]. Besides, because the price

is set as ρmintj ·max
{(

C
2

)i
, cj

}
, a larger value for tj and

cj can only decrease the utility. At last, since the price does
not depend on vj , the customer also has no incentive to cheat
on vj . Thus RANDOM-PRICING is a truthful mechanism.
(ii) Social Welfare. The following analysis is based on
the fact that if a reservation j is accepted by RANDOM-
PRICING, the corresponding customer will always choose
to pay the fee and j will be scheduled, as pj is always no
more than vj .

When analyzing the competitive ratio, we only need to
consider the worst case of the mechanism. Thus we can
assume6 all reservations accepted by the mechanism have
value density ρmin, and reservations accepted by OPT have
value density 2.

First, we consider the case of i = 1 in RANDOM-
PRICING. For any reservation l in L1, there must be at
least one reservation (denoted as j) accepted by RANDOM-
PRICING that is in conflict with l. Here the conflict means
the reservation j (accepted by RANDOM-PRICING) occu-
pies at least one resource that is allocated to l in OPT1

in corresponding period. We know the value vj is at least
tj · max {C/2, cj}. There may be multiple reservations in
L1 that are in conflict with j; denote them as a set Fj .

Let [r, r+tj ] be the time interval that RANDOM-PRICING
allocates to reservation j. All reservations in Fj must be al-
located in the interval [r−2, r+ tj+2] by OPT1, otherwise
they can’t conflict with j. In addition, those reservations in
Fj are compatible with each other, i.e., they are not in con-
flict with each other. Thus, the total value of Fj is at most

6If OPT accepts a reservation (e.g., j) with value density less
than 2, we can construct another allocation OPT ′ which accepts
exactly the same reservations as OPT except changing the value
density of reservation j to 2. Clearly, v(OPT ′) > v(OPT ), and
then we can conduct analysis based on OPT ′.

2C(4 + tj), and then

vj
v(Fj)

≥ tj ·max {C/2, cj}
2C(4 + tj)

≥ 1

20
. (1)

The last inequality is obtained as tj
4+tj

≥ 1
5 . We further have

v(M1) =
∑

j∈J(M1)

vj ≥ 1

20

∑
j∈J(M1)

v(Fj) ≥ 1

20
v(L1). (2)

This also implies v(L1) ≤ 20
21v(OPT1), as OPT1 =

L1 ∪ M1. Thus we have v(M1) = v(OPT1) − v(L1) ≥
1
21v(OPT1).

Second, we consider the case of i = 0. Similar to the case
of i = 1, if we can show v(M0) ≥ 1

20v(L0), there must be
v(M0) ≥ 1

21v(OPT0).
For any l ∈ L0, suppose it is allocated in time inter-

val [r, r + tl] by OPT0. Since it cannot be accepted by
RANDOM-PRICING, at least C − cl + 1 resources are occu-
pied by some reservations in the interval [r, r + tl] (maybe
not the full interval). Denote those reservations as Jr+tl

r and
those occupied resources as Mr+tl

r . Now we distribute vl
evenly onto the resources in Mr+tl

r . As we can see, each
reservation j ∈ Jr+tl

r gets a distributed value no more than
vlcj
C/2 . Do the same operation on all the reservations in L0.
Consider an arbitrary reservation j in J(M0). Suppose it is
allocated in the interval [s, s+tj ]. As we can see, only reser-
vations allocated in interval [s−2, s+tj+2] by OPT0 have
the chance to distribute a value to reservation j. As these
reservations are compatible with each other, they have a to-
tal value of at most 2C(tj + 4). Thus the value distributed
on j is at most 2C(tj+4)cj

C/2 = 4(tj + 4)cj . Denote this value
as Dj . We have

vj
Dj

≥ tj ·max {1, cj}
4(tj + 4)cj

≥ 1

20
. (3)

Thus,

v(M0) =
∑

j∈J(M0)

vj ≥ 1

20

∑
j∈J(M0)

Dj ≥ 1

20
v(L0). (4)

Consequently, v(M0) ≥ 1
21v(OPT0).

In summary, we have

E(v(M)) =
1

2
v(M0) +

1

2
v(M1)

≥ 1

42
(v(OPT0) + v(OPT1)) ≥ v(OPT )

42
.

(5)

(iii) Revenue. Similar to the above proof for social wel-
fare, we assume all the reservations accepted by RANDOM-
PRICING have value density ρmin for the worst case
analysis. Under this assumption, we have E(v(M)) ≥
v(OPT )

42 . On the other hand, ρmin is the value density that
used by RANDOM-PRICING to calculate price. This means
E(r(M)) ≥ v(OPT )

42 . It is clear that the optimal revenue will
never exceed the optimal social welfare as all customers are
rational and the price of a reservation is no larger than its
value. Thus, when considering revenue, RANDOM-PRICING
also achieves a competitive ratio 1

42 .

753



Remark 1. Actually, the mechanism RANDOM-PRICING
works for any k, T and can achieve a competitive ratio

1
8Tk+4k+2 for social welfare and revenue. This can be shown
by slight modifications on above proof: when i = 1, Equa-
tion (1) changes to vj

v(Fj)
≥ tj ·max{C/2,cj}

kC(2T+tj)
≥ 1

4Tk+2k ,
and similarly, Equation (3) changes to vj

Dj
≥ 1

4Tk+2k when
i = 0. Clearly, the RANDOM-PRICING has a better compet-
itive ratio than 1

42 when k, T ≤ 2.
Remark 2. In (Wang et al. 2015), the authors consider the
case when cj

C is bounded. Actually, if we impose a simi-
lar constraint that cj

C ≤ α ≤ 1
2 , we can design a truth-

ful mechanism to improve the competitive ratio. Consider
the following mechanism. When a reservation l comes, we
accept it if there are enough time and resources available,
and charge the customer pl = ρmincltl. We call this mecha-
nism GREEDY. Although GREEDY is very simple, its per-
formance is guaranteed, as shown in the following theo-
rem. Please refer to the supplemental part of the full version
(Zhang et al. 2016).
Theorem 2. If k = T = 2 and cj

C ≤ α ≤ 0.5 for any reser-
vation j, the mechanism GREEDY is truthful and achieves a
competitive ratio 1−α

11−α for both social welfare and revenue.

Hardness Analysis

In this subsection we show an upper bound on competitive
ratio for any (randomized) mechanism when k = T = 2.
We first review a powerful tool - Yao’s Min-Max Principle,
which is usually adopted to analyze the performance of ran-
domized algorithms.
Yao’s Min-Max Principle Given a problem P , A is the
set of all the deterministic algorithms to solve P . Sup-
pose I is an input distribution. For any I ∈ I, let R(I)
(resp. A(I)) stand for the competitive ratio of a randomized
(resp. deterministic) algorithm R (resp. A). Then we have
minI∈I R(I) ≤ maxA∈A EI∼I(A(I)).

Leveraging Yao’s Min-Max Principle, we can get the fol-
lowing result.
Theorem 3. For k = T = 2, no (randomized) mechanism
can achieve a competitive ratio better than 1

3 for social wel-
fare.

Proof. Consider the following 6 bundles of reservations:
B1 = {(2− ε, 3 + ε, 1 + 2ε, C/2 + 1, (1 + 2ε)(C/2 + 1))},
B2 = {(1.5, 3.5, 2, C/2 + 1, 2(C/2 + 1))},
B3 = {(1.5, 3.5, 2, C/2 + 1, 4(C/2 + 1))},
B4 = {(0.5, 2.5, 2, C/2 + 1, 4(C/2 + 1)),

(2.5, 4.5, 2, C/2 + 1, 4(C/2 + 1))},
B5 = {(0.5, 2.5, 2, C, 4C), (2.5, 4.5, 2, C, 4C)},
B6 = {(0, 2, 2, C, 4C), (3, 5, 2, C, 4C),

(2, 3, 1, C, 2C)}.
It is easy to check that the reservations in the same bundle
are compatible to each other. Now we construct the input
distribution I which contains six input instance I1, · · · , I6.
In Ii, the reservations are submitted exactly in the order
B1 → B2 → · · · → Bi and their submission time is ear-
lier than time 0. Jobs in the same bundle come at the same

time. The input distribution I is constructed by uniformly
choosing one instance from I1 to I6. Any valid determinis-
tic mechanism must belong to one of following patterns.

1. Accept all reservations in only one bundle from B1 to B6;
2. Choose 2 compatible reservations from B4, B5 and B6 to

accept.

Besides, we can find that the optimal allocation on input Ii
is to accept all reservations in Bi. Enumerating all determin-
istic mechanisms, we can easily conclude that the best one is
to accept the reservation in B1 for any input instance. Thus,
when ε → 0 and C is large enough, the expected competi-
tive ratio of the optimal deterministic algorithm is

lim
ε→0,C→∞

1

6

6∑
i=1

v(B1)

OPT (Ii)

=
1

6

(
1 +

1

2
+

1

4
+

1

8
+

1

16
+

1

20

)
=

1

3
− 1

480
.

(6)

According to Yao’s Min-Max Principle, 1
3 − 1

480 is an upper
bound for any randomized mechanism.

Mechanism for General k and T

In this section, we consider the general case in which k and
T can be arbitrary large. We first present a truthful random-
ized mechanism with competitive ratio 1

42�log k��log T� for
both social welfare and revenue. We then show that no ran-
domized mechanism can achieve a ratio better than 2

log 8kT .
Note that the base of all log terms is 2 in this section.

The mechanism, named as BINARY-FILTER, is shown in
Algorithm 2. It randomly chooses three integers u, v and i,
and sets a price for each reservation based on these three val-
ues. Reservations whose values are less than corresponding
prices are filtered out. Then rest reservations are scheduled
greedily.

Algorithm 2: BINARY-FILTER

Input : A sequence of reservations.
1 Uniformly choose an integer u from [1, �log k�], and

an integer v from [1, �log T �].
2 Uniformly choose an integer i from {0, 1}.
3 while a reservation l comes online do

4 Set pl = 2u−1 ·max
{(

C
2

)i
, cl

}
·max{2v−1, tl}.

5 if l can be scheduled in [al, dl] and vl ≥ pl then
6 Accept l and schedule it as early as possible.
7 else Reject l.

Let Juv denote the set of reservations whose value den-
sities are located in [2u−1, 2u] and lengths are located in
[2v−1, 2v]. Denote the optimal allocation on Juv as OPTuv

and denote Muv as the allocation obtained by BINARY-
FILTER when u and v are sampled. We can prove a relation-
ship between E(v(Muv)) and v(OPTuv) which is shown in

754



Lemma 1. As the proof is constructed based on that of The-
orem 1, we omit it to avoid duplication. The proof can be
found in the full version (Zhang et al. 2016).

Lemma 1. For any 1 ≤ u ≤ �log k� and 1 ≤ v ≤ �log T �,
E(v(Muv)) ≥ 1

42v(OPTuv)

Theorem 4. The mechanism BINARY-FILTER

(i) is truthful;
(ii) achieves a competitive ratio 1

42�log k��log T� for social wel-
fare and

(iii) achieves a competitive ratio 1
42�log k��log T� for revenue.

Proof. (i) Truthfulness. Similar to that of Theorem 1, for
a customer with jobs l will not cheat on al, dl, cl and vl,
thus we only need to show that she will not misreport with
t̂l > tl. When tl < 2j−1, pl is independent of tl; when
tl ≥ 2j−1, a larger value for t̂l will increase pl. Thus in
either case, the customer will truthfully report tl.
(ii) Social Welfare. According to Lemma 1,

E(v(M)) =
1

�log k��log T �
�log k�∑
i=1

�log T�∑
j=1

E(v(Muv))

≥ 1

42�log k��log T �
�log k�∑
i=1

�log T�∑
j=1

v(OPTuv)

≥ v(OPT )

42�log k��log T � .

(7)

(iii) Revenue. The proof is similar to that of Theorem 1.

Remark 3. It has showed that no deterministic algorithm
could achieve a competitive ratio better than 1

kCT (Wang
et al. 2015). Clearly, in terms of the worst case, BINARY-
FILTER achieves much better performance than any deter-
ministic algorithms for large k, C and T .
Remark 4. If cj

C ≤ α ≤ 1
2 for all j, we can mod-

ify the BINARY-FILTER mechanism by removing line 2
in Algorithm 2 and setting pl = 2u−1cl max{2v−1, tl}.
This modified mechanism achieves a competitive ratio

1−α
(11−α)�log k��log T� for social welfare and revenue.

Hardness Analysis

Theorem 5. For general k and T , no (randomized) mecha-
nism can achieve a competitive ratio better than 2

log 8kT for
social welfare.

Proof. We prove this theorem by using Yao’s Min-Max
Principle as for the 2-bounded case. To use the Yao’s Min-
Max Principle, we should construct an input distribution I.
Without loss of generality, we assume that C is an even inte-
ger. Given two positive integers m and n, we first construct
m+ n+ 2 bundles of reservations B1, · · · , Bm+n+2:

Bi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{(2n − 2
i−1

, 2
n

+ 2
i−1

, 2
i
, C/2 + 1, 2

i−1
(C + 2))}, 1 ≤ i ≤ n,

{(2n−1
, 2

n
+ 2

n−1
, 2

n
,C/2 + 1, 2

i−1
(C + 2))}, n + 1 ≤ i ≤ n + m,

{(2n−1
, 2

n
+ 2

n−1
, 2

n
,C, 2

i−1
C)}, i = m + n + 1,

{(0, 2n, 2
n
,C, 2

i−2
C), (2

n
, 2

2n
, 2

n
,C, 2

i−2
C)}, i = m + n + 2.

We can find that for the first n bundles, each reservation
has a value density 1 and the running time changes w.r.t. i.
For Bn+1 to Bn+m, the running time of each reservation
keeps unchanged, i.e., 2n, but the value density increases
w.r.t. i. Furthermore, only the reservations in the last two
bundles use C resources. It is easy to check that T = 2n−1

and k = 2m for the reservations in these bundles. Most im-
portantly, we can find that reservations in different bundles
are conflict with each other, as all reservations are tight and
valid time intervals of reservations in different bundles over-
lap with each other. These properties are the preliminary of
following analysis.

The input distribution I contains n+m+2 input instances
I1, · · · , In+m+2. In the input instance Ii, reservations come
exactly as the order B1 → B2 → · · · → Bi. All reser-
vations are submitted before time 0 and reservations in the
same bundle have the same submission time. Each input in-
stance is drawn uniformly from the distribution I.

Suppose A is an arbitrary deterministic algorithm. For any
input instance I , if A accepts a reservation in Bj , it cannot
accept any reservation in other bundles as reservations in
different bundles are conflict with each other. As A is de-
terministic, we can conclude that A will always accept the
reservations in Bj (if the input instance contains Bj) or ac-
cept nothing (if the input instance does not contain Bj) for
any input instance.

Clearly, when C is large enough, the competitive ratio of
A on input instance Ii is

A(Ii) =

⎧⎨
⎩

0, i < j

2j−1

2i−1
. j ≤ i ≤ m+ n+ 2

(8)

Thus we have

EI∼I(A(I)) =
1

n+m+ 2

n+m+2∑
i=1

A(Ii)

=
1

n+m+ 2

n+m+2∑
i=j

1

2i−j
=

1

n+m+ 2

(
2− 1

2n+m+2−j

)
.

As we can see, when A selects the reservation in B1, that is
j = 1, EI∼I(A(I)) is maximized. That is to say

max
A∈A

Ei∼I(A(I)) =
1

n+m+ 2

(
2− 1

2n+m+1

)

≤ 2

n+m+ 2
=

2

log 8kT
.

(9)

The last equality is obtained as n = log T+1 and m = log k.
Applying Yao’s Min-Max Principle, we finish the proof.

Remark 5. Theorem 5 does not imply Theorem 3, as the
input distribution constructed in the proof of Theorem 5 can
only produce an upper bound at least 0.3875 for k = T = 2,
which is weaker than 1

3 in Theorem 3.

Future Work

In this work, we have designed randomized mechanisms for
instance reservation in cloud. Our mechanisms is truthful

755



and have performance guarantee for both social welfare and
revenue. There are several directions to explore in the future.

First, the competitive ratios of our mechanisms do not
match the upper bound we provided. It is interesting to study
whether there exist some methods to narrow down this gap.

Second, malleable reservations, which allow the mecha-
nism to decide the number of resources to allocate, have
been studied in other settings. It is interesting to introduce
malleable reservations into instance reservation in cloud and
design mechanisms to optimize social welfare and revenue.

Acknowledgments
This work was supported in part by the National Natural
Science Foundation of China Grant 61222202, 61433014,
61502449, 61602440, the 973 Program of China Grants No.
2016YFB1000201 and the China National Program for sup-
port of Top-notch Young Professionals.

References
Azar, Y.; Kalp-Shaltiel, I.; Lucier, B.; Menache, I.; Naor, J. S.;
and Yaniv, J. 2015. Truthful online scheduling with commit-
ments. In Proceedings of the Sixteenth ACM Conference on
Economics and Computation, 715–732.
Carroll, T. E., and Grosu, D. 2010. Incentive compatible online
scheduling of malleable parallel jobs with individual deadlines.
In Parallel Processing (ICPP), 2010 39th International Confer-
ence on, 516–524.
Chandra, P.; Narahari, Y.; Mandal, D.; and Dey, P. 2015. Novel
mechanisms for online crowdsourcing with unreliable, strategic
agents. In Twenty-Ninth AAAI Conference on Artificial Intelli-
gence.
Friedman, E. J., and Parkes, D. C. 2003. Pricing wifi at star-
bucks: issues in online mechanism design. In Proceedings of
the 4th ACM conference on Electronic commerce, 240–241.
Gerding, E. H.; Robu, V.; Stein, S.; Parkes, D. C.; Rogers, A.;
and Jennings, N. R. 2011. Online mechanism design for electric
vehicle charging. In Proc. 10th Int. Conf. Aut. Agents and Multi-
Agent Systems (AAMAS11 2:1–8.
Ghodsi, M.; Haghpanah, N.; and Hajiaghayi, M. Online job
scheduling mechanisms: How bad are restarts?
Hajiaghayi, M. T. 2005. Online auctions with re-usable goods.
In Proceedings of the 6th ACM conference on Electronic com-
merce, 165–174.
Jain, N.; Menache, I.; Naor, J. S.; and Yaniv, J. 2015. Near-
optimal scheduling mechanisms for deadline-sensitive jobs in
large computing clusters. ACM Transactions on Parallel Com-
puting 2(1):3.
Karp, R. M.; Vazirani, U. V.; and Vazirani, V. V. 1990. An
optimal algorithm for on-line bipartite matching. In Proceed-
ings of the twenty-second annual ACM symposium on Theory
of computing, 352–358.
Kell, N., and Havill, J. 2014. Improved upper bounds for online
malleable job scheduling. Journal of Scheduling 1–18.
Lavi, R., and Nisan, N. 2005. Online ascending auctions for
gradually expiring items. In Proceedings of the sixteenth annual
ACM-SIAM symposium on Discrete algorithms, 1146–1155.
Lucier, B.; Menache, I.; Naor, J. S.; and Yaniv, J. 2013. Efficient
online scheduling for deadline-sensitive jobs. In Proceedings

of the twenty-fifth annual ACM symposium on Parallelism in
algorithms and architectures, 305–314.
Mashayekhy, L.; Nejad, M. M.; Grosu, D.; and Vasilakos, A.
2015. An online mechanism for resource allocation and pricing
in clouds. IEEE Transactions on Computers PP(99):1–1.
Mehta, A.; Saberi, A.; Vazirani, U.; and Vazirani, V. 2007. Ad-
words and generalized online matching. Journal of the ACM
(JACM) 54(5):22.
Porter, R. 2004. Mechanism design for online real-time
scheduling. In Proceedings of the 5th ACM conference on Elec-
tronic commerce, 61–70.
Robu, V.; Gerding, E. H.; Stein, S.; Parkes, D. C.; Rogers, A.;
and Jennings, N. R. 2013. An online mechanism for multi-unit
demand and its application to plug-in hybrid electric vehicle
charging. Journal of Artificial Intelligence Research 48(1):175–
230.
Shi, W.; Zhang, L.; Wu, C.; Li, Z.; and Lau, F. C. 2014. An
online auction framework for dynamic resource provisioning in
cloud computing. In The 2014 ACM International Conference
on Measurement and Modeling of Computer Systems, 71–83.
Wang, C.; Ma, W.; Qin, T.; Chen, X.; Hu, X.; and Liu, T.-Y.
2015. Selling reserved instances in cloud computing. In Pro-
ceedings of the 24th International Conference on Artificial In-
telligence, 224–230.
Wang, W.; Liang, B.; and Li, B. 2015. Optimal online multi-
instance acquisition in iaas clouds. IEEE Transactions on Par-
allel & Distributed Systems 26(12):1–1.
Witkowski, J. 2011. Trust mechanisms for online systems. In
Proceedings of the International Joint Conference on Artificial
Intelligence, Barcelona, Catalonia, Spain, July, 2866–2867.
Wu, F.; Liu, J.; Zheng, Z.; and Chen, G. 2014. A strategy-
proof online auction with time discounting values. In AAAI
Conference on Artificial Intelligence.
Yao, A. C.-C. 1977. Probabilistic computations: Toward a
unified measure of complexity. In 18th Annual Symposium on
Foundations of Computer Science, 222–227.
Zaman, S., and Grosu, D. 2012. An online mechanism for dy-
namic vm provisioning and allocation in clouds. In 2012 IEEE
Fifth International Conference on Cloud Computing, 253–260.
Zhang, H.; Li, B.; Jiang, H.; Liu, F.; Vasilakos, A. V.; and Liu,
J. 2013. A framework for truthful online auctions in cloud
computing with heterogeneous user demands. In INFOCOM,
2013 Proceedings IEEE, 1510–1518.
Zhang, X.; Huang, Z.; Wu, C.; Li, Z.; and Lau, F. C. 2015.
Online auctions in iaas clouds: Welfare and profit maximiza-
tion with server costs. In Proceedings of the 2015 International
Conference on Measurement and Modeling of Computer Sys-
tems, 3–15.
Zhang, J.; Ma, W.; Qin, T.; Sun, X.; and Liu, T.-Y. 2016. Ran-
domized Mechanisms for Selling Reserved Instances in Cloud.
ArXiv e-prints: 1611.07379.

756




