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Introduction

Time series data is common in a wide range of disciplines in-
cluding finance, biology, sociology, and computer science.
Analyzing and modeling time series data is fundamental
for studying various problems in those fields. For instance,
studying time series physiological data can be used to dis-
criminate patients’ abnormal recovery trajectories and nor-
mal ones (Hripcsak, Albers, and Perotte 2015). GPS data
are useful for studying collective decision making of group-
living animals (Strandburg-Peshkin et al. 2015).

There are different methods for studying time series data
such as clustering, regression, and anomaly detection. In this
proposal, we are interested in structured prediction prob-
lems in time series data. Structured prediction focuses on
prediction task where the outputs are structured and inter-
dependent, contrary to the non-structured prediction which
assumes that the outputs are independent of other predicted
outputs. Structured prediction is an important problem as
there are structures inherently existing in time series data.
One difficulty for structured prediction is that the number of
possible outputs can be exponential which makes modeling
all the potential outputs intractable.

Related Work

For classification and prediction task, one common approach
is to treat each data point in a time series independently. This
is typically known as non-structured prediction. Some clas-
sic approaches include support vector machines (SVM), lo-
gistic regression, and decision tree. These approaches do not
consider the structure in the data. Hidden Markov Model
(HMM) is a generative model proposed to solve the struc-
tured predictions tasks. It takes the transition probability be-
tween different timesteps into account. Maximum Entropy
Markov Model (MEMM) is a discriminative model com-
bining HMM and maximum entropy model. In MEMM, it
predicts the most likely label at the current timestep only
considers the history which leads to a problem known as la-
bel bias. Conditional Random Fields (Sutton and McCallum
2010), as a discriminative model, is proposed to solve the la-
bel bias problem. This model uses a global normalizer which
provides the best possible sequence label. Structured SVM
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(Tsochantaridis et al. 2004) is a maximum margin approach
for structured prediction.

These approaches are all based on the idea of empirical
risk minimization (ERM). However, optimizing many loss
measures such as hamming loss under ERM is NP-hard.
Thus, most existing approaches use approximate convex loss
function to replace the original one. For example, CRF uses
log-loss and Structured SVM (SSVM) uses hinge loss. Un-
fortunately, such replacements lead to mismatch between the
predictions with the applications. Recent adversarial meth-
ods (Asif et al. 2015) reverse the thinking of empirical risk
minimization by instead optimizing exact performance mea-
sures on approximate training data.

Problem Definition
In this paper, we focus on the following problem:
Given: training data instances with input X1:t which is a
time series data from timestep 1 to timestep t, and corre-
sponding structured outputs y.
Learn: a model θ which provides a prediction ŷ on unseen
data that minimizes some desired loss function loss(ŷ,y),
where y are the correct outputs.

Current Progress
We studied two problems in time series data: sequence tag-
ging and dynamic network prediction.

Sequence tagging is the problem of assigning a class label
to each timestep in a time series. Activity recognition, which
is one example of sequence tagging, translates raw sensor
data (GPS, accelerometer data) into higher level activity la-
bels such as walking and running. In sequence tagging, one
loss measure that people care about is hamming loss which
has very direct interpretation as the number of timesteps that
the predictor is mismatched with the correct labels. In (Li et
al. 2016), we proposed an adversarial sequence tagging ap-
proach. Instead of choosing a predictor’s parametric form
and using ERM on training data to select its parameters, we
obtain the predictor that performs the best for the worst-case
choice of conditional label distributions that match statis-
tics measured from available training data. Under such for-
mulation, the original non-convex and NP hard optimiza-
tion problem can be solved efficiently. For a sequence with
length L and |Y | possible labels for each position, the num-
ber of possible labels for the sequence is |Y |L. As a result,
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even numerating the whole adversarial game is not possi-
ble. We used double oracle and single oracle (McMahan,
Gordon, and Blum 2003) approaches for solving this prob-
lem. These two approaches both use constraint generation
methods to incrementally produce a sub-game of the expo-
nentially large full game. In our experiments, we used two
activity recognition datasets. One uses sensors for human ac-
tivities and the other one uses GPS and accelerometer sensor
for baboon activity recognition. Also, we showed the pro-
posed adversarial sequence tagging approach can be applied
to natural language process tasks where there are many se-
quence tagging problems such as Name Entity recognition.
We demonstrate superior performance compared to CRF and
SSVM. Additionally, we proved that our proposed approach
has a nice property which is Fisher Consistency. Specifically,
if the predictor is provided with the actual data distribution
and an arbitrarily rich feature representation, the resulting
predictor will minimize the expected loss. On the contrary,
SSVM does not provide such property guarantee.

Dynamic networks are useful for many interesting tasks
such as modeling social interactions, information diffusion,
and product recommendation. Dynamic network prediction
predicts the network topology given the history of the net-
work. Existing approaches (Lahiri and Berger-Wolf 2007;
Dunlavy, Kolda, and Acar 2011) do not explicitly define an
error measure which is being optimized. Additionally, al-
though different measures such as AUC, precision, recall,
F1-score are used for evaluation, it is not clear whether
the proposed methods are actually directly optimizing these
measures. Additionally, most of the current approaches pre-
dicts each edge independently despite networks are very
complex objects. We generalize the adversarial prediction
to dynamic network prediction setting where the edges can
be predicted jointly and demonstrate the benefits of our ap-
proach real dynamic network datasets.

Future Plans

We propose two promising problems to solve.

Active Learning in Time Series Data

Supervised learning usually requires a significant amount
of labeled data to perform well. However, obtaining the la-
bels can be expensive and tedious. Active learning actively
chooses some data points to be labeled to achieve similar
performance with supervised learning methods while reduc-
ing the number of labeled data points needed. Active learn-
ing for non-structured prediction has been extensively stud-
ied (Settles 2012). For structured prediction in time series
data, there are more challenges. First of all, it is essential to
distinguish whether sequences require entire (all timesteps
in the sequence) or partial (subset of timesteps) labeling.
Partial labeling can significantly reduce the labeling effort.
Existing work, which is able to handle partial labeling, la-
bels each position in the sequence independently. While this
makes sense for some tasks in NLP such as translation where
people can still understand one word. However, in time se-
ries data, it is much hard to label without context. Thus, there
is a trade off between reducing the labeling efforts while

keeping enough context for the experts. Second, switching
between sequences and different timesteps in the same time
series incurs additional cost. Labeling consecutive timesteps
can futher reduce labeling effort. Third, the uncertainty from
one part of the sequence should not impact the other parts of
the sequence.

Jointly Modeling Networks and Attributes

Many networks not only have nodes and edges, but also
attributes associated with nodes. For example, individual
activity is one attribute for the nodes in animal networks.
Activity and network are not independent events. For in-
stance, when animals are feeding or in coordinated move-
ment, they have different social network structures. At the
same time, their individual activities are also different. The
network structure will impact the changes of attributes, and
vise versa. Jointly modeling attributes and networks has the
potential to improve the accuracy of both tasks, thus it is an
important and open problem to explore.
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