Multi-Agent Path Finding with Payload Transfers and the Package-Exchange Robot-Routing Problem

Hang Ma
Department of Computer Science
University of Southern California
hangma@usc.edu

Guni Sharon
Department of Information Systems Engineering
Ben-Gurion University of the Negev
gunisharon@gmail.com

Craig Tovey
School of Industrial and Systems Engineering
Georgia Institute of Technology
ctovey@isye.gatech.edu

T. K. Satish Kumar and Sven Koenig
Department of Computer Science
University of Southern California
tskwork@gmail.com and skoenig@usc.edu

Abstract

We study transportation problems where robots have to deliver packages and can transfer the packages among each other. Specifically, we study the package-exchange robot-routing problem (PERR), where each robot carries one package, any two robots in adjacent locations can exchange their packages, and each package needs to be delivered to a given destination. We prove that exchange operations make all PERR instances solvable. Yet, we also show that PERR is NP-hard to approximate within any factor less than 4/3 for makespan minimization and is NP-hard to solve for flowtime minimization, even when there are only two types of packages. Our proof techniques also generate new insights into the hardness of approximating optimal solutions to the standard multi-agent path-finding problem (MAPF). Finally, we present optimal and suboptimal PERR solvers that are inspired by MAPF solvers, namely a flow-based ILP formulation and an adaptation of conflict-based search. Our empirical results demonstrate that these solvers scale well and that PERR instances often have smaller makespans and flowtimes than the corresponding MAPF instances.

Introduction

Payloads can be transferred in real-world applications such as ride-sharing (or taxis) with passenger transfers (Coltin and Veloso 2014) or package delivery with robots in offices (Veloso et al. 2015). The theoretical implications of allowing payload transfers are still poorly understood. In this paper, we therefore study the package-exchange robot-routing problem (PERR), where each robot carries one package, any two robots in adjacent locations can exchange their packages, and each package needs to be delivered to a given destination. We want to minimize the time when the last package reaches its destination (makespan) or the sum of the times when each package reaches its destination (flowtime). PERR is motivated by the observation that the robots are often interchangeable but the packages are not - due to their different destinations.

PERR is identical to the standard multi-agent path-finding problem (MAPF), except that MAPF does not permit exchange operations: Each robot needs to move to a given destination but two robots in adjacent locations cannot exchange their positions. MAPF is NP-hard to solve for both makespan and flowtime minimization (Yu and LaValle 2013b). Furthermore, several optimal and suboptimal MAPF solvers have been developed, including (Kornhauser, Miller, and Spirakis 1984; Silver 2005; Sturtevant and Buro 2006; Wagner and Choset 2011; Surynek 2012; Erdem et al. 2013; de Wilde, ter Mors, and Witteveen 2013; Sharon et al. 2013; Goldenberg et al. 2014; Cohen, Uras, and Koenig 2015).

Figures 1(a) & 1(b) illustrate that exchange operations can improve the makespan and flowtime by arbitrary factors. We prove by construction that exchange operations make all PERR instances solvable, and derive polynomial upper bounds on makespan and flowtime. Yet, we also show that PERR is NP-hard to approximate within any factor less than 4/3 for makespan minimization and is NP-hard to solve for flowtime minimization, even when there are only two types of packages (where packages of the same type are interchangeable). Our proof techniques also generate new insights into other transportation problems, for example, into the hardness of approximating optimal MAPF solutions.

Finally, we present optimal and suboptimal PERR solvers that are inspired by MAPF solvers, namely a flow-based ILP formulation (Yu and LaValle 2013a) and an adaptation of conflict-based search (Sharon et al. 2015). Our empirical results demonstrate that these solvers scale well and that PERR instances often have smaller makespans and flowtimes than the corresponding MAPF instances.
Figure 1: (a) (b) Motivating examples that demonstrate the power of exchange operations. Two robots carrying packages p_1 and p_2 have to deliver them to their destination vertices d_1 and d_2, respectively. They can exchange their packages. If exchange operations are not allowed in (a), then no solution exists. If exchange operations are not allowed in (b), then one robot must take the long path. (c) Package solution exists. If exchange operations are not allowed in (b), then no packages can switch vertices without affecting the vertices of the other packages. To see this, consider two packages p_i and p_j and their current vertices u and v, respectively. Let (u, \ldots, v) be a shortest path from u to v, where w is the vertex on the path directly before v. A series of exchange operations along this path moves p_i to v and every other package on this path against the path one edge closer to u (in at most $|V| - 1$ time steps). In particular, it moves p_1 to w. A series of exchange operations against the path (u, \ldots, v) then moves p_j to u and every other package on this path back to its original vertex (in at most $|V| - 2$ time steps), hence proving the claim. Figure 1(c) shows an example. This property allows one to route all packages to their destination vertices one at a time. Our algorithm performs only a polynomial number of operations, which implies that the makespans and flowtimes of the resulting solutions are also polynomial.

\[U_m = (M - 1)(2|V| - 3). \]

Letting any two packages switch vertices, as done in the proof of Theorem 1, takes at most $(|V| - 1) + (|V| - 2) = 2|V| - 3$ time steps. This operation needs to be repeated at most $M - 1$ times since one additional package reaches its destination vertex each time. An upper bound on the makespan of the resulting solutions is thus

\[U_f = MU_m = M(M - 1)(2|V| - 3). \]

The proof of Theorem 1 applies unchanged to K-PERR if all packages of the same type are first assigned arbitrary different destination vertices of the same type, yielding the following corollary:

Corollary 2. All K-PERR instances are solvable. Solutions with polynomial makespans and flowtimes can be found in polynomial time.

Intractability

We now prove that PERR is NP-hard to approximate within any factor less than 4/3 for makespan minimization and...
is NP-hard to solve for flowtime minimization, by reducing an NP-complete version of the satisfiability problem, called \(\leq 3,=3\)-SAT (Tovey 1984), to PERR. A \(\leq 3,=3\)-SAT instance consists of \(n \) Boolean variables \(X_1 \ldots X_n \) and \(m \) disjunctive clauses \(C_1 \ldots C_m \). Each variable appears in exactly three clauses, uncomplemented at least once and complemented at least once. Each clause contains at most three literals. The decision question asks whether the instance is satisfiable.

Theorem 3. For any \(\epsilon > 0 \), it is NP-hard to find a \(4/3 - \epsilon \) approximate solution to PERR for makespan minimization.

Proof. We construct a PERR instance that has a solution with makespan three if and only if a given \(\leq 3,=3\)-SAT instance is satisfiable. Figure 2 shows an example.

For each variable \(X_i \) in the \(\leq 3,=3\)-SAT instance, we construct two “literal” packages, \(p_{iT} \) and \(p_{iF} \), with source vertices \(s_{iT} \) and \(s_{iF} \) and destination vertices \(t_{iT} \) and \(t_{iF} \), respectively. For each literal package, we construct two paths to get to its destination vertex in three time steps: a “shared” path, namely \(\langle s_{iT}, u_{iT}, v_i, t_{iT} \rangle \) for \(p_{iT} \) and \(\langle s_{iF}, u_{iF}, v_i, t_{iF} \rangle \) for \(p_{iF} \), and a “private” path, namely \(\langle s_{iT}, u_{iT}, x_{iT}, t_{iT} \rangle \) for \(p_{iT} \) and \(\langle s_{iF}, u_{iF}, x_{iF}, t_{iF} \rangle \) for \(p_{iF} \). The shared paths for \(p_{iT} \) and \(p_{iF} \) intersect at vertex \(v_i \). Only one of the two paths can be used if a makespan of three is to be achieved. Sending literal package \(p_{iT} \) (or \(p_{iF} \)) along the shared path corresponds to assigning \(True \) (or \(False \)) to \(X_i \) in the \(\leq 3,=3\)-SAT instance.

For each clause \(C_j \) in the \(\leq 3,=3\)-SAT instance, we construct a “clause” package \(p_j \) with source vertex \(c_j \) and destination vertex \(d_j \). It has multiple (but at most three) “clause” paths to get to its destination vertex in three time steps, which have a one-to-one correspondence to the literals in \(C_j \). Every literal \(X_i \) (or \(\overline{X_i} \)) can appear in at most two clauses. If \(C_j \) is the first clause that it appears in, then the clause path is \(\langle c_j, w_{iT}, b_j, d_j \rangle \) (or \(\langle c_j, w_{iF}, b_j, d_j \rangle \)). If \(C_j \) is the second clause that it appears in, a vertex \(a_j \) is introduced and the clause path is instead \(\langle c_j, a_j, x_{iT}, d_j \rangle \) (or \(\langle c_j, a_j, x_{iF}, d_j \rangle \)). The clause path of each \(C_j \) with respect to any literal in that clause and the private path of the literal intersect. Only one of the two paths can thus be used if a makespan of three is to be achieved.

Suppose that a satisfying assignment to the \(\leq 3,=3\)-SAT instance exists. Then, a solution with makespan three is obtained by sending literal packages of true literals along their shared paths, the other literal packages along their private paths and clause packages along the clause paths corresponding to one of the true literals in those clauses.

Conversely, suppose that a solution with makespan three exists. Then, each clause package traverses the clause path corresponding to one of the literals in that clause, and the corresponding literal package traverses its shared path. Since the packages of a literal and its complement cannot both use their shared path if a makespan of three is to be achieved, we can assign \(True \) to every literal whose package uses its shared path without assigning \(True \) to both the uncomplemented and complemented literals. If the packages of both literals use their private paths, we can assign \(True \) to any one of the literals and \(False \) to the other one. A solution to the PERR instance with makespan three thus yields a satisfying assignment to the \(\leq 3,=3\)-SAT instance.

To summarize, the PERR instance has a solution with makespan three if and only if the \(\leq 3,=3\)-SAT instance is satisfiable. Also, the PERR instance cannot have a solution with makespan smaller than three and always has a solution with makespan four, even if the \(\leq 3,=3\)-SAT instance is unsatisfiable. For any \(\epsilon > 0 \), any approximation algorithm for PERR with ratio \(4/3 - \epsilon \) thus computes a solution with makespan three whenever the \(\leq 3,=3\)-SAT instance is satisfiable and therefore solves \(\leq 3,=3\)-SAT.

The PERR instance in the proof of Theorem 3 has the property that the length of every path from a source vertex to the corresponding destination vertex is at least three. Thus, if the makespan is three, then every package is delivered in exactly three time steps and the flowtime is \(3M \). Moreover, if the makespan exceeds three, then the flowtime exceeds \(3M \), yielding the following corollary:

Corollary 4. It is NP-hard to minimize flowtime for PERR.

The construction in the proof of Theorem 3 almost applies in case all literal packages are of the same type and all clause packages are of the same type - but not quite since, if clause \(C_k \) is the first clause that literal \(X_i \) appears in and clause \(C_j \) is the second such clause, then clause package \(p_k \) could travel from its source vertex \(c_k \) along path \(\langle c_k, w_{iT}, x_{iT}, d_j \rangle \) of length three to destination vertex \(d_j \). Thus, a solution to the PERR instance with makespan three does not necessarily yield a satisfying assignment to the \(\leq 3,=3\)-SAT instance. We therefore now prove that even 2-PERR is NP-hard to approximate within any factor less than \(4/3 \) for makespan minimization and is NP-hard to solve for flowtime minimization, by reducing a different NP-complete version of the sat-
isfiability problem, called $2/3$-3-SAT, to 2-PERR. A $2/3$-3-SAT instance consists of n Boolean variables $X_1 \ldots X_n$ and m disjunctive clauses $C_1 \ldots C_m$. Each variable appears complemented in one clause of size two, appears uncomplemented in one clause of size two and appears a third time in a clause of size three. The decision question asks whether the instance is satisfiable.

Lemma 5. $2/3$-3-SAT is NP-complete.

Proof. $2/3$-3-SAT is clearly in NP. 3-SAT is NP-complete and can be reduced to $2/3$-3-SAT as follows, similar to (Tovey 1984): Given a standard 3-SAT instance with variables Y_i and exactly three literals per clause, we delete all clauses that contain a variable that does not appear in any other clause. Then, we consider each remaining variable Y_i in turn. Let $K_i > 1$ be the number of literals that it occurs in. We replace the k-th occurrence of variable Y_i by a new variable $X_{i,k}$, that is, replace literal Y_i (or $\overline{Y_i}$) with literal $X_{i,k}$ (or $\overline{X_{i,k}}$). Then, we append the following clauses of two literals each to the constructed instance:

\[
\left(\bigwedge_{k=1}^{K_i-1} (X_{i,k} \lor X_{i,k+1}) \right) \land \left(X_{i,K_i} \lor \overline{X_{i,1}} \right).
\]

The clause $X_{i,k} \lor \overline{X_{i,k+1}}$ implies that $X_{i,k+1}$ must be false if $X_{i,k}$ is false and that $X_{i,k}$ must be true if $X_{i,k+1}$ is true. The cyclic structure of the clauses therefore forces all $X_{i,1} \ldots X_{i,K_i}$ to have the same truth value. Thus, the constructed instance is satisfiable if and only if the original 3-SAT instance is satisfiable. Each $X_{i,k}$ appears complemented in one clause of size two, appears uncomplemented in one clause of size two and appears a third time in a clause of size three. Moreover, the transformation requires only polynomial time.

Theorem 6. For any $\epsilon > 0$, it is NP-hard to find a $4/3-\epsilon$ approximate solution to 2-PERR for makespan minimization.

Proof. We construct a 2-PERR instance that has a solution with makespan three if and only if a given $2/3$-3-SAT instance is satisfiable. Figure 3 shows an example. Then, the remainder of the proof of Theorem 3 applies without change.

We follow the construction in the proof of Theorem 3, with the exception of making every clause path for clauses c_j of size two of the form $\langle c_j, w_{iF}/w_{iF}, b_j, d_j \rangle$ (vertex a_j is not introduced in this case) and every clause path for clauses c_k of size three of the form $\langle c_k, a_k, x_{iF}/x_{iF}, d_k \rangle$. We distinguish only two package types, namely literal and clause packages. Every vertex s_{iT} and s_{iF} (or t_{iT} and t_{iF}) is a source (or destination) vertex of a literal package, and every vertex c_j (or d_j) is a source (or destination) vertex of a clause package.

Suppose that a satisfying assignment to the $2/3$-3-SAT instance exists. Then, a solution with makespan three is obtained, as in the proof of Theorem 3, by sending literal packages of true literals along their shared paths, the other literal packages along their private paths and clause packages along the clause paths corresponding to one of the true literals in those clauses.

Conversely, suppose that a solution with makespan three exists. Then, the only paths of length three from source vertex s_{iT} or s_{iF} to a destination vertex of a literal package are the shared or private paths that end at destination vertex t_{iT} or t_{iF}. The shared paths of packages p_{iF} and p_{iT} intersect at their penultimate vertices. Since the two packages cannot occupy the same vertex at time $t = 2$, at most one of them can traverse its shared path if a makespan of three is to be achieved. Package p_{iF} cannot arrive at t_{iF} since then p_{iF} has no path of length three to a destination vertex of a literal available, and vice versa for p_{iT}. Now consider an arbitrary clause C_j of size three. The only paths of length three from source vertex c_k to a destination vertex of a clause package have the form $\langle c_k, a_k, x_{iF}/x_{iF}, d_k \rangle$. Clause package p_k thus must arrive at destination vertex d_k. Finally, consider an arbitrary clause C_j of size two. The only paths of length three from source vertex c_j to a destination vertex of a clause package have the form $\langle c_j, w_{iF}/w_{iF}, b_j, d_j \rangle$ or $\langle c_j, w_{iT}/w_{iT}, x_{iF}/x_{iF}, d_k \rangle$, where the clause C_k of size three shares a literal with clause C_j. Paths of the latter form cannot be used because destination vertex d_k must receive clause package p_k. Clause package p_j thus must arrive at destination vertex d_j. The situation is now identical to that in the proof of Theorem 3 because every package p_{iF} (or p_{iT}, p_j or p_k) travels from its source vertex s_{iF} (or s_{iT}, c_j or c_k) to destination vertex t_{iT} (or t_{iF}, d_j or d_k). A solution to the 2-PERR instance with makespan three thus yields a satisfying assignment to the $2/3$-3-SAT instance when assigning True to every literal whose package uses its shared
motions. Their proof does not transfer to PERR.

We now reduce K-PERR to the integer multi-commodity network-flow problem. We then use this reduction to solve PERR optimally.

Reducing K-PERR to Multicommodity Flow

Given a K-PERR instance and a fixed number of time steps \(T \), we construct a directed flow network \(N \) with vertex set \(V' = \bigcup_{v \in V} \bigcup_{t=0}^{T} \{ v_{in}^{t}, v_{out}^{t} \} \). Vertex \(v_{in}^{t} \) (or \(v_{out}^{t} \)) represents vertex \(v \in V \) in the beginning (or at the end) of time \(t \). For each \(1 \leq i \leq M \), set a supply of one at source vertex \((s_i)^{in} \) and a demand of one at destination vertex \((d_i)^{out} \), both for commodity type \(k \) where \(k \) is the type of package \(p_i \). Construct edge set \(E' \) as follows: All edges are directed and have unit capacity. For all \(v \in V \) and \(t = 0 \ldots T - 1 \), create (green) edges \((v_{in}^{t}, v_{out}^{t+1})\) to allow a robot to stay at the vertex. For all \((u, v) \in E\) and \(t = 0 \ldots T - 1 \), create (black) edges \((v_{out}^{t}, v_{in}^{t+1})\) and \((v_{out}^{t}, v_{in}^{t})\) to allow a robot to move along the edge or exchange a package along the edge. For all \(v \in V \) and \(t = 1 \ldots T \), also create (blue dashed) edges \((v_{in}^{t}, v_{out}^{t})\) to prevent more than one robot from being at the same vertex at the same time. Figure 4 shows an example. The construction implies the following theorem:

Theorem 9. Every feasible integer multi-commodity flow on \(N = (V', E') \) yields a K-PERR solution with makespan of at most \(T \), and vice versa.

The proof of this theorem mirrors the one for the reduction of MAPF to the integer multi-commodity network-flow problem (Yu and LaValle 2013a).

Computing Optimal Solutions

We use our reduction to solve PERR for makespan and flowtime minimization. An integer multi-commodity network-flow problem can be expressed as an integer linear program (ILP) using the following standard formulation. Let \(\delta^+(v) \) (or \(\delta^-(v) \)) be the set of incoming (or outgoing) edges of vertex \(v \). The 0/1 variable \(x_{i}[e] \) represents the amount of flow of type \(i \) on edge \(e \).

\[
\forall e \in E' \quad 0 \leq \sum_{i=1}^{M} x_{i}[e] \leq 1
\]

\[
\forall v \in V \setminus \{(s_0)^{out}, (d_T)^{out}\} \quad \sum_{e \in \delta^+(v)} x_{i}[e] - \sum_{e \in \delta^-(v)} x_{i}[e] = 0.
\]

\[
\forall i = 1 \ldots M \quad \sum_{e \in \delta^+((s_0)^{out})} x_{i}[e] = \sum_{e \in \delta^-((d_T)^{out})} x_{i}[e] = 1
\]

Minimizing Makespan

Binary search on \(T \) finds the minimum value of \(T \) for which feasible solution exists, similar to (Yu and LaValle 2013a). This requires a lower and an upper bound on \(T \). For the former we use the maximum over \(i \) of the length of a shortest path from \(s_i \) to \(d_i \) in \(G \). Our upper bound is given by Equation 1. Thus, the binary search requires at most \(O(\log U_m) = O(\log(M|V|)) \approx O(\log |V|^3) = O(\log |V|) \) iterations. In our experiments, we actually assign the lower bound to \(T \) and then repeatedly increment \(T \) until we reach feasibility (since we noticed that we get feasibility right away). However, we have developed a way to minimize makespan by solving one ILP only, namely by using our upper bound for \(T \) and adding a single auxiliary variable \(z \). We minimize \(z \) subject to \(z \geq (t+1)x_{i}[(v_{out}^{i}, v_{in}^{i+1})] \) for all \(i = 1 \ldots M \), \((u, v) \in E\) and \(t = 0 \ldots U - 1 \). The last movement of any package sets the value of \(z \), thereby minimizing the makespan.

Network Flow and PERR

We now reduce K-PERR to the integer multi-commodity network-flow problem. We then use this reduction to solve PERR optimally.

Generalizations

None of our proofs require exchange operations. Thus, they apply unchanged to many variants of PERR, including where 1. robots cannot exchange packages; 2. packages or robots disappear upon delivery; 3. robots can carry more than one package; and 4. robots exchange packages more slowly or more quickly than moving along an edge. In particular, our proofs apply unchanged to MAPF, even if there are only two types of robots (where each robot of a given type must move to a different destination vertex of the same type), yielding the following corollary:

Corollary 8. For any \(\epsilon > 0 \), it is NP-hard to find a \(4/3 - \epsilon \) approximate solution to MAPF for makespan minimization, even if there are only two types of robots.

Corollary 8 improves the state-of-the-art NP-hardness result of MAPF for makespan minimization (Yu and LaValle 2013b), which is based on reducing 2/2/4-SAT to the \((n^2-1) \)-puzzle (Ratner and Warmuth 1990), since it shows not only the NP-hardness of solving MAPF but also the NP-hardness of approximating it with constant-factor approximations. Their proof does not transfer to PERR.
Minimizing Flowtime A similar formulation allows us to minimize flowtime by solving one ILP only, namely by using an upper bound for T and adding auxiliary variables z_i for all $i = 1 \ldots M$. We minimize $\sum_{i=1}^{M} z_i$ subject to $z_i \geq (t + 1)x_i[(a_{u, v}^i, e_{i+1}^i)]$ for all $i = 1 \ldots M$, $(u, v) \in E$ and $t = 0 \ldots U - 1$. The last movement of package p_i sets the value of z_i, thereby minimizing the flowtime.

The Special Case of 1-PERR
In the special case of 1-PERR, the integer multi-commodity network-flow problem becomes a regular feasible circulation problem, which is easily converted to a maximum flow problem. Since all supply and demand values are one, any polynomial or pseudopolynomial time algorithm for maximum flow determines the feasibility of 1-PERR for any particular T in polynomial time. Binary search on T yields the following corollary:

Corollary 10. Minimizing makespan for 1-PERR is solvable in polynomial time.

In variant 2 of 1-PERR, where packages disappear upon delivery, flow time can be minimized in polynomial time by setting all edge costs to one and adding “disappearance” edges $((d_i)_{out}, (d_i)_{out})$ which for each destination vertex d_i permit a package there at any time t to disappear. This creates a minimum cost flow problem with unit costs, which therefore can be solved in polynomial time by any polynomial or pseudopolynomial time algorithm.

Experiments
We now report our experimental results for makespan minimization. We implemented a flow-based PERR solver based on a software package provided by the authors of (Yu and LaValle 2013a). Our flow-based solver casts a PERR instance as a series of integer multi-commodity network-flow problems as described in Section “Network Flow and PERR”, each of which is formulated as an ILP and given to the ILP solver Gurobi 6.0. We also use a version of this flow-based solver that determines a solution only on the subgraph given by the set of shortest individual paths of all packages from their source vertices to their destination vertices. This version sacrifices optimality for reducing the size of the graph to be searched. Both flow-based solvers are written in Java. Additionally, we adapted the Conflict-Based Search (CBS) algorithm (Sharon et al. 2015) from MAPF to PERR, which requires only the addition of exchange operations. The adapted CBS solver is correct, complete and optimal, as can be shown with arguments similar to those in (Sharon et al. 2015) using the upper bound from Equation 1. It is written in C#. We ran all solvers on a 2.50GHz Intel Core i5-2450M computer with 6GB RAM, a 1.5GB JVM and a single thread. We performed three experiments.

In the first experiment, we studied the effect of exchange operations by solving both PERR instances and the corresponding MAPF instances (which do not permit exchange operations) on small benchmark maps with three to sixteen robots each (Sajid, Luna, and Bekris 2012). Table 1 reports the makespans of the MAPF solutions found by Sequential Push and Swap (Luna and Bekris 2011), Parallel Push and Swap (Sajid, Luna, and Bekris 2012), Sequential Push and Swap with Parallelization, ODA* (Standley 2010; Standley and Korf 2011) and CBS. The first three solvers are suboptimal ones, and the last two solvers are optimal ones. The results for the first four solvers are copied from (Sajid, Luna, and Bekris 2012). Table 1 also reports the makespans of the PERR solutions found by adapted CBS, the optimal flow-based solver and the suboptimal flow-based solver. The first two solvers are optimal solvers, and the last solver is a suboptimal one. Both flow-based solvers managed to compute optimal solutions for all PERR instances within 0.1 seconds each. Adapted CBS computed optimal solutions for all PERR instances but reached the ten-minute runtime limit for the last one, while CBS solved even fewer MAPF instances. Table 1 suggests that the PERR instances are easier to solve than the corresponding MAPF instances and have smaller makespans.

In the second experiment, we compared the scalability of the three PERR solvers on four-neighbor 20×15 connected grid maps. We generated thirty instances with randomly blocked cells and random source and destination vertices each for different numbers of robots (varied from 10 to 50 in increments of 10) and obstacle densities (varied from 0% to 30% in increments of 5%). The two flow-based solvers solved all instances, while the adapted CBS solver solved only some of them. Table 2 and Figure 5 suggest that the flow-based solvers perform better on instances with many robots, while the adapted CBS solver performs better on instances with few robots.

In the third experiment, we ran the adapted CBS solver on the benchmark map brc202d from the video game Dragon Age: Origins (Sturtevant 2012), discretized to a grid map of 254,930 cells. We generated thirty instances with random source and destination vertices each for different numbers of robots (varied from 5 to 50 in increments of 5). Both flow-based solvers reached the ten-minute runtime limit on this sparse grid map with many bottlenecks. They do not scale well for ILPs with large numbers of time steps. Table 3 suggests that the adapted CBS solver scales well. It is thus possible to adapt a MAPF solver to PERR with little effort and have it perform well on a grid map from an actual game.

<table>
<thead>
<tr>
<th>Map</th>
<th>CBS</th>
<th>Flow</th>
<th>Suboptimal Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree</td>
<td>9</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>Corners</td>
<td>68</td>
<td>21</td>
<td>8</td>
</tr>
<tr>
<td>Tunnel</td>
<td>159</td>
<td>44</td>
<td>6</td>
</tr>
<tr>
<td>Connect</td>
<td>126</td>
<td>37</td>
<td>29</td>
</tr>
<tr>
<td>String</td>
<td>39</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>Twoloop</td>
<td>5,269</td>
<td>1,015</td>
<td>8</td>
</tr>
</tbody>
</table>
Conclusion

We studied the package-exchange robot-routing problem (PERR) as a first step toward understanding more general transportation problems with payload exchanges (and transfers). There is a continuum of problems. One robot yields the long-studied classic rural postman problem. As many robots as packages yields the less understood MAPF and PERR problems. Understanding the extremes, as done in this paper, improves our ability to attack the middle in future work, where many real-world applications are positioned.

References

Tovey, C. 1984. A simplified NP-complete satisfiability problem. Discrete Applied Mathematics 8:85–90.

Table 2: Results on four-neighbor connected 20×15 grid maps for different numbers of robots and obstacle densities (given as averages over the instances solved within the ten-minute runtime limit). The number of exchange operations is given in parentheses. Black entries indicate that all instances were solved. Red entries indicate that only some instances were solved. Blue entries indicate that one or more solutions were suboptimal.

<table>
<thead>
<tr>
<th>Robots</th>
<th>Density</th>
<th>Adaptive CBS</th>
<th>Optimal Flow</th>
<th>Suboptimal Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Solved</td>
<td>Time</td>
<td>Makespan</td>
</tr>
<tr>
<td>10</td>
<td>0%</td>
<td>100.00%</td>
<td>0.03s</td>
<td>20.67 (0.70)</td>
</tr>
<tr>
<td>10</td>
<td>5%</td>
<td>100.00%</td>
<td>0.06s</td>
<td>20.77 (1.07)</td>
</tr>
<tr>
<td>10</td>
<td>10%</td>
<td>100.00%</td>
<td>0.12s</td>
<td>21.13 (0.83)</td>
</tr>
<tr>
<td>10</td>
<td>15%</td>
<td>100.00%</td>
<td>0.06s</td>
<td>22.37 (1.57)</td>
</tr>
<tr>
<td>10</td>
<td>20%</td>
<td>100.00%</td>
<td>0.19s</td>
<td>23.23 (2.23)</td>
</tr>
<tr>
<td>10</td>
<td>25%</td>
<td>100.00%</td>
<td>0.11s</td>
<td>24.70 (3.50)</td>
</tr>
<tr>
<td>10</td>
<td>30%</td>
<td>100.00%</td>
<td>0.53s</td>
<td>30.67 (5.37)</td>
</tr>
<tr>
<td>20</td>
<td>0%</td>
<td>100.00%</td>
<td>0.10s</td>
<td>23.67 (6.83)</td>
</tr>
<tr>
<td>20</td>
<td>5%</td>
<td>100.00%</td>
<td>0.28s</td>
<td>23.77 (5.77)</td>
</tr>
<tr>
<td>20</td>
<td>10%</td>
<td>100.00%</td>
<td>0.23s</td>
<td>24.07 (6.50)</td>
</tr>
<tr>
<td>20</td>
<td>15%</td>
<td>100.00%</td>
<td>0.23s</td>
<td>23.67 (7.80)</td>
</tr>
<tr>
<td>20</td>
<td>20%</td>
<td>96.67%</td>
<td>1.68s</td>
<td>25.20 (9.37)</td>
</tr>
<tr>
<td>20</td>
<td>25%</td>
<td>96.67%</td>
<td>1.51s</td>
<td>28.77 (13.27)</td>
</tr>
<tr>
<td>20</td>
<td>30%</td>
<td>73.33%</td>
<td>21.40s</td>
<td>33.03 (20.80)</td>
</tr>
<tr>
<td>30</td>
<td>0%</td>
<td>100.00%</td>
<td>1.24s</td>
<td>24.10 (13.70)</td>
</tr>
<tr>
<td>30</td>
<td>5%</td>
<td>100.00%</td>
<td>0.63s</td>
<td>25.63 (16.80)</td>
</tr>
<tr>
<td>30</td>
<td>10%</td>
<td>100.00%</td>
<td>0.87s</td>
<td>24.97 (19.00)</td>
</tr>
<tr>
<td>30</td>
<td>15%</td>
<td>100.00%</td>
<td>3.11s</td>
<td>26.70 (23.60)</td>
</tr>
<tr>
<td>30</td>
<td>20%</td>
<td>53.33%</td>
<td>5.39s</td>
<td>30.27 (30.37)</td>
</tr>
<tr>
<td>30</td>
<td>25%</td>
<td>23.33%</td>
<td>112.27s</td>
<td>34.87 (41.53)</td>
</tr>
<tr>
<td>40</td>
<td>0%</td>
<td>96.67%</td>
<td>11.16s</td>
<td>25.13 (23.83)</td>
</tr>
<tr>
<td>40</td>
<td>5%</td>
<td>93.33%</td>
<td>7.22s</td>
<td>26.07 (40.93)</td>
</tr>
<tr>
<td>40</td>
<td>10%</td>
<td>80.00%</td>
<td>15.74s</td>
<td>25.40 (23.60)</td>
</tr>
<tr>
<td>40</td>
<td>15%</td>
<td>30.00%</td>
<td>61.46s</td>
<td>26.73 (55.43)</td>
</tr>
<tr>
<td>40</td>
<td>20%</td>
<td>16.67%</td>
<td>141.95s</td>
<td>27.50 (61.17)</td>
</tr>
<tr>
<td>40</td>
<td>25%</td>
<td>3.33%</td>
<td>378.24s</td>
<td>30.33 (75.50)</td>
</tr>
<tr>
<td>40</td>
<td>30%</td>
<td>0.00%</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3: Results on benchmark game map brc202d for different numbers of robots (given as averages over the instances solved within the ten-minute runtime limit).

<table>
<thead>
<tr>
<th>Robots</th>
<th>Adaptive CBS</th>
<th>Makespan</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>100.00%</td>
<td>732.10</td>
<td>0.34s</td>
</tr>
<tr>
<td>10</td>
<td>100.00%</td>
<td>809.03</td>
<td>17.75s</td>
</tr>
<tr>
<td>15</td>
<td>96.67%</td>
<td>882.28</td>
<td>3.51s</td>
</tr>
<tr>
<td>20</td>
<td>86.67%</td>
<td>905.15</td>
<td>5.43s</td>
</tr>
<tr>
<td>25</td>
<td>96.67%</td>
<td>931.34</td>
<td>22.73s</td>
</tr>
<tr>
<td>30</td>
<td>86.67%</td>
<td>942.19</td>
<td>29.03s</td>
</tr>
<tr>
<td>35</td>
<td>76.67%</td>
<td>963.13</td>
<td>50.80s</td>
</tr>
<tr>
<td>40</td>
<td>53.33%</td>
<td>974.25</td>
<td>70.50s</td>
</tr>
<tr>
<td>45</td>
<td>70.00%</td>
<td>974.10</td>
<td>77.49s</td>
</tr>
<tr>
<td>50</td>
<td>36.67%</td>
<td>943.36</td>
<td>86.67s</td>
</tr>
</tbody>
</table>