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Abstract

Participatory budgeting enables the allocation of public funds
by collecting and aggregating individual preferences; it has
already had a sizable real-world impact. But making the most
of this new paradigm requires a rethinking of some of the ba-
sics of computational social choice, including the very way
in which individuals express their preferences. We analyti-
cally compare four preference elicitation methods — knap-
sack votes, rankings by value or value for money, and thresh-
old approval votes — through the lens of implicit utilitarian
voting, and find that threshold approval votes are qualitatively
superior. This conclusion is supported by experiments using
data from real participatory budgeting elections.

1 Introduction

One of the most well-studied problems in computational
social choice (Brandt et al. 2016) deals with aggregat-
ing individual preferences over alternatives — expressed as
rankings — into a collective choice of a subset of alter-
natives (Procaccia, Reddi, and Shah 2012; Skowron, Fal-
iszewski, and Lang 2015; Caragiannis et al. 2016). Nascent
social choice applications, though, have given rise to the
harder, richer problem of budgeted social choice (Lu and
Boutilier 2011), where alternatives have associated costs,
and the selected subset is subject to a budget constraint.

Our interest in budgeted social choice stems from the
striking real-world impact of the participatory budgeting
paradigm (Cabannes 2004), which allows local governments
to allocate public funds by eliciting and aggregating the pref-
erences of residents over potential projects. Indeed, in just a
few years, the Participatory Budgeting Project1 has helped
allocate more than $170 million dollars of public money
for more than 500 local projects, primarily in the US and
Canada (including New York City, Chicago, Boston, and
San Francisco).

In pioneering work, Goel et al. (2016) — who have facil-
itated a number of participatory budgeting elections as part
of the Stanford Crowdsourced Democracy Team2 — pro-
pose and evaluate two participatory budgeting approaches.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://www.participatorybudgeting.org
2http://voxpopuli.stanford.edu

In the first approach, the input format — the way in which
each voter’s preferences are elicited — is knapsack votes:
Each voter reports his individual solution to the knapsack
problem, that is, the set of projects that maximizes his over-
all value (assuming an additive valuation function), subject
to the budget constraint. The second component of the ap-
proach is the aggregation rule; in this case, each voter is
seen as approving all the projects in his knapsack, and then
projects are ordered by the number of approval votes and
greedily selected for execution, until the budget runs out.
The second approach uses value-for-money comparisons as
the input format — it asks voters to compare pairs of projects
by the ratio between value and cost. These comparisons are
aggregated using variants of classic voting rules, including
the Borda count rule and the Kemeny rule.

In a sense, Goel et al. (2016) take a bottom-up approach:
They define novel, intuitive input formats that encourage
voters to take cost — not just value — into account, and
justify them after the fact. By contrast, we wish to take a top-
down approach, by specifying an overarching optimization
goal, and using it to compare different methods for partici-
patory budgeting.

1.1 Our Approach and Results

Let us define the participatory budgeting problem a bit more
formally, following Goel et al. (2016). A set N of n voters
are voting over a set A of m alternatives (projects), where
each alternative a has cost ca. The utility voter i has for al-
ternative a is denoted vi(a). Moreover, utility functions are
additive, that is, the utility of a voter for a set of alterna-
tives A′ ⊆ A is

∑
a∈A′ vi(a). Our goal is to choose a set

W ⊆ A of winning alternatives that maximizes the (utili-
tarian) social welfare, subject to the total cost not exceeding
the budget B:

argmax
W⊆A :

∑
a∈W ca�B

∑
i∈N

∑
a∈W

vi(a). (1)

We make essentially3 no assumptions about the utility
functions. Nevertheless, solving (1) would be easy if we

3Other than a standard normalization assumption that we dis-
cuss later.
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had access to the utility functions; the problem is challeng-
ing precisely because we do not. Rather, we have access to
votes, in a certain input format, that are consistent with the
utility functions. This goal — maximizing social welfare
based on votes that serve as proxies for latent utility func-
tions — has been studied for more than a decade (Procac-
cia and Rosenschein 2006; Caragiannis and Procaccia 2011;
Boutilier et al. 2015; Anshelevich, Bhardwaj, and Postl
2015; Anshelevich and Sekar 2016; Anshelevich and Postl
2016); it has recently been termed implicit utilitarian vot-
ing (Caragiannis et al. 2016).

Absent complete information about the utility functions,
clearly social welfare cannot be perfectly maximized. Pro-
caccia and Rosenschein (2006) introduced the notion of dis-
tortion to quantify how far a given aggregation rule is from
achieving this goal. Roughly speaking, given a vote profile
(a set of n votes) and an outcome, the distortion is the worst-
case ratio between the social welfare of the optimal out-
come, and the social welfare of the given outcome, where
the worst case is taken with respect to all utility profiles that
are consistent with the given votes.

Previous work on implicit utilitarian voting assumes that
each voter expresses his preferences by ranking the alter-
natives in order of decreasing utility. By contrast, the main
insight underlying our work is that

... the implicit utilitarian voting framework allows us
to decouple the input format and aggregation rule,
thereby enabling an analytical comparison of different
input formats in terms of their potential for providing
good solutions to the participatory budgeting problem.

This decoupling is achieved by associating each input format
with the distortion of the optimal (randomized) aggregation
rule, that is, the rule that minimizes distortion on every vote
profile. Intuitively, the distortion thus associated with an in-
put format measures how useful the information contained
in the votes is for achieving social welfare maximization.

In §3, we apply this approach to compare four input for-
mats. The first is knapsack votes, which (disappointingly) is
associated with trivial distortion of Θ(m).4 Next, we analyze
two closely related input formats: rankings by value, and
rankings by value for money, which ask voters to rank the
alternatives by their value and by the ratio of their value and
cost, respectively. We find that both admit an upper bound
of O(

√
m · logm) on distortion, which almost matches a

lower bound of Ω(
√
m). Finally, we examine a novel input

format, which we call threshold approval votes: each voter
is asked to approve each alternative whose value for him is
above a threshold that we choose. We find that its associ-
ated distortion is O(log2 m), and establish a lower bound of
Ω (logm/ log logm). To summarize, our theoretical results
show striking separations between different input formats,
with threshold approval votes coming out well on top.

While our theoretical results in §3 bound the distortion,
i.e., the worst-case ratio of the optimal social welfare to

4As we later show, an upper bound of O(m) can be achieved
trivially irrespective of the input format, by selecting a single alter-
native uniformly at random. Knapsack votes, unfortunately, do not
help improve it.

the social welfare achieved, in §4 we compare different ap-
proaches to participatory budgeting using the average-case
ratio of the two. Specifically, we experimentally evaluate ap-
proaches that use the input formats we study in conjunction
with their respective optimal aggregation rules, which min-
imize the distortion on each profile,5 and compare them to
two approaches currently employed in practice. We use data
from two real-world participatory budgeting elections held
in Boston in 2015 and 2016. The experiments indicate that
the use of aggregation rules that minimize distortion on ev-
ery input profile significantly outperforms the currently de-
ployed approaches, and among the input formats we study,
threshold approval votes remain superior, even in practice.
We also observe that the running times of the distortion min-
imizing rules scale gracefully for most practical scenarios.

1.2 Related Work

Due to space constraints, we only discuss a few closely
related papers. Let us first describe the theoretical results
of Goel et al. (2016) in slightly greater detail. Most rel-
evant to our work is a theorem that asserts that knap-
sack voting (i.e., knapsack votes as the input format, cou-
pled with greedy approval-based aggregation) actually max-
imizes social welfare. However, the result strongly relies
on their overlap utility model, where the utility of a voter
for a subset of alternatives is (roughly speaking) the size
of the intersection between this subset and his own knap-
sack vote. In a sense, the viewpoint underlying this model
is the opposite of ours, as a voter’s utility is derived from
his vote, instead of the other way around. One criticism
of this model is that even if certain alternatives do not
fit into a voter’s individual knapsack solution due to the
budget constraint, the voter could (and usually will) have
some utility for them. Goel et al. (2016) also provide strat-
egyproofness results for knapsack voting, which similarly
rely on the overlap utility model. Finally, they interpret their
methods as maximum likelihood estimators (Young 1988;
Conitzer and Sandholm 2005) under certain noise models.

Naturally, our work is also closely related to previous
work on implicit utilitarian voting. Crucially, as noted above,
this line of work focuses exclusively on the rankings-by-
value input format. Boutilier et al. (2015) study the problem
of selecting a single winning alternative, and provide an up-
per bound of O(

√
m log∗ m) and a lower bound of Ω(

√
m)

on the distortion achieved by the optimal aggregation rule.
Their setting is a special case of the participatory budgeting
problem where the cost of each alternative equals the en-
tire budget. Consequently, their lower bound applies to our
more general setting, and our upper bound for the rankings-
by-value input format generalizes theirs (up to a logarith-
mic factor). Caragiannis et al. (2016) extend the results of
Boutilier et al. (2015) to the case where a subset of alterna-

5Note that such rules are not guaranteed to achieve the optimal
performance in our experiments as we measure performance using
the average-case ratio of the optimal to the achieved social wel-
fare rather than the (worst-case) distortion. Nonetheless, such rules
perform extremely well.

377



tives of a given size k is to be selected (only for the rankings-
by-value input format); this is again a special case of the
participatory budgeting problem where the cost of each al-
ternative is B/k. However, our results are incomparable to
theirs because we assume additive utility functions — fol-
lowing previous work on participatory budgeting (Goel et
al. 2016) — whereas Caragiannis et al. assume that a voter’s
utility for a subset of alternatives is his maximum utility for
any alternative in the subset.

2 The Model

Let [k] � {1, . . . , k}. Let N = [n] be the set of voters, and
A be the set of m alternatives. The cost of alternative a is
denoted ca, and the budget B is normalized to 1. For S ⊆ A,
let c(S) =

∑
a∈S ca. Define Fc = {S ⊆ A : c(S) �

1 ∧ c(T ) > 1, ∀S � T ⊆ A} as the inclusion-maximal
budget-feasible subsets of A.

We assume that each voter has a utility function vi :
A → R+ ∪ {0}, where vi(a) is the utility that voter i
has for alternative a, and that these utilities are additive,
i.e., the utility of voter i for a set S ⊆ A is defined as
vi(S) =

∑
a∈S vi(a). Finally, to ensure fairness among vot-

ers, we make the standard assumption (Caragiannis and Pro-
caccia 2011; Boutilier et al. 2015) that vi(A) = 1 for all
voters i ∈ N . We call the vector �v = {v1, . . . , vn} of voter
utility functions the utility profile. Given the utility profile,
the (utilitarian) social welfare of an alternative a ∈ A is
defined as sw(a,�v) =

∑
i∈N vi(a); for a set S ⊆ A, let

sw(S,�v) =
∑

a∈S sw(a,�v).
The utility function of a voter i is only accessible through

his vote ρi, which is induced by vi. The vector �ρ =
{ρ1, . . . , ρn} is called the input profile. Let �v � �ρ denote
that utility profile �v is consistent with input profile �ρ. We
study four specific formats for input votes:
• The knapsack vote κi ⊆ A of voter i ∈ N represents a

feasible subset of alternatives with the highest value for
the voter. We have vi � κi if and only if c(κi) � 1 and
vi(κi) � vi(S) for all S ∈ Fc.

• The rankings-by-value and the rankings-by-value-for-
money input formats ask voter i ∈ N to rank the alter-
natives by decreasing value for him, and by decreasing
ratio of value for him to cost, respectively.
Formally, let L = L(A) denote the set of rankings over
the alternatives. For a ranking σ ∈ L, let σ(a) denote the
position of alternative a in σ, and a 	σ b denote σ(a) <
σ(b), i.e., that a is preferred to b under σ.
Then, we say that utility function vi is consistent with the
ranking by value (resp. value for money) of voter i ∈ N ,
denoted σi, if and only if vi(a) � vi(b) (resp. vi(a)/ca �
vi(b)/cb) for all a 	σi b.

• For a threshold t, the threshold approval vote τi of voter
i ∈ N consists of the set of alternatives whose value for
him is at least t, i.e., vi � τi if and only if τi = {a ∈ A :
vi(a) � t}.
In our setting, a (randomized) aggregation rule f for an

input format maps each input profile �ρ in that format to a

distribution over Fc. The rule is deterministic if it returns a
particular set in Fc with probability 1.

In the implicit utilitarianism framework, the ultimate goal
is to maximize the (utilitarian) social welfare. Procaccia and
Rosenschein (2006) use the notion of distortion to quantify
how far an aggregation rule f is from achieving this goal.
The distortion of f on a vote profile �ρ is given by

dist(f, �ρ) = sup
�v:�v��ρ

maxT∈Fc
sw(T,�v)

ES∼f(�ρ)[sw(S,�v)]
.

The (overall) distortion of a rule f is given by dist(f) =
max�ρ dist(f, �ρ). The optimal aggregation rule f∗, which we
term the distortion-minimizing aggregation rule, selects the
distribution minimizing distortion on each input profile in-
dividually, that is,

f∗(�ρ) = argmin
μ∈Δ(Fc)

sup
�v:�v��ρ

maxT∈Fc sw(T,�v)

ES∼μ[sw(S,�v)]
,

where Δ(Fc) is the set of distributions over Fc. Needless to
say, f∗ achieves the best possible overall distortion.

Finally, we say that the distortion associated with an input
format (i.e., elicitation method) is the overall distortion of
the (randomized) distortion-minimizing aggregation rule for
that format; this, in a sense, quantifies the effectiveness of
the input format in achieving social welfare maximization.6

3 Theoretical Results

Before we present our analysis of the different input formats
from the perspective of implicit utilitarianism, let us make a
simple observation that holds across all input formats.
Observation 3.1. The distortion associated with any input
format is at most m.

Proof. Consider the rule that selects a single alternative uni-
formly at random; this is clearly budget-feasible. Due to
the normalization of utility functions, the expected welfare
achieved by this rule is (1/m) ·∑i∈N

∑
a∈A vi(a) = n/m.

On the other hand, the maximum welfare that any subset of
alternatives can achieve is at most n. Hence, the distortion of
this rule, which does not require any input, is at most m.

3.1 Knapsack Votes

We now present our analysis for knapsack votes — an input
format advocated by Goel et al. (2016).
Theorem 3.2. The distortion associated with knapsack
votes is Ω(m).

Proof. Consider the case where every alternative has cost 1
(i.e., equal to the budget). For ease of exposition, assume that
m divides n. Consider the input profile �κ, in which voters

6In a setting where deterministic rules must be used, one
could similarly associate each input format with its best deter-
ministic rule. We study this less motivated and technically less
interesting setting in the full version of the paper available at
http://procaccia.info/papers.
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are partitioned into m subsets {Na}a∈A of equal size, and
for every a ∈ A and i ∈ Na, we have κi = {a}.

Consider a randomized aggregation rule f . There must
exist an alternative a∗ ∈ A such that Pr[f(�κ) = {a∗}] �
1/m. Now, construct a utility profile �v such that i) for all
i ∈ Na∗ , we have vi(a

∗) = 1, and vi(a) = 0 for a ∈
A \ {a∗}; and ii) for all a ∈ A \ {a∗} and i ∈ Na, we have
vi(a) = vi(a

∗) = 1/2, and vi(b) = 0 for b ∈ A \ {a, a∗}.
Note that �v is consistent with the input profile �κ, i.e.,

�v � �κ. Moreover, it holds that sw(a∗, �v) � n/2, whereas
sw(a,�v) � n/m for a ∈ A \ {a∗}. It follows that

dist(f) � dist(f,�κ) � n/2
1
m · n+ m−1

m · n
m

� m

4
,

as desired.

In light of Observation 3.1, this result indicates that the
distortion associated with knapsack votes is asymptotically
indistinguishable from the distortion one can achieve with
absolutely no information about voter preferences, suggest-
ing that knapsack votes may not be an appropriate input for-
mat if the goal is to maximize social welfare. Our aim now is
to find input formats that achieve better results when viewed
through the implicit utilitarianism lens.

3.2 Rankings by Value and by Value for Money

Goel et al. (2016) also advocate the use of comparisons be-
tween alternatives based on value for money, which, like
knapsack votes, encourage voters to consider the trade-off
between value and cost. We study rankings by value for
money as an input format; observe that such rankings convey
more information than specific pairwise comparisons.

In addition, we also study rankings by value, which are
prevalent in the existing literature on implicit utilitarian vot-
ing (Procaccia and Rosenschein 2006; Caragiannis and Pro-
caccia 2011; Boutilier et al. 2015; Anshelevich, Bhardwaj,
and Postl 2015; Anshelevich and Sekar 2016; Anshelevich
and Postl 2016). Rankings by value convey more informa-
tion than k-approval votes, in which each voter submits the
set of top k alternatives by their value — this is the input
format of choice for most real-world participatory budget-
ing elections (Goel et al. 2016).

As noted in §1.2, Boutilier et al. (2015) prove a lower
bound of Ω(

√
m) on distortion in the special case of our set-

ting where all alternatives have cost 1, and the input format is
rankings by value. This result carries over to our more gen-
eral setting, not only with rankings by value, but also with
rankings by value for money, as both input formats coincide
in case of equal costs. Our goal is to establish an almost
matching upper bound.

We start from a mechanism of Boutilier et al. (2015) that
has distortion O(

√
m logm) in their setting. It carefully bal-

ances between high-value and low-value alternatives (where
value is approximately inferred from the positions of the al-
ternatives in the input rankings). In our more general par-
ticipatory budgeting problem, it is crucial to also take into
account the costs, and find the perfect balance between se-
lecting many low-cost alternatives and fewer high-cost ones.

We modify the mechanism of Boutilier et al. precisely to
achieve this goal. Specifically, we partition the alternatives
into O(logm) buckets based on their costs, and differen-
tiate between alternatives within a bucket based on their
(inferred) value. Our mechanism for rankings by value for
money requires more careful treatment as (ironically) values
are obfuscated in value-for-money comparisons.

At first glance our setting seems much more difficult,
distortion-wise, than the simple setting of Boutilier et
al. (2015). But ultimately we obtain only a slightly weaker
upper bound on the distortion associated with both rankings
by value and by value for money. In other words, to our
surprise, incorporating costs and a budget constraint comes
at almost no cost (no pun intended) to social welfare maxi-
mization. The proof of this result appears in the full version.

Theorem 3.3. The distortion associated with rankings by
value and rankings by value for money is O(

√
m logm).

3.3 Threshold Approval Votes

Approval voting — where voters can choose to approve any
subset of alternatives, and the most widely approved alterna-
tive wins — is well studied in social choice theory (Brams
and Fishburn 2007). In our utilitarian setting we reinterpret
this input format as threshold approval votes, where the prin-
cipal sets a threshold t, and each voter i ∈ N approves every
alternative a for which vi(a) � t.

We first investigate deterministic threshold approval
votes, in which the threshold selected deterministically, but
find that it does not help us (significantly) improve over the
distortion we can already obtain using rankings by value or
by value for money. Specifically, for a fixed threshold, we
are always able to construct cases in which alternatives have
significantly different welfares, but either no alternative is
approved or an extremely large set of alternatives are ap-
proved, providing the rule little information to distinguish
between the alternatives, and yielding high distortion. The
proof of this result appears in the full version of the paper.

Theorem 3.4. The distortion associated with deterministic
threshold approval votes is Ω(

√
m).

We thus turn our attention to randomized threshold ap-
proval votes, in which the threshold is selected in a random-
ized fashion. Technically, this is a distribution over input for-
mats, one for each value of the threshold.7 The (overall) dis-
tortion of a rule f , which now determines both the distribu-
tion over thresholds D, and the aggregation of input profile
�ρ(�v, t) induced by utility profile �v and threshold t, is

dist(f) = sup�v Et∼D
maxT∈Fc

sw(T,�v)

ES∼f(�ρ(�v,t))[sw(S,�v)]
.

Interested readers can refer to the full version of the paper
for a discussion on how this definition relates to the defini-
tion of distortion of a rule for a fixed input format. We find

7While we study deterministic and randomized threshold se-
lection, we always allow randomized aggregation rules. The full
version of the paper presents an analysis of the case where the ag-
gregation rule has to be deterministic.
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that the flexibility of randomizing the threshold value allows
us to dramatically reduce the distortion.
Theorem 3.5. The distortion associated with randomized
threshold approval votes is O(log2 m).

Proof. For ease of exposition, assume m is a power of 2.
Let I0 = [0, 1/m2], and Ij = (2j−1/m2, 2j/m2], �j =
2j−1/m2, and uj = 2j/m2 for j = 1, . . . , 2 logm.

Let �v denote a utility profile that is consistent with the
input profile. For a ∈ A and j ∈ {0, . . . , 2 logm}, define
na
j = |{i ∈ N : vi(a) ∈ Ij}| to be the number of voters

whose utility for a falls in the interval Ij . We now bound the
social welfare of a in terms of the numbers na

j . Specifically,

sw(a,�v) =
∑
i∈N

vi(a) �
2 logm∑
j=0

∑
i∈N

I{vi(a) ∈ Ij} · uj

=

2 logm∑
j=0

na
j · uj ,

A similar argument also yields a lower bound, and after sub-
stituting �0 = 0, u0 = 1/m2, and na

0 � n, we get

2 logm∑
j=1

na
j · �j � sw(a,�v) � n

m2
+

2 logm∑
j=1

na
j · uj . (2)

Next, divide the alternatives into 1+2 logm buckets based
on their costs, with bucket Sj = {a ∈ A : ca ∈ Ij}. Note
that selecting at most 1/uj alternatives from Sj is guaran-
teed to satisfy the budget constraint.

Let S∗ = argmaxS∈Fc
sw(S,�v) be the feasible set

of alternatives maximizing the social welfare. For j, k ∈
{0, . . . , 2 logm}, let n∗

j,k =
∑

a∈S∗∩Sk
na
j . Using Equa-

tion (2), we have

2 logm∑
j=1

n∗
j,k · �j � sw(S∗ ∩ Sk, �v)

� |S∗ ∩ Sk| · n

m2
+

2 logm∑
j=1

n∗
j,k · uj . (3)

We now construct three different mechanisms; our final
mechanism will randomize between them.
Mechanism A: Pick a pair (j, k) uniformly at random from
the set T = {(j, k) : j, k ∈ [2 logm]}. Then, set the thresh-
old to �j , and using the resulting input profile, greedily select
the 1/uk alternatives from Sk with the largest number of ap-
proval votes (or select Sk if |Sk| � 1/uk). Let Bj,k denote
the set of selected alternatives for the pair (j, k). Because we
have j > 0 and k > 0,

sw(Bj,k, �v) �
∑

a∈Bj,k

⎛
⎝

2 logm∑
p=j

na
p

⎞
⎠ · �j

� 1

4
·
⎛
⎝

2 logm∑
p=j

n∗
p,k

⎞
⎠ · uj �

1

4
· n∗

j,k · uj , (4)

where, in the first transition, we bound the welfare from be-
low by only considering utilities that are at least �j , and the
second transition holds because uj = 2�j , |S∗ ∩ Sk| �
2|Bj,k|, and Bj,k consists of greedily-selected alternatives
with the highest number of approval votes. Thus, the ex-
pected social welfare achieved by mechanism A is

1

(2 logm)2

2 logm∑
j=1

2 logm∑
k=1

sw(Bj,k, �v)

� 1

4 · (2 logm)2

2 logm∑
j=1

2 logm∑
k=1

n∗
j,k · uj

� 1

16 log2 m

(
sw(S∗ \ S0, �v)− |S∗ \ S0| · n

m2

)

� 1

16 log2 m

(
sw(S∗ \ S0, �v)− n

m

)
,

where the first transition follows from Equation (4), and the
second transition follows from Equation (3).
Mechanism B: Select all the alternatives in S0. Because
each alternative in S0 has cost at most 1/m2, this is clearly
budget-feasible. Further, the social welfare achieved by this
mechanism is sw(S0, �v) � sw(S∗ ∩ S0, �v).
Mechanism C: Select a single alternative uniformly at ran-
dom from A. This is also budget-feasible, and due to nor-
malization of values, its expected social welfare is n/m.

Our final mechanism executes mechanism A with prob-
ability 16 log2 m/(2 + 16 log2 m), and mechanisms B and
C with probability 1/(2 + 16 log2 m) each. It is easy to see
that its expected social welfare is at least sw(S∗, �v)/(2 +
16 log2 m). Hence, its distortion is O(log2 m).

We also show that at least logarithmic distortion is in-
evitable even when using randomized threshold approval
votes; the proof appears in the full version of the paper.

Theorem 3.6. The distortion associated with randomized
threshold approval votes is Ω(logm/ log logm).

4 Empirical Results

Our theoretical results in §3 characterize how well we can
optimize distortion on an observed input profile. Recall that
distortion is the worst-case ratio of the optimal social wel-
fare to the social welfare achieved, where the worst case is
taken over all utility profiles consistent with the observed
input profile. In practice we care about this ratio according
to the actual underlying utility profile. Thus, a distortion-
minimizing aggregation rule is not guaranteed to be optimal
in practice. This is why an empirical study is called for.

In this section, we compare the performance of differ-
ent approaches to participatory budgeting, where the perfor-
mance is measured by the average-case ratio of the opti-
mal and achieved social welfare, and the average is taken
over utility profiles drawn to be consistent with input pro-
files from two real-world participatory budgeting elections.
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Datasets: We use data from participatory budgeting elec-
tions held in 2015 and 2016 in Boston, Massachusetts. Both
elections offered voters 10 alternatives. The 2015 dataset
contains 2600 4-approval votes (voters were asked to ap-
prove their 4 most preferred alternatives) and the 2016
dataset contains 4430 knapsack votes.

For each dataset, we conduct 3 independent trials. In each
trial, we create r sub-profiles, each consisting of n voters
drawn at random from the population. For each sub-profile,
we draw k random utility profiles �v consistent with the sub-
profile, and use these to analyze the performance of different
approaches. We use the real costs of the projects throughout.
The choices of parameters (r, n, k) for the three trials are
(5, 10, 10), (8, 7, 10), and (10, 5, 10). We choose this exper-
imental design to yield sufficiently many samples to verify
statistical significance of the results while completing in a
reasonable amount of time.

Approaches: We use the utility profile �v drawn to create an
input profile in four input formats we study. For each format,
we use the deterministic as well as randomized distortion-
minimizing aggregation rule. The non-trivial algorithms we
devise for these rules are presented in the full version of the
paper. These eight approaches are referred to using the type
of aggregation rule used (“Det” or “Ran”), and the type of
input format (“Knap”, “Val”, “VFM”, or “Th Ap”).

It is important to note that, unlike the other input formats,
threshold approval votes are technically a family of input
formats, one for each value of the threshold. While random-
izing over the threshold is required to minimize the distor-
tion (the worst-case ratio of the optimal and achieved social
welfare), as is our goal in the theoretical results of §3, min-
imizing the expected ratio of the two can be achieved by a
deterministic threshold. Thus, in our experiments, we learn
the optimal threshold value based on a holdout set that is not
subsequently used. This learning approach is practical as it
only uses observed input votes rather than underlying actual
utilities. In other words, we acknowledge that this choice
gives threshold approval votes an edge — but arguably it is
an advantage this input format would also enjoy in practice.

In addition to our eight approaches, we also test two ap-
proaches used in real-world elections (Goel et al. 2016):
greedy 4-approval (“Gr 4-Ap”), and greedy knapsack (“Gr
Knap”). The former elicits 4-approval votes, and greedily se-
lects the most widely-approved alternatives until the budget
is depleted. The latter is almost identical, except for inter-
preting a knapsack vote as an approval for each alternative
in the knapsack.

As the performance measure for the ten approaches, we
use the average ratio of the optimal and the achieved social
welfare according to the actual utility profile used to induce
the input profiles — termed average welfare ratio — where
the average is taken across the entire experiment.

Results: Figure 1 shows the average welfare ratio of the
different approaches with 95% confidence intervals, sorted
from best to worst. The differences in performance between
all pairs of rules — except between Det Knap and Ran Val,
and between Ran VFM and Gr Knap — are statistically sig-
nificant (Johnson 2013) at a 95% confidence level.

1.0 1.1 1.2 1.3 1.4 1.5

Average Welfare Ratio

Gr 4-Ap

Ran Knap

Gr Knap

Ran VFM

Ran Th Ap

Ran Val

Det Knap

Det Val

Det VFM

Det Th Ap

Figure 1: Average welfare ratio (lower is better) of different
approaches to participatory budgeting based on data from
Boston 2015 and 2016 elections.

A few comments are in order. First, deterministic
distortion-minimizing aggregation rules generally outper-
form their randomized counterparts. This is not entirely un-
expected. While randomized rules do achieve better distor-
tion, there always exists a deterministic rule minimizing the
average welfare ratio objective; although, it is not necessar-
ily the deterministic distortion-minimizing aggregation rule.

Second, approaches based on deterministic rules are able
to limit the loss in social welfare due to incomplete informa-
tion about voters’ utility functions to only 2%–3%. Among
these approaches, the one using threshold approval votes in-
curs the minimum loss.

Third, knapsack votes consistently lead to higher distor-
tion than alternative input formats. This, together with the
poor theoretical guarantees for knapsack votes, suggests that
it may not be worthwhile to ask voters to solve their personal
NP-hard knapsack problems in order to cast a vote.

Figure 2 shows the running times of our deterministic vot-
ing rules, averaged over 10 trials, on a log-log scale. We con-
sider only the deterministic voting rules as they outperform
their randomized counterparts in terms of the average wel-
fare ratio. We observe that the running time scales gracefully
with the number of agents. The experiments used the Boston
2016 dataset with 10 alternatives, and were run on an 8-core
Intel(R) Xeon(R) CPU with 2.27GHz processor speed and
50GB main memory. Even with 500 voters, rules such as
Det Th Ap and Det Val take less than 5 minutes, indicating
the practicability of these methods even for the largest real-
world participatory budgeting elections that we are aware of,
which have no more than 5,000 voters.

5 Discussion

Our results indicate that threshold approval votes should re-
ceive serious consideration as the input format of choice
for participatory budgeting. But there is one important is-
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Figure 2: Average running time of the deterministic voting
rules on the Boston 2016 dataset.

sue we have not studied: the cognitive load imposed on vot-
ers by different input formats. (If it were not for this issue,
we would just elicit the full utility functions — the whole
point is to reduce cognitive load.) A participatory budget-
ing system based on threshold approval votes might ask vot-
ers to “mark each project on which you would be happy to
see the city spend $10,000”. While this seems reasonable
enough (and probably easier than casting knapsack votes),
human subject experiments are needed to rigorously deter-
mine whether threshold approval votes, and other input for-
mats, require an acceptable cognitive effort.

Whatever the best approach to participatory budgeting is,
now is the time to identify it, before various heuristics be-
come hopelessly ingrained. We believe that this is a grand
challenge for computational social choice, especially at a
point in the field’s evolution where it is gaining real-world
relevance by helping people make decisions in practice.
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