
Approximation and Parameterized
Complexity of Minimax Approval Voting

Marek Cygan
University of Warsaw, Poland

cygan@mimuw.edu.pl

Łukasz Kowalik
University of Warsaw, Poland

kowalik@mimuw.edu.pl

Arkadiusz Socała
University of Warsaw, Poland

arkadiusz.socala@mimuw.edu.pl

Krzysztof Sornat
University of Wrocław, Poland

krzysztof.sornat@cs.uni.wroc.pl

Abstract

We present three results on the complexity of MINIMAX
APPROVAL VOTING. First, we study MINIMAX APPROVAL
VOTING parameterized by the Hamming distance d from
the solution to the votes. We show MINIMAX APPROVAL
VOTING admits no algorithm running in time O�(2o(d log d)),
unless the Exponential Time Hypothesis (ETH) fails. This
means that the O�(d2d) algorithm of Misra et al. [AAMAS
2015] is essentially optimal. Motivated by this, we then
show a parameterized approximation scheme, running in time
O�((3/ε)2d), which is essentially tight assuming ETH. Fi-
nally, we get a new polynomial-time randomized approxima-
tion scheme for MINIMAX APPROVAL VOTING, which runs
in time nO(1/ε2·log(1/ε)) · poly(m), almost matching the run-
ning time of the fastest known PTAS for CLOSEST STRING
due to Ma and Sun [SIAM J. Comp. 2009].

1 Introduction

One of the central problems in artificial intelligence and
computational social choice is aggregating preferences of
individual agents (see the overview of Conitzer (2010)). Here
we focus on multi-winner choice, where the goal is to select
a k-element subset of a set of candidates. Given preferences
of the agents over the candidates, a multi-winner voting rule
can be used to select a subset of candidates that in some
sense are preferred by the agents. This scenario covers a
variety of settings: nations elect members of parliament or
societies elect committees (Chamberlin and Courant 1983),
web search engines choose pages to display in response to a
query (Dwork et al. 2001), airlines select movies available
on board (Skowron, Faliszewski, and Lang 2015), companies
select a group of products to promote (Lu and Boutilier 2011),
etc.

In this work we restrict our attention to approval-based
multi-winner rules, i.e., rules where each voter expresses his
or her preferences by providing a subset of the candidates
which he or she approves. Various voting rules are studied
in the literature. In the simplest one, Approval Voting (AV),
occurrences of each candidate are counted and k most often
approved candidates are selected. While this rule has many

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

desirable properties in the single winner case (Fishburn 1978),
in the multi-winner scenario its merits are often considered
less clear (Laslier and Sanver 2010), e.g., because it fails to re-
flect the diversity of interests in the electorate (Kilgour 2010).
Therefore, numerous alternative rules have been proposed, in-
cluding Satisfaction Approval Voting, Proportional Approval
Voting, and Reweighted Approval Voting (see Kilgour (2010)
for details). In this paper we study a rule called Minimax
Approval Voting (MAV), introduced by Brams, Kilgour, and
Sanver (2007). Here, we see the votes and the choice as 0-
1 strings of length m (characteristic vectors of the subsets,
i.e., the candidate i is approved if the string contains 1 at
position i). For two strings x and y of the same length the
Hamming distance H(x, y) is the number of positions where
x and y differ, e.g., H(011, 101) = 2. In MAV, we look for
a 0-1 string with k ones that minimizes the maximum Ham-
ming distance to a vote. In other words, MAV minimizes
the disagreement with the least satisfied voter and thus it
is highly egalitarian: no voter is ignored and a majority of
voters cannot guarantee a specific outcome (LeGrand 2004;
Brams, Kilgour, and Sanver 2007).

Our focus is on the computational complexity of comput-
ing the choice based on the MAV rule. In the MINIMAX
APPROVAL VOTING decision problem, we are given a multi-
set S = {s1, . . . , sn} of 0-1 strings of length m (also called
votes), and two integers k and d. The question is whether
there exists a string s ∈ {0, 1}m with exactly k ones such
that for every i = 1, . . . , n we have H(s, si) ≤ d. In the
optimization version of MINIMAX APPROVAL VOTING we
minimize d, i.e., given a multiset S and an integer k as before,
the goal is to find a string s ∈ {0, 1}m with exactly k ones
which minimizes maxi=1,...,n H(s, si).

A reader familiar with string problems might recognize
that MINIMAX APPROVAL VOTING is tightly connected with
the classical NP-complete problem called CLOSEST STRING,
where we are given n strings over an alphabet Σ and the goal
is to find a string that minimizes the maximum Hamming
distance to the given strings. Indeed, LeGrand, Markakis, and
Mehta (2007) showed that MINIMAX APPROVAL VOTING is
NP-complete as well by reduction from CLOSEST STRING
with binary alphabet. First proof of NP-completeness of MIN-
IMAX APPROVAL VOTING was shown using reduction from
VERTEX COVER (LeGrand 2004). This motivated the study

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

459

on MINIMAX APPROVAL VOTING in terms of approximabil-
ity and fixed-parameter tractability.

Previous results on MINIMAX APPROVAL VOTING First
approximation result was a simple 3-approximation algo-
rithm due to LeGrand, Markakis, and Mehta (2007), obtained
by choosing an arbitrary vote and taking any k approved can-
didates from the vote (extending it arbitrarily to k candidates
if needed). Next, a 2-approximation was shown by Caragian-
nis, Kalaitzis, and Markakis (2010) using an LP-rounding
procedure. Finally, recently Byrka and Sornat (2014) pre-
sented a polynomial time approximation scheme (PTAS),
i.e., an algorithm that for any fixed ε > 0 gives a (1 + ε)-
approximate solution in polynomial time. More precisely,
their algorithm runs in time mO(1/ε4) + nO(1/ε3) which is
polynomial in the number of voters n and the number of
alternatives m. The PTAS uses information extraction tech-
niques from fixed size (O(1/ε)) subsets of voters and random
rounding of the optimal solution of a linear program.

In the area of fixed parameter tractability (FPT) every in-
stance I of a problem P contains additionally an integer r,
called a parameter. The goal is to find a fixed parameter
algorithm (also called FPT algorithm), i.e., an algorithm with
running time of the form f(r)poly(|I|), where f is a func-
tion, which is typically at least exponential for NP-complete
problems. If such an algorithm exists, we say that the prob-
lem P parameterized by r is fixed parameter tractable (FPT).
For more details about FPT algorithms see the textbook of
Cygan et al. (2015) or the survey of Bredereck et al. (2014)
(in the context of computational social choice). The study
of FPT algorithms for MINIMAX APPROVAL VOTING was
initiated by Misra, Nabeel, and Singh (2015). They show
for example that MINIMAX APPROVAL VOTING parameter-
ized by k (the number of ones in the solution) is W [2]-hard,
which implies that there is no FPT algorithm, unless there
is a highly unexpected collapse in parameterized complexity
classes. From a positive perspective, they show that the prob-
lem is FPT when parameterized by the maximum allowed
distance d or by the number of votes n. Their algorithm runs
in time1 O�(d2d).2 For a study on FPT complexity of gener-
alizations of MINIMAX APPROVAL VOTING see Baumeister
et al. (2016).

Previous results on CLOSEST STRING It is interesting to
compare the known results on MINIMAX APPROVAL VOT-
ING with the corresponding ones on the better researched
CLOSEST STRING. The first PTAS for CLOSEST STRING
was given by Li, Ma, and Wang (2002) with running time
bounded by nO(1/ε4) where n is the number of the input

1The O� notation suppresses factors polynomial in the input
size.

2Actually, in the article (Misra, Nabeel, and Singh 2015) the
authors claim the slightly better running time of O�(dd). However,
there is a flaw in the analysis (Misra 2016; Liu and Guo 2016): it
states that the initial solution v is at distance at most d from the
solution, while it can be at distance 2d because of what we call here
the k-completion operation. This increases the maximum depth of
the recursion to d (instead of the claimed d/2).

strings. This was later improved by Andoni, Indyk, and Pa-
trascu (2006) to nO(

log 1/ε

ε2
), and then by Ma and Sun (2009)

to nO(1/ε2).
The first FPT algorithm for CLOSEST STRING, running

in time O�(dd) was given by Gramm, Niedermeier, and
Rossmanith (2003). This was later improved by Ma and
Sun (2009), who gave an algorithm with running time
O�(2O(d) · |Σ|d), which is more efficient for constant-size al-
phabets. Further substantial progress is unlikely, since Loksh-
tanov, Marx, and Saurabh (2011b) have shown that CLOSEST
STRING admits no algorithms running in time O�(2o(d log d))
or O�(2o(d log |Σ|)) , unless the Exponential Time Hypothesis
(ETH) (Impagliazzo and Paturi 2001) fails.

The discrepancy between the state of the art for CLOSEST
STRING and MINIMAX APPROVAL VOTING raises interest-
ing questions. First, does the additional constraint on the
number of ones in MINIMAX APPROVAL VOTING really
make the problem harder and the PTAS has to be signifi-
cantly slower? Similarly, although in MINIMAX APPROVAL
VOTING the alphabet is binary, no O�(2O(d))-time algorithm
is known, in contrast to CLOSEST STRING. Can we find
such an algorithm? The goal of this work is to answer these
questions.

Our results We present three results on the complexity
of MINIMAX APPROVAL VOTING. Let us recall that the
Exponential Time Hypothesis (ETH) of Impagliazzo and Pa-
turi (2001) states that there exists a constant c > 0, such
that there is no algorithm solving 3-SAT in time O�(2cn).
In recent years, ETH became the central conjecture used for
proving tight bounds on the complexity of various problems,
see Lokshtanov, Marx, and Saurabh (2011a) for a survey.
Nevertheless, ETH-based lower bounds seem largely unex-
plored in the area of computational social choice (Nieder-
meier 2015). We begin with showing that, unless the ETH
fails, there is no algorithm for MINIMAX APPROVAL VOT-
ING running in time O�(2o(d log d)). In other words, the al-
gorithm of Misra, Nabeel, and Singh (2015) is essentially
optimal, and indeed, in this sense MINIMAX APPROVAL
VOTING is harder than CLOSEST STRING. Motivated by this,
we then show a parameterized approximation scheme, i.e., a
randomized Monte-Carlo algorithm which, given an instance
(S, k, d) and a number ε > 0, finds a solution at distance
at most (1 + ε)d in time O�((3/ε)

2d
) or reports that there

is no solution at distance at most d (with arbitrarily small
positive constant probability of error). Note that our lower
bound implies that, under (randomized version of) ETH, this
is essentially optimal, i.e., there is no parameterized approx-
imation scheme running in time O�(2o(d log(1/ε))). Indeed,
if such an algorithm existed, by picking ε = 1/(d + 1) we
would get an exact algorithm which contradicts our lower
bound. Finally, we get a new polynomial-time randomized
approximation scheme for MINIMAX APPROVAL VOTING,
which runs in time nO(1/ε2·log(1/ε)) · poly(m) (with arbitrar-
ily small positive constant probability of error). Thus the
running time almost matches the one of the fastest known
PTAS for CLOSEST STRING (up to a log(1/ε) factor in the

460

exponent).

Organization of the paper In Section 2 we introduce
some notation and we recall standard probability bounds that
are used later in the paper. In Section 3 we present our lower
bound for MINIMAX APPROVAL VOTING parameterized
by d. Next, in Section 4 we show a parameterized approxima-
tion scheme. Finally, in Section 5 we show a new randomized
PTAS. The paper concludes with Section 6, where we discuss
directions for future work.

2 Definitions and Preliminaries

For every integer n we denote [n] = {1, 2, . . . , n}. For a set
of words S ⊆ {0, 1}m and a word x ∈ {0, 1}m we denote
H(x, S) = maxs∈S H(x, s). For a string s ∈ {0, 1}m, the
number of 1’s in s is denoted as n1(s) and it is also called the
Hamming weight of s; similarly n0(s) = m−n1(s) denotes
the number of zeroes. Moreover, the set of all strings of
length m with k ones is denoted by Sk,m, i.e., Sk,m = {s ∈
{0, 1}m : n1(s) = k}. s[j] means j-th letter of a string s.
For a subset of positions P ⊆ [m] we define a subsequence
s|P by removing the letters on positions [m] \ P from s.

For a string s ∈ {0, 1}m, any string s′ ∈ Sk,m at distance
|n1(s) − k| from s is called a k-completion of s. Note that
it is easy to find such a k-completion s′: when n1(s) ≥ k
we obtain s′ by replacing arbitrary n1(s) − k ones in s by
zeroes; similarly when n1(s) < k we obtain s′ by replacing
arbitrary k − n1(s) zeroes in s by ones.

3 A lower bound

In this section we show a lower bound for MINIMAX AP-
PROVAL VOTING parameterized by d. To this end, we use a
reduction from a problem called k × k-CLIQUE. In k × k-
CLIQUE we are given a graph G over the vertex set V =
[k]× [k], i.e., V forms a grid (as a vertex set; the edge set of
G is a part of the input and it can be arbitrary) with k rows
and k columns, and the question is whether in G there is a
clique containing exactly one vertex in each row.

Lemma 3.1. Given an instance I = (G, k) of k×k-CLIQUE
with k ≥ 2, one can construct an instance I ′ = (S, k, d)
of MINIMAX APPROVAL VOTING, such that I ′ is a yes-
instance iff I is a yes-instance, d = 3k − 3 and the set S
contains O(k

(
2k−2
k−2

)
) strings of length k2+2k−2 each. The

construction takes time polynomial in the size of the output.

Proof. Each string in the set S will be of size m = k2+2k−
2. Let us split the set of positions [m] into k+1 blocks, where
the first k blocks contain exactly k positions each, and the last
(k+1)-th block contains the remaining 2k−2 positions. Our
construction will enforce that if a solution exists, it will have
the following structure: there will be a single 1 in each of the
first k blocks and only zeroes in the last block. Intuitively the
position of the 1 in the first block encodes the clique vertex
of the first row of G, the position of the 1 in the second block
encodes the clique vertex of the second row of G, etc.

We construct the set S as follows.

0 ... 0 1 ... 1 0 1 ... 1 0 ... 0 1 ... 1 0 1 ... 1 0 ... 0
0 on b-th position 0 on b′-th position︸ ︷︷ ︸ ︸ ︷︷ ︸

a-th block a′-th block

Figure 1: Nonedge string.

0 ... 0 1 ... 1 0 ... 0 0 0 1 0 1 1 0 ... 0 1 0︸ ︷︷ ︸ ︸ ︷︷ ︸
i-th block ones on positions X , |X| = k − 2

Figure 2: Row string.

• (nonedge strings) For each pair of nonadjacent vertices
v, v′ ∈ V (G) of G belonging to different rows, i.e.,
v = (a, b), v′ = (a′, b′), a �= a′, we add to S a string
svv′ , where all the blocks except a-th and a′-th are filled
with zeroes, while the blocks a, a′ are filled with ones,
except the b-th position in block a and the b′-th position
in block a′ which are zeroes (see Fig. 1). Formally, svv′

contains ones at positions {(a − 1)k + j : j ∈ [k], j �=
b} ∪ {(a′ − 1)k + j : j ∈ [k], j �= b′}. Note that the
Hamming weight of svv′ equals 2k − 2.

• (row strings) For each row i ∈ [k] we create exactly(
2k−2
k−2

)
strings, i.e., for i ∈ [k] and for each set X of

exactly k− 2 positions in the (k+1)-th block we add to S
a string si,X having ones at all positions of the i-th block
and at X , all the remaining positions are filled with zeroes
(see Fig. 2). Note that similarly as for the nonedge strings
the Hamming weight of each row string equals 2k−2, and
to achieve this property we use the (k + 1)-th block.

To finish the description of the created instance I ′ =
(S, k, d) we need to define the target distance d, which we set
as d = 3k − 3. Observe that as the Hamming weight of each
string s′ ∈ S equals 2k − 2, for s ∈ {0, 1}m with exactly
k ones we have H(s, s′) ≤ d if and only if the positions of
ones in s and s′ have a non-empty intersection.

Let us assume that there is a clique K in G of size k
containing exactly one vertex from each row. For i ∈ [k]
let ji ∈ [k] be the column number of the vertex of K from
row i. Define s as a string containing ones exactly at positions
{(i− 1)k + ji : i ∈ [k]}, i.e., the (k + 1)-th block contains
only zeroes and for i ∈ [k] the i-th block contains a single 1
at position ji. Obviously s contains exactly k ones, hence it
suffices to show that s has at least one common one with each
of the strings in S. This is clear for the row strings, as each
row string contains a block full of ones. For a nonedge string
svv′ , where v = (a, b) and v′ = (a′, b′) note that K does
not contain v and v′ at the same time. Consequently s has a
common one with svv′ in at least one of the blocks a, a′.

In the other direction, assume that s is a string of length m
with exactly k ones such that the Hamming distance be-
tween s and each of the strings in S is at most d, which
by construction implies that s has a common one with each
of the strings in S. First, we are going to prove that s con-
tains a 1 in each of the first k blocks (and consequently has

461

only zeroes in block k + 1). For the sake of contradiction
assume that this is not the case. Consider a block i ∈ [k]
containing only zeroes. Let X be any set of k − 2 positions
in block k + 1 holding only zeroes in s (such a set exists as
block k + 1 has 2k − 2 positions). But the row string si,X
has 2k − 2 ones at positions where s has zeroes, and conse-
quently H(s, si,X) = k+ (2k− 2) = 3k− 2 > d = 3k− 3,
a contradiction.

As we know that s contains exactly one one in each of the
first k blocks let ji ∈ [k] be such a position of block i ∈ [k].
Create X ⊆ V (G) by taking the vertex from column ji for
each row i ∈ [k]. Clearly X is of size k and it contains exactly
one vertex from each row, hence it remains to prove that X
is a clique in G. Assume the contrary and let v, v′ ∈ X be
two distinct nonadjacent vertices of X , where v = (i, ji) and
v′ = (i′, ji′). Observe that the nonedge string svv′ contains
zeroes at the ji-th position of the i-th block and at the ji′-
th position of the i′-th block. Since for i′′ ∈ [k], i′′ �= i,
i′′ �= i′ block i′′ of svv′ contains only zeroes, we infer that
the sets of positions of ones of s and svv′ are disjoint leading
to H(s, svv′) = k+ (2k− 2) = 3k− 2 > d, a contradiction.

As we have proved that I is a yes-instance of k×k-CLIQUE
iff I ′ is a yes-instance of MINIMAX APPROVAL VOTING, the
lemma follows.

In order to derive an ETH-based lower bound we
need the following theorem of Lokshtanov, Marx, and
Saurabh (2011b).
Theorem 3.2. (Lokshtanov, Marx, and Saurabh 2011b) As-
suming ETH, there is no 2o(k log k)-time algorithm for k × k-
CLIQUE.

We are ready to prove the main result of this section.

Theorem 3.3. There is no 2o(d log d)poly(n,m)-time algo-
rithm for MINIMAX APPROVAL VOTING unless ETH fails.

Proof. Using Lemma 3.1, the input instance G of k × k-
CLIQUE is transformed into an equivalent instance I ′ =
(S, k, d) of MINIMAX APPROVAL VOTING, where n =

|S| = O(k
(
2k−2
k−2

)
) = 2O(k), each string of S has length

m = O(k2) and d = Θ(k). Using a 2o(d log d)poly(n,m)-
time algorithm for MINIMAX APPROVAL VOTING we can
solve k × k-CLIQUE in time 2o(k log k)2O(k) = 2o(k log k),
which contradicts ETH by Theorem 3.2.

4 Parameterized approximation scheme

In this section we show the following theorem.
Theorem 4.1. There exists a randomized algorithm which,
given an instance ({si}i=1,...,n, k, d) of MINIMAX AP-
PROVAL VOTING and any ε ∈ (0, 3), runs in time

O
((

3
ε

)2d
mn

)
and either

(i) reports a solution at distance at most (1 + ε)d from S,
or

(ii) reports that there is no solution at distance at most d
from S.

In the latter case, the answer is correct with probability at
least 1− p, for arbitrarily small fixed p > 0.

Pseudocode 1: Parameterized approximation scheme for
MINIMAX APPROVAL VOTING.

1 if |n1(s1)− k| > d then return NO;
2 x0 ← any k-completion of s1;
3 for j ∈ {1, 2, . . . , d} do
4 if H(xj−1, S) ≤ (1 + ε)d then return xj−1;
5 otherwise there exists si s.t. H(xj−1, si) > (1 + ε)d;
6 Pj,0 ← {a ∈ [m] : 0 = xj−1[a] �= si[a] = 1};
7 Pj,1 ← {a ∈ [m] : 1 = xj−1[a] �= si[a] = 0};
8 if min(|Pj,0|, |Pj,1|) = 0 then return NO;
9 Get xj from xj−1 by swapping 0 and 1 on pair of random

positions from Pj,0 and Pj,1);

10 if H(xd, S) ≤ (1 + ε)d then return xd;
11 else return NO ;

Let us proceed with the proof. In what follows we assume
p = 1/2, since then we can get the claim even if p < 1/2
by repeating the whole algorithm �log2(1/p)	 times. Indeed,
then the algorithm returns an incorrect answer only if each
of the �log2(1/p)	 repetitions returned an incorrect answer,
which happens with probability at most (1/2)log2(1/p) = p.

Assume we are given a yes-instance and let us fix a solution
s∗ ∈ Sk,m, i.e., a string at distance at most d from all the
input strings. Our approach is to begin with a string x0 ∈
Sk,m not very far from s∗, and next perform a number of
steps. In the j-th step we either conclude that xj−1 is already
a (1 + ε)-approximate solution, or with some probability we
find another string xj which is closer to s∗.

First observe that if |n1(s1) − k| > d, then clearly there
is no solution and our algorithm reports NO. Hence in what
follows we assume

|n1(s1)− k| ≤ d. (1)

We set x0 to be any k-completion of s1. By (1) we get
H(x0, s1) ≤ d. Since H(s1, s

∗) ≤ d, by the triangle in-
equality we get the following bound.

H(x0, s
∗) ≤ H(x0, s1) +H(s1, s

∗) ≤ 2d. (2)

Now we are ready to describe our algorithm precisely (see
also Pseudocode 1). We begin with x0 defined as above. We
are going to create a sequence of strings x0, x1, . . . satisfying
n1(xj) = k for every j. For j = 1, . . . , d we do the follow-
ing. If for every i = 1, . . . , n we have H(xj−1, si) ≤ (1+ε)d
the algorithm terminates and returns xj−1. Otherwise, fix
any i = 1, . . . , n such that H(xj−1, si) > (1 + ε)d. Let
Pj,0 = {a ∈ [m] : 0 = xj−1[a] �= si[a] = 1} and
Pj,1 = {a ∈ [m] : 1 = xj−1[a] �= si[a] = 0}. The algo-
rithm samples a position a0 ∈ Pj,0 and a position a1 ∈ Pj,1.
In case Pj,0 = ∅ or Pj,1 = ∅ we return NO because it means
that H(si, Sk,m) = H(si, xj−1) > d. Then, xj is obtained
from xj−1 by swapping the 0 at position a0 with the 1 at po-
sition a1. If the algorithm finishes without finding a solution,
it reports NO.

The following lemma is the key to get a lower bound on
the probability that the xj’s get close to s∗.
Lemma 4.2. Let x be a string in Sk,m such that H(x, si) ≥
(1+ε)d for some i = 1, . . . , n. Let s∗ ∈ Sk,m be any solution,

462

P Q

P ∗
0 P

∗
1

s∗ 0 11 0

si 1 0 0 1

x 0 1 0 1

Figure 3: Strings x, si and s∗ after permuting the positions.

i.e., a string at distance at most d from all the strings si,
i = 1, . . . , n. Denote

P ∗
0 = {a ∈ [m] : 0 = x[a] �= si[a] = s∗[a] = 1} ,

P ∗
1 = {a ∈ [m] : 1 = x[a] �= si[a] = s∗[a] = 0} .

Then,

min (|P ∗
0 | , |P ∗

1 |) ≥
εd

2
.

Proof. Let P be the set of positions on which x and si differ,
i.e., P = {a ∈ [m] : x[a] �= si[a]} (see Fig. 3). Note that
P ∗
0 ∪ P ∗

1 ⊆ P . Let Q = [m] \ P .
The intuition behind the proof is that if min(|P ∗

0 |, |P ∗
1 |)

is small, then s∗ differs too much from si, either because
s∗|P is similar to x|P (when |P ∗

0 | ≈ |P ∗
1 |) or because s∗|Q

has much more 1’s than si|Q (when |P ∗
0 | differs much from

|P ∗
1 |).
We begin with a couple of useful observations on the num-

ber of ones in different parts of x, si and s∗. Since x and si
are the same on Q, we get

n1(x|Q) = n1(si|Q). (3)

Since n1(x) = n1(s
∗), we get n1(x|P) + n1(x|Q) =

n1(s
∗|P) + n1(s

∗|Q), and further

n1(s
∗|Q)− n1(x|Q) = n1(x|P)− n1(s

∗|P). (4)

Finally note that

n1(s
∗|P) = |P ∗

0 |+ n1(x|P)− |P ∗
1 |. (5)

We are going to derive a lower bound on H(si, s
∗). First,

H(si|P , s∗|P) = |P | − (|P ∗
0 |+ |P ∗

1 |) =
= H(x, si)− (|P ∗

0 |+ |P ∗
1 |) ≥ (1+ ε)d− (|P ∗

0 |+ |P ∗
1 |).

On the other hand,

H(si|Q, s∗|Q) ≥ |n1(s
∗|Q)− n1(si|Q)| =

(3)
= |n1(s

∗|Q)− n1(x|Q)| =
(4)
= |n1(x|P)− n1(s

∗|P)| =
(5)
= ||P ∗

1 | − |P ∗
0 || .

It follows that

d ≥ H(si, s
∗) = H(si|P , s∗|P) +H(si|Q, s∗|Q) ≥

≥ (1 + ε)d− (|P ∗
0 |+ |P ∗

1 |) + ||P ∗
1 | − |P ∗

0 || =
= (1 + ε)d− 2min(|P ∗

0 |, |P ∗
1 |).

Hence, min(|P ∗
0 |, |P ∗

1 |) ≥ εd
2 as required.

Corollary 4.3. Assume that there is a solution s∗ ∈ Sk,m

and that the algorithm created a string xj , for some j =
0, . . . , d. Then,

Pr[H(xj , s
∗) ≤ 2d− 2j] ≥

(ε

3

)2j

.

Proof. We use induction on j. For j = 0 the claim follows
from (2). Consider j > 0. By the induction hypothesis,

Pr[H(xj−1, s
∗) ≤ 2d− 2j + 2] ≥

(ε

3

)2j−2

. (6)

Assume that H(xj−1, s
∗) ≤ 2d − 2j + 2. Since xj was

created, H(xj−1, si) > (1 + ε)d for some i = 1, . . . , n.
Since H(s∗, si) ≤ d, by the triangle inequality we get the
following.

|Pj,0|+ |Pj,1| = H(xj−1, si) ≤
≤ H(xj−1, s

∗) +H(s∗, si) ≤ 3d− 2j + 2 ≤ 3d. (7)

Then, by Lemma 4.2

Pr[H(xj , s
∗) ≤ 2d− 2j | H(xj−1, s

∗) ≤ 2d− 2j+2] ≥

≥ |P ∗
0 | · |P ∗

1 |
|Pj,0| · |Pj,1| ≥

(
εd
2

)2(
3d
2

)2 =
(ε

3

)2

. (8)

The claim follows by combining (6) and (8).

In order to increase the success probability, we repeat
the algorithm until a solution is found or the number of
repetitions is at least (3/ε)2d. By Corollary 4.3 the probability
that there is a solution but it was not found is bounded by

(
1−

(ε

3

)2d
)(3/ε)2d

=

(
1− 1

(3/ε)
2d

)(3/ε)2d

≤ 1

e
<

1

2
.

This finishes the proof of Theorem 4.1.

5 A faster polynomial time approximation

scheme

The goal of this section is to present a PTAS for the op-
timization version of MINIMAX APPROVAL VOTING run-
ning in time nO(1/ε2·log(1/ε)) · poly(m). It is achieved by
combining the parameterized approximation scheme from
Theorem 4.1 with the following result, which might be
of independent interest. Throughout this section OPT de-
notes the value of an optimum solution s for the given in-
stance ({si}i=1,...,n, k) of MINIMAX APPROVAL VOTING,
i.e., OPT = maxi=1,...,n H(s, si),
Theorem 5.1. There exists a randomized polynomial time
algorithm which, for arbitrarily small fixed p > 0, given an
instance ({si}i=1,...,n, k) of MINIMAX APPROVAL VOTING

and any ε > 0 such that OPT ≥ 122 lnn
ε2 , reports a solution,

which with probability at least 1 − p is at distance at most
(1 + ε) ·OPT from S.

In what follows, we prove Theorem 5.1. As in the
proof of Theorem 4.1 we assume w.l.o.g. p = 1/2. Note
that we can assume ε < 1, for otherwise it suffices to

463

Pseudocode 2: The algorithm from Theorem 5.1
1 Solve the LP (9–12) obtaining an optimal solution

(x∗
1, . . . , x

∗
m, d∗);

2 for j ∈ {1, 2, . . . ,m} do
3 Set x[j] ← 1 with probability x∗

j and x[j] ← 0 with
probability 1− x∗

j

4 y ← any k-completion of x;
5 return y

use the 2-approximation of Caragiannis, Kalaitzis, and
Markakis (2010). We also assume n ≥ 3, for otherwise
it is a straightforward exercise to find an optimal solution in
linear time. Let us define a linear program (9–12):

minimize d (9)
m∑
j=1

xj = k (10)

∑
j=1,...,m
si[j]=1

(1− xj) +
∑

j=1,...,m
si[j]=0

xj ≤ d ∀i ∈ {1, . . . , n} (11)

xj ∈[0, 1] ∀j ∈ {1, . . . ,m} (12)

The linear program (9–12) is a relaxation of the natural
integer program for MINIMAX APPROVAL VOTING, obtained
by replacing (12) by the discrete constraint xj ∈ {0, 1}.
Indeed, observe that xj corresponds to the j-th letter of the
solution x = x1 · · ·xm, (10) states that n1(x) = k, and (11)
states that H(x, S) ≤ d.

Our algorithm is as follows (see Pseudocode 2). First we
solve the linear program in time poly(n,m) using the interior
point method (Karmarkar 1984). Let (x∗

1, . . . , x
∗
m, d∗) be the

obtained optimal solution. Clearly, d∗ ≤ OPT. We randomly
construct a string x ∈ {0, 1}m, guided by the values x∗

j .
More precisely, for every j = 1, . . . ,m independently, we
set x[j] = 1 with probability x∗

j . Note that x needs not con-
tain k ones. Let y by any k-completion of x. The algorithm
returns y.

Clearly, the above algorithm runs in polynomial time. In
what follows we bound the probability of error. To this end
we prove upper bounds on the probability that x is far from
S and the probability that the number of ones in x is far from
k. This is done in Lemmas 5.2 and 5.3, which can be shown
using standard Chernoff bounds (due to space limitations, the
proofs are omitted, and can be found in the full version of the
paper (Cygan et al. 2016a)).
Lemma 5.2.

Pr
[H(x, S) > (1 + ε

2) ·OPT
] ≤ 1

4 .

Lemma 5.3.

Pr
[|n1(x)− k| > ε

2 ·OPT
] ≤ 1

4 .

Now we can finish the proof of Theorem 5.1. By Lem-
mas 5.2 and 5.3 with probability at least 1/2 both H(x, S) ≤
(1+ 1

2ε)·OPT and H(y, x) = |n1(x)−k| ≤ 1
2ε·OPT. By the

triangle inequality this implies that H(y, S) ≤ (1+ ε) ·OPT,
with probability at least 1/2 as required.

We conclude the section by combining Theorems 4.1
and 5.1 to get a fast PTAS.

Theorem 5.4. For each ε > 0 we can find (1 + ε)-
approximation solution for the MINIMAX APPROVAL VOT-
ING problem in time nO(log 1/ε

ε2
) · poly(m) with probability

at least 1− r, for any fixed r > 0.

Proof. First we run algorithm from Theorem 4.1 for d =
� 122 lnn

ε2 	 and p = r/2.
If it reports a solution, for every d′ ≤ d we apply The-

orem 4.1 with p = r/2 and we return the best solution. If
OPT ≥ d, even the initial solution is at distance at most
(1 + ε)d ≤ (1 + ε)OPT from S. Otherwise, at some point
d′ = OPT and we get (1+ε)-approximation with probability
at least 1− r/2 > 1− r.

In the case when the initial run of the algorithm from
Theorem 4.1 reports NO, we just apply the algorithm from
Theorem 5.1, again with p = r/2. With probability at least
1− r/2 the answer NO of the algorithm from Theorem 4.1
is correct. Conditioned on that, we know that OPT > d ≥
122 lnn

ε2 and then the algorithm from Theorem 5.1 returns a
(1+ ε)-approximation with probability at least 1− r/2. Thus,
the answer is correct with probability at least (1− r/2)2 >
1− r.

The total running time can be bounded as follows.

O∗
((

3

ε

) 244 lnn
ε2

)
⊆ nO(log 1/ε

ε2
) · poly(m).

6 Further research

We conclude the paper with some questions related to this
work that are left unanswered. Our PTAS for MINIMAX AP-
PROVAL VOTING is randomized, and it seems there is no
direct way of derandomizing it. It might be interesting to
find an equally fast deterministic PTAS. The second ques-
tion is whether there are even faster PTASes for CLOSEST
STRING or MINIMAX APPROVAL VOTING. Recently, Cygan
et al. (2016b) showed that under ETH, there is no PTAS in
time f(ε) ·no(1/ε) for CLOSEST STRING. This extends to the
same lower bound for MINIMAX APPROVAL VOTING, since
we can try all values k = 0, 1, . . . ,m. It is a challenging
open problem to close the gap in the running time of PTAS
either for CLOSEST STRING or for MINIMAX APPROVAL
VOTING.

Acknowledgments. Marek Cygan would like to thank
Daniel Lokshtanov for helpful conversations about exist-
ing algorithms for the Closest (Sub)String problem. The
authors thank Piotr Skowron for helpful remarks concern-
ing the introduction and they thank reviewers for their in-
sightful comments on the paper. The work of M. Cygan is
a part of the project TOTAL that has received funding from
the European Research Council (ERC) under the European
Unions Horizon 2020 research and innovation programme
(grant agreement No 677651). Ł. Kowalik and A. Socała
were supported by the National Science Centre, Poland,

464

grant number 2013/09/B/ST6/03136. K. Sornat was sup-
ported by the National Science Centre, Poland, grant number
2015/17/N/ST6/03684.

References

Andoni, A.; Indyk, P.; and Patrascu, M. 2006. On the Op-
timality of the Dimensionality Reduction Method. In 47th
Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2006, 449–458.
Baumeister, D.; Böhnlein, T.; Rey, L.; Schaudt, O.; and
Selker, A. 2016. Minisum and Minimax Committee Elec-
tion Rules for General Preference Types. In ECAI 2016 -
22nd European Conference on Artificial Intelligence, volume
285 of Frontiers in Artificial Intelligence and Applications,
1656–1657. IOS Press.
Brams, S. J.; Kilgour, D. M.; and Sanver, M. R. 2007. A
Minimax Procedure for Electing Committees. Public Choice
132(3-4):401–420.
Bredereck, R.; Chen, J.; Faliszewski, P.; Guo, J.; Niedermeier,
R.; and Woeginger, G. J. 2014. Parameterized Algorithmics
for Computational Social Choice: Nine Research Challenges.
Tsinghua Science and Technology 19(4):358–373.
Byrka, J., and Sornat, K. 2014. PTAS for Minimax Approval
Voting. In Proceedings of 10th International Conference Web
and Internet Economics, WINE 2014, 203–217.
Caragiannis, I.; Kalaitzis, D.; and Markakis, E. 2010. Ap-
proximation Algorithms and Mechanism Design for Minimax
Approval Voting. In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, AAAI.
Chamberlin, J. R., and Courant, P. N. 1983. Representative
Deliberations and Representative Decisions: Proportional
Representation and the Borda Rule. American Political Sci-
ence Review 77:718–733.
Conitzer, V. 2010. Making Decisions Based on the Prefer-
ences of Multiple Agents. Commun. ACM 53(3):84–94.
Cygan, M.; Fomin, F. V.; Kowalik, Ł.; Lokshtanov, D.; Marx,
D.; Pilipczuk, M.; Pilipczuk, M.; and Saurabh, S. 2015.
Parameterized Algorithms. Springer.
Cygan, M.; Kowalik, Ł.; Socała, A.; and Sornat, K. 2016a.
Approximation and Parameterized Complexity of Minimax
Approval Voting. CoRR abs/1607.07906.
Cygan, M.; Lokshtanov, D.; Pilipczuk, M.; Pilipczuk, M.;
and Saurabh, S. 2016b. Lower Bounds for Approximation
Schemes for Closest String. In 15th Scandinavian Sympo-
sium and Workshops on Algorithm Theory, SWAT 2016, 12:1–
12:10.
Dwork, C.; Kumar, R.; Naor, M.; and Sivakumar, D. 2001.
Rank Aggregation Methods for the Web. In Proceedings of
the Tenth International World Wide Web Conference, WWW
2001, 613–622.
Fishburn, P. C. 1978. Axioms for Approval Voting: Direct
Proof. Journal of Economic Theory 19(1):180–185.
Gramm, J.; Niedermeier, R.; and Rossmanith, P. 2003. Fixed-
Parameter Algorithms for Closest String and Related Prob-
lems. Algorithmica 37(1):25–42.

Impagliazzo, R., and Paturi, R. 2001. On the Complexity of
k-SAT. J. Comput. Syst. Sci. 62(2):367–375.
Karmarkar, N. 1984. A New Polynomial-time Algorithm for
Linear Programming. Combinatorica 4(4):373–396.
Kilgour, D. M. 2010. Approval Balloting for Multi-winner
Elections. In Laslier, J.-F., and Sanver, R. M., eds., Hand-
book on Approval Voting. Berlin, Heidelberg: Springer Berlin
Heidelberg. 105–124.
Laslier, J., and Sanver, M. 2010. Handbook on Approval
Voting. Studies in Choice and Welfare. Springer Berlin Hei-
delberg.
LeGrand, R.; Markakis, E.; and Mehta, A. 2007. Some
Results on Approximating the Minimax Solution in Approval
Voting. In 6th International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2007, 1193–1195.
LeGrand, R. 2004. Analysis of the Minimax Procedure.
Technical Report WUCSE-2004-67, Department of Com-
puter Science and Engineering, Washington University, St.
Louis, Missouri.
Li, M.; Ma, B.; and Wang, L. 2002. On the Closest String
and Substring Problems. Journal of the ACM 49(2):157–171.
Liu, H., and Guo, J. 2016. Parameterized Complexity of
Winner Determination in Minimax Committee Elections. In
Proceedings of the 2016 International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS 2016,
341–349.
Lokshtanov, D.; Marx, D.; and Saurabh, S. 2011a. Lower
Bounds Based on the Exponential Time Hypothesis. Bulletin
of the EATCS 105:41–72.
Lokshtanov, D.; Marx, D.; and Saurabh, S. 2011b. Slightly
Superexponential Parameterized Problems. In Proceedings
of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2011, 760–776.
Lu, T., and Boutilier, C. 2011. Budgeted Social Choice: From
Consensus to Personalized Decision Making. In Proceed-
ings of the 22nd International Joint Conference on Artificial
Intelligence, IJCAI 2011, 280–286.
Ma, B., and Sun, X. 2009. More Efficient Algorithms for
Closest String and Substring Problems. SIAM Journal of
Computing 39(4):1432–1443.
Misra, N.; Nabeel, A.; and Singh, H. 2015. On the Parameter-
ized Complexity of Minimax Approval Voting. In Proceed-
ings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2015, 97–105.
Misra, N. 2016. personal communication.
Niedermeier, R. 2015. Lower Bound Issues in Computational
Social Choice. A talk at the workshop Satisfiability Lower
Bounds and Tight Results for Parameterized and Exponential-
Time Algorithms, Simons Institute, Berkeley, November 10,
2015.
Skowron, P. K.; Faliszewski, P.; and Lang, J. 2015. Find-
ing a Collective Set of Items: From Proportional Multirep-
resentation to Group Recommendation. In Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence,
AAAI 2015, 2131–2137.

465

