











Figure 4: Qualitative results of human pose estimation on
LSP dataset (OC annotations). Failures are denoted with red
frames, which are due to extreme self-occlusion.

fields). Third, as the composite parts have different granu-
larity with possibly significant overlap with each other, the
DCNN branches out to handle them separately.

_Assuming the i-th branch corresponds to part 4 at level
'S 1 (Note that [ > 2), then the branch has |S;|-dim output
with each value being p(mij |i, I(ai, s">V (X))) based on
the image patch centered at the anchor point a;. Assuming
the parent of part 7 is part k() then ¢(-) is evaluated as

S(pol (6, 5)) log(p(mij li, I(bi, 5)))-

i CkO)

(11)

Note that superscript > and X are dropped for clarity. To
train this model, we cluster the relation vector rj; into 7j;
(e.g., 24) clusters (types) for part ¢, and the training samples
are labeled accordingly.

Weight Parameters

Eq. 1 can be written as a dot product w,®(X,I,M ) .
Given a training sample (X, I'), we compute (X, I,M ) as
its feature. Each training sample also has a binary label, indi-
cating if the configuration X is correct. Therefore, we build
a binary max-margin classifier (Tsochantaridis et al. 2004)
to estimate W, with non-negativity constraints imposed. To
avoid over-fitting, the training is conducted on a held-out
validation set that was not used to train the DCNNss.

Before training, we augment the positive samples by ran-
domly perturbing their part locations as long as they are rea-
sonably close to the ground-truth locations. To generate the
negative samples, we randomly place the configurations of
positive samples at the incorrect regions of the training im-
ages, with Gaussian noise added to the part locations.

Experiments

We evaluate our method extensively on multiple bench-
marks, and conduct diagnostic experiments to show the ef-
fect of different components in our method.

LSP Dataset (OC Annotations)

The Leeds Sports Pose (LSP) dataset (Johnson and Evering-
ham 2010) includes 1,000 images for training and 1,000
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Figure 5: Detection rate vs. normalized error curves on the
LSP Extended dataset (PC Annotations). LEFT: arm (elbow
and wrist) detection. RIGHT: leg (knee and ankle) detection.

images for testing, where each image is annotated with 14
joint locations. We augment the training data by left-right
flipping, and rotating through 360 . We use observer-centric
(OC) annotations to have fair comparisons with the major-
ity of existing methods. To measure the performance, we
use Percentage of Correct Parts (PCP). In PCP measure, a
“part” is defined as a line segment connecting two neighbor-
ing joints. If both of the segment endpoints (joints) lie within
50% of the length of the ground-truth annotated endpoints,
then the part is correct.

In this experiment, we build a hierarchy of four levels
for human body. The first level contains the atomic body
joints; the second level has five composite parts (Head, Right
arm, Left arm, Right leg, and Left leg); the third level has
two composite parts (Head&Arms and Legs); and the fourth
level corresponds to the whole body. To gain an understand-
ing of the effect of the components of our inference algo-
rithm, we evaluate our full method (which will be referred
to as “Ours-full”’), and variants of our method (which will be
referred to as “Ours-partial”, and “Ours-no-HIER”). Ours-
full corresponds to the whole inference algorithm; Ours-
partial only conducts the first part of the inference algorithm,
traces down the best root hypothesis based on Eq. 6, and out-
puts the locations of its atomic parts; Ours-no-HIER only
uses full-body exemplars (after augmentation) as the spatial
models.

The quantitative results of our method as well as its
counterparts are listed in Tab. 1. Ours-full generally out-
performs the state-of-the-art methods on all the parts. The
improvement over IDPR (Chen and Yuille 2014) demon-
strates the effect of reasoning multi-level spatial relations.
We expect to see even larger improvement if we augment
the annotations with midway points between joints. We
also experiment with person-centric (PC) annotations on the
same dataset, where the accuracy drops slightly. Ours-full
achieves improvement over Ours-partial and Ours-no-HIER
by a large margin, which demonstrates the benefits of back-
track (higher precision) and hierarchical exemplars (more
expressive models). Note that Ours-partial already outper-
forms Strong-PS (Pishchulin et al. 2013b) and PoseMa-
chine (Ramakrishna et al. 2014).

Fig. 4 shows some testing examples, which are selected
with high diversity in poses. We can see that our method
achieves accurate localization for most of the body joints,



Method Torso | ULeg | LLeg | UArm | LArm | Head | Avg
Strong-PS 88.7 | 78.8 | 73.4 | 61.5 | 449 | 85.6 |69.2
PoseMachine | 88.1 | 789 | 73.4 | 62.3 | 39.1 | 80.9 |67.6
IDPR 927 | 829 | 77.0 | 69.2 | 554 | 87.8 |75.0
Ours-partial 89.2 1795|736 | 658 | 503 | 85.6|71.3
Ours-no-HIER | 85.4 | 753 | 66.7 | 54.9 | 37.5 | 82.5 |63.7
Ours-full 935|844 | 783 | 714 | 552 | 88.6 |76.1
Ours-full (PC) | 93.7 | 82.2 | 76.0 | 68.6 | 53.2 | 88.3 |74.2

Table 1: Comparison of pose estimation results (PCP) on
LSP dataset. Our method achieves the best performance.

even in the case of large articulated deformation.

LSP Extended Dataset (PC Annotations)

To have fair comparisons with (Toshev and Szegedy 2014;
Tompson et al. 2014), we train and test our models on LSP
extended dataset using PC annotations. Altogether, we have
11,000 training images and 1000 testing images. As the
quality of the annotations for the additional training images
varies a lot, we manually filter out about 20% of them. We
also augment the training data through flipping and rotation.
We use Percentage of Detected Joints (PDJ) to evaluate
the performance, which provides an informative view of the
localization precision. In this experiment, we evaluate the
baseline of our method (referred to as “Ours-base”) by only
using the first term in Eq. 1. It is equivalent to localizing
the parts independently. In Fig. 5, we plot the detection rate
vs. normalized error curves for different methods. From the
curves, we can see that Ours-base already achieves better ac-
curacy than (Toshev and Szegedy 2014) except for Knee. It
demonstrates that a detector that scores the part appearance
is more effective than a regressor that predicts the part offset.
Ours-full achieves significant improvement over Ours-base
by incorporating the multi-level spatial models. Our method
is also comparable to (Tompson et al. 2014) which enjoys
the benefit of jointly learning appearance models and spatial
context. (Tompson et al. 2014) has higher accuracy on the
lower arms, while we have better results on the lower legs.
Also note that (Tompson et al. 2014) requires delicate im-
plementation of a sophisticated network architecture, while
our method allows the use of off-the-shelf DCNN models.

CUB-200-2011 Bird Dataset

We also evaluate our method on the CUB-200-2011 bird
dataset, which contains 5, 994 images for training and 5, 794
images for testing. Each image is annotated with image loca-
tions for 15 parts. We also augment the training data through
flipping and rotation. As birds are less articulated than hu-
mans, we design a three-level hierarchy for birds. The first
level contains the atomic parts; the second level has three
composite parts (Head, Belly&Legs, and Back&Tail); and
the third level corresponds to the whole bird. Although we
did not prove that the manually-designed hierarchy is opti-
mal, we empirically find that it facilitates the prediction of
part relations.

We use PCP to measure performance. In the bird dataset,
a correct part detection should be within 1.5 standard de-
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Figure 6: Qualitative results of part localization on CUB-
200-2011 bird dataset. Failures are denoted with red frames,
where some parts dramatically deviate from the correct loca-
tions due to large deformation and noisy patterns. The color
codes are shown at the bottom.

viation of an MTurk worker’s click from the ground-truth
location. For a semi-rigid object such as bird with sufficient
training samples, directly applying exemplar-based models
can produce very good results. Therefore, we replace the
part detectors in (Liu and Belhumeur 2013) with DCNN-
based detectors (only targeting the atomic parts), which will
be referred to as “DCNN-CoE”.

We compare the results of different methods in Tab. 2, in-
cluding CoE (Liu and Belhumeur 2013) and Part-pair (Liu,
Li, and Belhumeur 2014). First, DCNN-CoE outperforms
CoE significantly, demonstrating that DCNN is much more
powerful than the conventional classification model (e.g.,
SVM). DCNN-CoE also outperforms Part-pair with much
less overhead, thanks to the efficiency of multi-class detec-
tor. Using our new method, the localization accuracy is fur-
ther improved. Ours-partial improves slightly over DCNN-
CoE, which is reasonable as Ours-partial is essentially multi-
level DCNNss plus multi-level exemplars, and the flexibility
from our multi-level exemplars has limited effect for semi-
rigid objects. Also note that Ours-partial uses an incomplete
scoring function. By considering the full scoring function,
Ours-full achieves the best results on all the parts.

Some qualitative results are shown in Fig. 6. From the
examples, we can see that our method is capable of capturing
a wide range of poses, shapes and viewpoints. In addition,
our method localizes the bird parts with very high precision.

Conclusion

In this paper, we propose a novel approach for articulated
pose estimation. The approach exploits the part relations at
different levels of granularity through multi-scale DCNN-
based models and hierarchical exemplar-based models. By
incorporating DCNN-based appearance models in the spa-
tial terms, our method couples spatial models with them,
thus better adapting to the particular test image than other-
wise. By introducing hierarchy in the exemplar-based mod-
els, we enjoy much more expressive spatial models even if
the training data are limited. In addition, We propose an
efficient algorithm to infer “good-enough” part configura-



Method Ba Bk Be Br Cr Fh Le Ll Lw Na Re R1 Rw Ta Th Total
CoE 62.1 | 49.0 | 69.0 | 67.0 | 729 | 585 | 55.8 | 409 | 71.6 | 70.8 | 55.5 | 40.5 | 71.6 | 40.2 | 70.8 | 59.7
Part-pair 645 | 61.2 | 71.7 | 70.5 | 76.8 | 72.0 | 69.8 | 450 | 743 | 79.3 | 70.1 | 449 | 744 | 46.2 | 80.0 | 66.7
DCNN-CoE | 64.7 | 63.1 | 742 | 71.6 | 763 | 729 | 69.0 | 48.2 | 72.6 | 82.0 | 692 | 479 | 72.3 | 46.8 | 81.5 | 67.5
Ours-partial | 65.1 | 64.2 | 74.6 | 72.4 | 77.1 | 73.8 | 70.2 | 484 | 73.2 | 82.5 | 70.6 | 48.7 | 73.0 | 48.3 | 82.2 | 68.3
Ours-full 67.3 | 656 | 759 | 744 | 788 | 753 | 72.5 | 50.9 | 754 | 84.7 | 72.8 | 504 | 75.2 | 499 | 84.2 | 70.2

Table 2: Comparison of part localization results on the CUB-200-2011 bird dataset. Our method outperforms the previous
methods by a large margin. From left to right, the parts are: Back, Beak, Belly, Breast, Crown, Forehead, Left Eye, Left Leg,
Left Wing, Nape, Right Eye, Right Leg, Right Wing, Tail, Throat, and Total.

tions from a less simplified formulation. These efforts to-
gether enable us to achieve state-of-the-art results on differ-
ent datasets, which demonstrates the effectiveness and gen-
eralization ability of our method.
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