Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

Exploiting both Vertical and Horizontal Dimensions of
Feature Hierarchy for Effective Recommendation

Zhu Sun,” Jie Yang,' Jie Zhang,* Alessandro Bozzon'
*Nanyang Technological University, Singapore, fDelft University of Technology, The Netherlands
*{sunzhu, zhangj} @ntu.edu.sg, T {j.yang-3, a.bozzon} @tudelft.nl

Abstract

Feature hierarchy (FH) has proven to be effective to improve
recommendation accuracy. Prior work mainly focuses on the
influence of vertically affiliated features (i.e. child-parent)
on user-item interactions. The relationships of horizontally
organized features (i.e. siblings and cousins) in the hierar-
chy, however, has only been little investigated. We show in
real-world datasets that feature relationships in horizontal di-
mension can help explain and further model user-item in-
teractions. To fully exploit FH, we propose a unified rec-
ommendation framework that seamlessly incorporates both
vertical and horizontal dimensions for effective recommen-
dation. Our model further considers two types of semanti-
cally rich feature relationships in horizontal dimension, i.e.
complementary and alternative relationships. Extensive vali-
dation on four real-world datasets demonstrates the superior-
ity of our approach against the state of the art. An additional
benefit of our model is to provide better interpretations of the
generated recommendations.

Introduction

Feature-based recommendation has been widely studied to
resolve data sparsity and cold start problems in recom-
mender systems. Generally, features of users and items can
be organized in different structures, e.g. flat or hierarchi-
cal. Feature hierarchy (FH) (He et al. 2016) — as a natural
yet powerful structure to describe human knowledge — has
proven to be effective to boost recommendation accuracy.

Early work incorporates FH for better recommendation
by converting it to a flat structure (Ziegler, Lausen, and
Schmidt-Thieme 2004; Koenigstein, Dror, and Koren 2011;
Kanagal et al. 2012; Mnih 2012). The reduction to a sim-
pler knowledge structure, while simplifying the formaliza-
tion of the recommendation problem, brings severe infor-
mation loss. Recently a few studies consider the structured
nature of FH, assuming that items are characterized by the
affiliated features in the hierarchy. Such characterization can
be modeled as the influence of features on user-item interac-
tions, which is either manually defined (He et al. 2016), or
automatically learnt from data (Yang et al. 2016).

All the methods above consider the influence of features
in vertical dimension of the hierarchy, i.e. only features with
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Figure 1: Running example of feature hierarchy.

child-parent affiliation have influence on user-item interac-
tions. They ignore, however, another important dimension
of FH, i.e. the horizontal dimension. Sibling and cousin
features, i.e. positioned in the same layer of the hierarchy,
might capture latent relationships that could be used to bet-
ter characterize user-item interactions, and, consequently, to
enhance recommendation accuracy. In the following we use
arunning example to illustrate how the horizontal dimension
of FH can help characterize user-item interactions.

Running Example Consider a Web product recommender
system, where the goal is to recommend products to users.
Figure 1 depicts a 3-layer category hierarchy of Women’s
Clothing. Categories in this hierarchy are organized in ver-
tical dimension (e.g. Shirts and Athletic Clothing) or hor-
izontal dimension (e.g. Shirts and Pants). Suppose a cus-
tomer who prefers athletic style to fashion style. She may
buy more items of Athletic Clothing, such as athletic shoes
and pants to match each other, instead of items of Fashion
Clothing, e.g. heels or skirts. In this case, the two sibling
categories Athletic Clothing and Fashion Clothing at Layer
2 are characterized by an alternative relationship, as they are
purchased by the user in a mutually exclusive fashion. The
sibling categories at Layer 1, Athletic Shoes and Pants, are
characterized by a complementary relationship, as they are
jointly purchased by the user. Whereas the cousin categories
at this layer, e.g. Athletic Shoes and Heels are alternative as
determined by the relationship of their parent categories.
The example highlights that feature relationships in hori-
zontal dimension can provide additional characterization of
user-item interactions. It is, however, nontrivial to exploit
such kind of relationships, as the vertical affiliation of fea-
tures in different layers should also be preserved. As illus-
trated in the above example, users’ preferences on items (e.g.
Athletic Shoes and Heels) could also be affected by the rela-



tionships of their vertically affiliated features across differ-
ent layers (e.g. Shoes - Athletic Clothing, Heels - Fashion
Clothing). In other words, it is often impossible to disentan-
gle the horizontal dimension from the vertical one.

Hence, this paper contributes a unified recommendation
framework HieVH that seamlessly exploits both dimensions
of FH, to boost recommendation accuracy. To model the
vertial dimension, HieVH adapts latent factors of items by
adding weighted aggregation of their affiliated features’ la-
tent factors, to better model item latent factors. The weights
are automatically learnt from data. Horizontally, feature re-
lationships are incorporated as regularizers at each layer of
the hierarchy, to better model feature latent factors. In doing
so, through the adaption of item latent factors with feature
latent vectors in vertical dimension, feature relationships in
horizontal dimension can be inherited by items. The result is
a method that can seamlessly fuse vertical and horizontal di-
mensions of FH. While existing methods (e.g. ReMF (Yang
et al. 2016)) consider vertical dimension, we stress it is non-
trivial to extend them to integrate horizontal dimension, due
to the lack of a matching mechanism in vertical dimension
such as the use of feature latent factors.

Extensive experiments on four real-world datasets show
that our approach achieves superior performance over state-
of-the-art counterparts, with an average improvements of
5.23% on AUC. Besides, by uncovering the semantically
rich feature relationships (alternative and complementary)
between the recommended and rated items, HieVH provides
better interpretations of the generated recommendations.

Related Work

Mapping Feature Hierarchy into Flat Generic feature-
based recommendation methods, including collective matrix
factorization (CMF) (Singh and Gordon 2008; Lippert et al.
2008), factorization machine (FM) (Rendle 2010; Rendle et
al. 2011), and SVDFeature (Chen et al. 2012), are originally
designed for incorporating features organized in a flat struc-
ture. Early methods incorporating FH (Ziegler, Lausen, and
Schmidt-Thieme 2004; Weng et al. 2008) model a user’s
taxonomy preferences as a flat feature vector. Later, some
latent factor model (LFM) based methods (Shi, Larson, and
Hanjalic 2014) have been designed. For example, (Koenig-
stein, Dror, and Koren 2011; Mnih 2012; Lu et al. 2012;
Kanagal et al. 2012) propose adding feature latent vectors
into user or item latent factors. Despite this, blending FH
into all the above models requires converting the hierarchy
into a flat structure, thus losing the structural information
encoded in the hierarchy.

Modeling the Vertical Dimension of Feature Hierarchy
Menon et al. (2011) propose an ad-click prediction method
that considers FH of ads. However, it assumes that an ad is
conditionally independent from all higher layer features. He
et al. (2016) devise a visually-aware recommendation model
by manually defining the feature influence in vertical dimen-
sion of the hierarchy. Recently, Yang et al. (2016) design a
recommendation method that automatically learns such in-
fluence on user/item latent factors by a parameterized regu-
larization traversing from root to leaf features.
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These studies, however, are limited to feature influence
of vertical dimension, ignoring feature relationships of hor-
izontal dimension. Besides, they are nontrivial to be ex-
tended to seamlessly integrate horizontal feature relation-
ships, due to the lack of a matching mechanism in verti-
cal dimension (e.g. feature latent factors). In our unified
approach, we seamlessly model both dimensions of FH,
and further consider semantically rich feature relationships,
i.e. alternative and complementary (Mas-Colell et al. 1995;
McAuley, Pandey, and Leskovec 2015).

Modeling Implicit User and Item Hierarchy Recently,
Zhang et al. (2014) and Wang et al. (2015) propose to model
implicit hierarchical structure within users and/or items,
based on historical user-item interactions. Our work differs
from these two models, in that we consider leveraging ex-
plicit FH to guide the learning of latent factors.

Measuring Feature Influence and
Relationships

This section first introduces our metrics for measuring fea-
ture influence in vertical dimension, and feature relation-
ships in horizontal dimension of FH. To demonstrate the
need for richer feature hierarchy characterization of user-
item interactions for better recommendation, we then apply
the proposed metrics to analyze Amazon Web store data.

Let U, 7 denote the set of users and items, and F denote
the set of features organized in a hierarchy. r,,; is the rating
given by user u € U toitem ¢ € Z. Each item ¢ € Z is
affiliated with a subset of features F (i) = {f}, f2,..., fL1,
organized as a path from leaf feature f} to root feature f~.
Let P(e;) denote the probability of the event that an item ¢
is rated by a user, defined as,

_ Hulueld,ru; # 0}
U

P(e;)

Based on this definition, we use item co-occurrence 1C to
measure the closeness of two items.

Definition 1 (Item Co-occurrence).

L. P(ei Ne )

IC(i,§) = 5—~——57—
9= Ple) x Pley)

where P(e; N e;) is the joint probability of the event that

both items i and j are rated by a user.

The IC measure can be used to define both feature influ-
ence in vertical dimension, and feature relationships in hor-
izontal dimension of the hierarchy, as illustrated below.

Definition 2 (Feature Influence of Vertical Dimension).
Given the items 11,19, . . . characterized by a same subset of
feature path F(i1) = F(is) = ... = {f',..., fL}, the
influence of an arbitrary feature f' (1 <1 < L) in the path
on these items is defined as the following vector,

:Ifll%l{ 3 IC( ), Y IC(i, j), .

JEfL i1 A#) JEfY iaF#]

Fi(f!)



where each element in the vector is the average IC between
the target item and all the other items affiliated to the feature.
This definition allows us to test the difference among the
influence of features in the same path.

We then define feature relationships in horizontal dimen-
sion, based on item relationships formalized as follows.

Definition 3 (Item Relationships). Items i,j are alterna-
tive if P(e;lej) < P(e;) and P(ejle;) < P(ej) they are
complementary if P(e;|e;) > P(e;) and P(ejle;) > P(e;).

Two items ¢ and j are therefore alternative, if the probability
of ¢ being rated given j is rated (e.g. P(e;|e;)), is lower than
that without knowing whether j is rated or not (e.g. P(e;)).
Contrarily, they are complementary if the former is larger.
We now turn to the quantification of item relationships,
which will be used later for measuring feature relationships.
It turns out that, IC can be a proper metric for measuring
item relationships, according to the following theorem.

Theorem 1 (Item Relationships Measured by IC).

Items ¢ and j are alternative — IC<1
Items ¢ and j are independent — IC=1
Items ¢ and j are complementary <= IC > 1

A Smaller value of IC (< 1) indicates a stronger alternative
relationship between items i and j; vice versa, a larger value
of IC (> 1) indicates a stronger complementary relationship
between items i and j.

Proof. Using the relationship between joint and conditional
probability, P(e; Ne;) =P(ejle;) x P(e;), we have

P(Ei N €j) o
Ple) x Ple;)

Plejlei)
P(ej)

o P(6j|€i) x P(e;) _
IC(4, j) = P(e;) x P(ej)

Similarly, with P(e; N e;) = P(e;lej) x P(ej), we have

IC(i,7)= P(e‘le;) Thus, we can see that if IC(4, j) <1, then

P(ejle;) < P(e;) and P(e;lej) < P(e;), vise versa, sug-
gesting an alternative relationship between items ¢ and j is
equivalent to IC(¢, j) < 1. A smaller value of IC would indi-
cate a larger gap between P(ejle;) and P(e;), P(e;|e;) and
P(e;), i.e. a stronger alternative relationship; the opposite
also holds, i.e. a stronger alternative relationship indicates a
smaller value of IC. If IC(¢, j) > 1, then P(ej|e;) > P(e;)
and P(e;le;) > P(e;), vice versa, suggesting a comple-
mentary relationship between items ¢ and j is equivalent
to IC(4,5) > 1. A larger IC indicates a stronger comple-
mentary relationship; the opposite also holds. Similarly, if
IC(4,5) =1, then P(ejle;) = P(e;) and P(e;le;) = P(e;),
vice versa, hence items i, j are independent and IC(i, j) =1
are equivalent.

The independence between two items provides no addi-
tional characterization of user preferences, thus it is neither
beneficial for recommendation. We do not consider it partic-
ularly useful before; it will be, however, properly handled by
our proposed method. With the above metric for measuring
item relationships, we now propose the metric for feature
relationships in horizontal dimension.
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Figure 2: Distribution of feature relationships (log-scaled,
i.e. x = log(FR)) at 3 layers of the hierarchy.

Definition 4 (Feature Relationships in Horizontal Dimen-
sion). The relationship of two features f and g is given by

|f| ol 2ies 2pe, €09

FR is defined as the average IC between all pairs of items,
where the two items in each pair are characterized respec-
tively by the two features. Similar to IC, FR(f,g) < 1,>
1, = 1 indicate that features f and g are alternative, comple-
mentary and independent, respectively.

FR(f, g)

Feature Influence and Relationships in Real-world Data
We now show the presence of feature influence and relation-
ships in the Amazon Web store data — Clothing, Shoes &
Jewelry. The details of the dataset are deferred to the Exper-
imental Results section. For demonstration purpose, we only
show the results of the top-3 layers of the hierarchy.

The hierarchy contains 116 categories at Layer 1, thus 116
paths in vertical dimension. Comparing the influence of fea-
tures in the same path, we find that 74.33% of feature influ-
ence at Layer 1 is significantly larger than that at Layer 2,
and that 72.57% of the influence at Layer 2 is significantly
larger than that at Layer 3 (Paired t-test, p-value < 0.01).

The root layer (Layer 3) contains two features, Women’s
Clothing and Men’s Clothing. It can be observed from Fig-
ure 2 that the two features have an alternative relationship,
indicating that women and men clothing are generally not
purchased together. For Layer 2, we observe that the feature
relationships are evenly distributed on the side log(FR) < 0
and log(FR) > 0, indicating that both alternative and com-
plementary feature relationships exist at this layer. An ex-
ample of complementary features is Woman Watches, Man
Watches, suggesting that women and men watches are usu-
ally purchased together, e.g. for couples, despite of the fact
that women’s clothing and men’s clothing are alternative.
When looking at feature relationships at Layer 1, we can see
that the relationships among most features are complemen-
tary, e.g. women active clothing and women athletic shoes.
Overall, as a general trend, more complementary relation-
ships can be observed in lower layers than upper layers, sug-
gesting that customers tend to buy items characterized dif-
ferently by fine-grained features to match each other.

The HieVH Framework

This section describes the HieVH framework — that seam-
lessly exploits both vertical and horizontal dimensions of FH
to boost recommendation performance.



The Basic Recommendation Model Our method is built
on the latent factor model (LFM), where each user and
item in the high dimensional user-item interaction space are
mapped into a low dimensional space. We generalize the ba-
sic LFM to seamlessly integrate both vertical and horizontal
dimensions of FH by minimizing the following equation:

cost function regularizers

T = C(rui,<bu,0;>)+a) ¥

04i#0 f.9eF

(0f,04) +(O)

where o0,; = 1if user u rates item ¢, otherwise 0; 0,,,0;, 05 €
R are the latent factors of user u, item i and feature I
respectively; d is the dimension of latent factors; C'(-) is a
convex cost function (e.g. quadratic function) measuring the
difference between the real rating r,,; and the predicted rat-
ing, i.e., the inner product of §,, and 6;; and 8; = ®(6;,60;)
is the adaptive item latent factor considering the influence of
features in vertical dimension on item latent factors through
function ®; W is the regularization function to constrain the
difference between 6; and 6, based on the relationships
among features in horizontal dimension; « controls the im-
portance of ¥; Q(©) with © = {\, 0,,,0;,0;} are regulariz-
ers to avoid over-fitting; A is the regularization hyperparam-
eter. The main challenge is how to effectively formulate the
functions ®, ¥ by integrating the influence and relationships
of features in the two dimensions of FH.

Modeling Vertical Dimension Features are vertically af-
filiated in the hierarchy. Based on the results shown in the
previous section, we observe that an item ¢ is characterized
by all the affiliated features F(i) = {f}, f2,..., fF}, or-
ganized as a path in the hierarchy with different degrees.
Hence, we formulate the function ®(6;,0;) to adapt the la-
tent factor of item 4, i.e., 0;, by adding to it the latent factors
of its affiliated features, i.e., F(¢) in the hierarchy, given by:

0, =®(0;,07,97)

—0p—
=0, 4 [ Dpe ]| 00T

—Opr— 114
where Uy = [Jf1,052,...,0 2] is the parameter vector,
indicating the different influence of features in 7 () on item
1. It can be automatically learnt by our model. 6 (1< 1 <
L) is the latent vector of feature f' € F(i).

In this equation, any items, e.g. ¢ and j, that belong to the
same feature set, i.e., (i) = F(j), share the same param-
eter vector, i.e., Ur(;) = Ur(j) = [Vf1,02,..., 9] That
is to say, the features organized in a same path mﬂuence all
items belonging to the leaf feature in that path. In this way,
we reduce the number of parameters and avoid over-fitting.
The number of parameter vectors is the total number of the
unduplicated feature paths in FH, which is equal to the size
of leaf feature set. Note that, in the adaptive function ®, a
good estimation of feature latent factors is essential to accu-
rately adapt item latent factors, which can be facilitated by
considering horizontal dimension of FH, as given below.
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Modeling Horizontal Dimension From the perspective of
horizontal dimension, features are organized as siblings or
cousins at the same layer of the hierarchy. Data analysis on
real-world data shows the presence of two types of feature
relationships, i.e., alternative and complementary, which are
highly useful to better model feature latent factors.

Hence, we incorporate such kind of feature relationships
by assuming that in each Layer [ (1 < [ < L) of the hi-
erarchy: if two features are alternative, then the distance of
their latent factors should be large; if complementary, the
distance of their latent factors should be small. Based on
the above assumption, we devise the following regularizer
to better model feature latent factors,

D D SR

where F! is the feature set at Layer | of the hierarchy;
org = log(FR(f,g)) with oy, < 0,> 0,= 0 indicat-
ing f, g are alternative, complementary and independent, re-
spectively. Through adaptive function ¢ adding latent vec-
tors of affiliated features to their items’ latent factors, feature
relationships in horizontal dimension are inherited by items.
Consequently, the better estimated feature latent factors can
more accurately adapt item latent factors.

Similarly, we also incorporate item relationships to help
better model item latent factors by assuming that if two items
are alternative, the distance of their latent factors should be
large; if complementary, it should be small. Based on this,
we design the following regularizer,

ONARS S DR

where o;; =log(IC(¢, 7)) with o;; < 0,> 0,= 0 indicating
items ¢, j are alternative, complementary and independent.

Note that o4, 0;; seamlessly accommodate our assump-
tions illustrated below: if two features f, g are alternative,
then we have FR < 1, thus o7, < 0. In this case, minimiz-
ing W leads to large distance between 0 and 0,; if f, g are
complementary, then we have FR > 1, thus o4 > 0. In this
case, minimizing ¥ leads to small distance between 6y and
0g4; if f, g are independent, then FR = 1, thus o, = 0. In
this case, the independent feature relationships are not con-
sidered in W. o;; holds similar properties as o .

Once the feature and item relationships are incorporated
into the objective function [J, we can more accurately model
feature and item latent factors in function ®, thus can ulti-
mately better model user-item interactions.

U(hy,0,

U(0f,04:0;,0;) =

Remark HieVH seamlessly integrates the modeling of
both vertical and horizontal dimensions of FH. Though in
this paper we focus on item FH, HieVH can as well accom-
modate user FH. It is noteworthy to remark how HieVH is
able to handle arbitrarily imbalanced FH, thus making its
application suitable to a wide variety of application scenar-
i0s. Specifically, it first determines the depth of a feature as
the number of layers from the root feature to this feature in
a top-down fashion. Then, the features that have the same
depth are on the same layer.



Algorithm 1: HieVH Optimization Process
Input: rating matrix R, feature hierarchy F, d, a, A, v, Iter
1 Initialize 6, with small values;
2 L < the highest layer of F;
// Parameter update for J
3 fort =1;t < Iter;t + + do
foreach u € U,i € Z do
0 047D — 4V T(6.);
0 0" — VT (6:)
fori =1;1 < L;l + + do
foreach f € {F' N F(i)} do
0 — 0Y ) — VT (0) ;
—1
O 9 — VT () ;

[Z BN

e ® 9

10

1 if 7 has converged then
12 | break;

Optimization We adopt the widely used stochastic gradi-
ent descent method to optimize HieVH. The update rules
of all the variables are given by the following equations.
The optimization process is shown in Algorithm 1, which
is mainly composed of parameter update (line 3-12).

vj(eu) :Z et Oy (<9u7 §i>_7ﬂui) 91 + A0y
VJ(ez) = Zoui (<0u,gi>*71ui) Ou + NO; + CMZU”’ (01793)
ueu ,J€T,i<]

VieF1={1,2--- L},
VI09)=)_, ., Ziel,fe]’(i)ﬂ 0ui (<Ou, 0> —1ui) O
+ Aef ta Zf,QGF’,f<g 99)

VIW)=D > 0ui (<Ou,0:> —1us) <Ou, 05> +X0;

ueU €L, fEF (i)

org(0 —

Complexity Analysis The computational time is mainly
taken by evaluating the objective function J and updating
the relevant variables. The time to compute 7 is O(d|R| +
dn?), where |R| is the number of non-zero observations
in the rating matrix R, and n is the number of items.
For the gradients V.7 (6,,), VJ (6;), VI (0f), VI (9¢), the

computational time are O(d|R]|), O(d|R|+d@>,

O (dIF[R|+d i, FUF), O(LIF!|[R]). respec-
tively. Wherein |F| is the total number of features in the
hierarchy; |R/| is the average number of ratings under each
feature; | F| is the average number of features at each layer of
the hierarchy. Generally due to L < |F| < |F!| < |F| < n
and |R| < |R/, the overall computational complexity of Al-

gorithm 1 is (Iter x O(d|R/| + dn?)). In summary, our pro-
posed framework is scalable to large datasets.

Experimental Results

Datasets To validate HieVH, we use the Amazon Web
store dataset (McAuley et al. 2015). This dataset has re-
cently been applied for evaluating recommendation methods
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Figure 3: The impact of parameter a.

incorporating FH (He et al. 2016; Yang et al. 2016). Simi-
lar to these work, we consider the Clothing Shoes & Jewelry
dataset; to evaluate the generalizability of HieVH, we further
consider three other datasets in different domains, including
Electronics, CDs & Vinyl, and Home & Kitchen. The FHs
of all the datasets are imbalanced. We uniformly sample the
datasets to balance their sizes for cross-dataset comparison.
Table 1 reports the statistics of the datasets.

Table 1: Descriptive statistics of the datasets.

Data #users  #items #ratings #features  #layers

Cloth. 36,000 42,201 60,141 2,764 7

Elect. 43,234 38,7766 77,962 1,292 6

C.&V. 33,868 36320 71,872 1,293 6

H. & K. 44,519 37445 73,820 2,002 5
Comparison Methods We compare with six state-of-the-

art algorithms, 1) MF (Salakhutdinov and Mnih 2007): ma-
trix factorization model; 2) CMF (Singh and Gordon 2008):
collective MF; 3) FM (Rendle 2010): factorization machine;
4) TaxMF (Chen et al. 2012; Koenigstein, Dror, and Koren
2011): taxonomy based MF ; 5) Sherlock (He et al. 2016):
visually-aware model ; 6) ReMF (Yang et al. 2016): recur-
sive regularization based MF. Methods 2-3 only utilize fea-
tures in FH without considering the structure. Methods 4-6
are all based on FH. Besides, three variants of our proposed
framework are compared. A) HieV: only considers vertical
feature influence; B) HieVC: exploits vertical feature influ-
ence and horizontal complementary feature relationship; C)
HieVH: fuses both vertical feature influence and horizontal
complementary & alternative feature relationships.

Evaluation Standard 5-fold cross validation is adopted to
evaluate all the methods. The Area Under the ROC Curve
(AUC) is used as the evaluation metric. Larger AUC indi-
cates better recommendation performance.

Parameter Settings Optimal parameter settings have
been empirically estimated. We set d = 10 and apply a grid
search in {0.001,0.01,0.1} for v, A and 1/2-way regulariza-



tion of FM; o = 0.5, 0.01 for CMF and ReMF, respectively;
for Sherlock, we use the same settings as (He et al. 2016).

Impact of @« In HieVH, « controls the importance of fea-
ture relationships in the horizontal dimension of FH. We
apply grid search in {107%,1073,1072,1071,10°} to in-
vestigate the impact of « on recommendation performance.
Results are shown in Figure 3. As « varies from small to
large, the performance first increases then decreases, with
the maximum reached at the range [10~3,1072]. The per-
formance variations across datasets suggest the need for
dataset-specific settings; the similarity in performance varia-
tion across « values demonstrates the robustness of HieVH.

Comparative Results Table 2 summarizes the perfor-
mance of all comparison methods across all datasets, where
two views are created for each dataset: ‘All Users’ indicates
all users are considered in the test data; while ‘Cold Start’
indicates only users with < 5 ratings are involved in the test
data. Several interesting observations can be noted.
Compared with all other methods incorporating FH, MF
considering no auxiliary information performs the worst, in-
dicating the effectiveness of feature based recommendation.
The methods originally designed for the flat feature struc-
ture, including CMF and FM, generally perform worse than
the FH based methods (TaxMF, Sherlock and ReMF). Since
FH needs to be converted into a flat structure when applied
into CMF and FM, the result demonstrates that useful infor-
mation is lost in the conversion. FM outperforms CMF and
even some FH based methods. This could be explained by
FM further considering user-feature interactions, in addition
to the user-item and item-feature interactions, as in CMF.
Among the three state-of-the-art FH based methods, Sher-
lock performs better than TaxMF, but worse than ReMF.
The reason behind is that TaxMF views the influence of fea-
tures in different layers of FH identically, whereas Sherlock
weights the influence of features in different layers differ-
ently. However, the weights are defined manually. In con-
trast, ReMF automatically learns such influence by a param-
eterized regularization traversing from root to leaf features.
We now compare the three variants of our framework
— HieV, HieVC and HieVH, with the recently proposed
ReMF. By considering vertical feature influence only, HieV
performs slightly better than ReMF. The possible explana-
tion is that in HieV, item latent factors are directly adapted
by the affiliated feature latent factors; whereas in ReMF,
latent factors of items are regularized by those of items
that share common ancestor features, which means items
are indirectly influenced by their affiliated features. In other
words, the adaption of item latent factors in HieV is more
straightforward than that in ReMF, thus more effective.
HieVC upgrades HieV by adding complementary feature re-
lationships in the horizontal dimension; HieVC is then pro-
moted to HieVH by further incorporating alternative feature
relationships. In results, HieVC performs better than HieV,
but worse than HieVH, implying that both complementary
and alternative feature relationships among horizontally or-
ganized features help improve recommendation accuracy.
Overall, when compared with all the other comparison
methods across all the datasets, HieVH achieves the best
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performance. The improvements w.r.t. all users and cold
start are 5.23%, 5.11% on average, respectively, which are
statistically significant (Paired t-test, p-value < 0.001). This
implies that the recommendation performance can be fur-
ther enhanced by appropriately considering both vertical and
horizontal dimensions of feature hierarchy.

Interpretations by HieVH We now analyze how the in-
corporation of feature relationships can better explain user-
item interactions. To this end, we first derive for each user
the feature relationships between the rated items (i.e. train-
ing data), and the correctly recommended items (i.e. inter-
section between recommended items and test data). We cal-
culate the percentage of complementarity C'p and alternativ-
ity Ap among these relationships for each user. Good rec-
ommendations would result in a high percentage of comple-
mentary items and low percentage of alternative items.
Table 3 shows the average C'p and Ap for all users in the
test data at the top-3 layers of the Clothing hierarchy (Layer
3 excluded since only an alternative relationship exists). We
could see that from ReMF, HieV to HieVC, HieVH, with
complementary and alternative feature relationships consid-
ered, C'p increases, and Ap decreases in both layers. Among
all the methods, HieVH achieves the highest Cp, and low-
est Ap, with significant improvements over HieVC (Paired
t-test, p-value < 0.01). This clearly indicates that by incor-
porating the two types of feature relationships, the recom-
mendations better approximate real user preferences. Exam-
ple users to whom the recommendations benefit from feature
relationships generated by HieVH are shown in Figure 4.
The recommendations to users u; and us are better because
of the complementarity among fashion clothing that u; is
more fond of, and among athletic clothing that uy instead
is more fond of, and the alternativity between fashion and
athletic clothing. Similarly, the recommendations for u3 are
provided because of her interests in fashion clothing and lin-
gerie. For user uy, it is discovered that he likes clothing col-
location, i.e. the complementarity of the items he purchased.

Conclusions

Feature hierarchy is known to enhance recommendation per-
formance. Existing methods only consider feature influence
in vertical dimension, ignoring feature relationships in hor-
izontal dimension. In this paper, we first show the presence
of feature influence and relationships in real-world datasets
based on our proposed metrics. Then we design the HieVH
to seamlessly exploit both the vertical and horizontal dimen-
sions of feature hierarchy for better recommendation. Exper-



Table 2: Performance (AUC) of comparison methods. The best performance is highlighted in bold; the second best performance
of other methods is marked by ‘*’; ‘Improve’ indicates the relative improvements that HieVH achieves w.r.t. the “* results.

Datasets | Cases | MF CMF FM  TaxMF Sherlock ReMF | HieV HieVC HieVH | Improve
Clothin All Users | 0.5455 0.5646 0.6826  0.6509 0.6747 0.7015* | 0.7160  0.7291 0.7375 5.13%
& Cold Start | 0.5426 0.5667 0.6629  0.6493 0.6702 0.7032*% | 0.7124 0.7284  0.7352 4.55%
Electronic All Users | 0.5555 0.5762 0.6839  0.6569 0.6915 0.7337* | 0.7512 0.7672  0.7748 5.60%
" | Cold Start | 0.5526 0.5735 0.6831  0.6475 0.6982 0.7305*% | 0.7474 0.7658  0.7741 5.97%
C&vV All Users | 0.5478 0.5622 0.6356  0.6905 0.7082 0.7249* | 0.7328 0.7516  0.7600 4.84%
’ ’ Cold Start | 0.5433 0.5609 0.6231  0.6881 0.7076 0.7243*% | 0.7315 0.7514  0.7588 4.76%
H &K All Users | 0.5420 0.5545 0.6938  0.6469 0.6938 0.7279* | 0.7456  0.7574  0.7667 5.33%
’ ’ Cold Start | 0.5395 0.5562 0.6915 0.6511 0.6973 0.7275*% | 0.7412  0.7554  0.7650 5.15%
. . Exploiting and exploring hierarchical structure in music rec-
Table 3: Cp and Ap of the Clothing hierarchy. ommendation. In AIRS.
Approaches —, Layer 1 - - Layer 2 - Mas-Colell, A.; Whinston, M. D.; Green, J. R.; et al. 1995.
p P p P Microeconomic theory, volume 1.
E‘?I\QIF g;g;? i%i’??’ ;g%g? ;g;g? McAuley, J.; Targett, C.; Shi, Q.; and van den Hengel, A.
1€ . 0 . 0 . 0 . 0 2 1 . I _ : 1 i
HeVC 0262%  738%  8462%  1538% ; 362 Inrr;e;z&;GeI]l;ased recommendations on styles and substi
HieVH 95.65%  4.35% 89.35% 10.65% ’ ’

imental results on four real-world datasets show that HieVH
consistently outperforms state-of-the-art methods. Besides,
HieVH provides better interpretations of the generated rec-
ommendations. Our future work will focus on the integra-
tion of knowledge bases, which contain feature hierarchy as
meta data for describing items, as well as extra information
of item relationships, to further improve recommendation.
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