
Multi-Agent Path Finding with Payload Transfers and
the Package-Exchange Robot-Routing Problem∗

Hang Ma
Department of Computer Science
University of Southern California

hangma@usc.edu

Craig Tovey
School of Industrial and Systems Engineering

Georgia Institute of Technology
ctovey@isye.gatech.edu

Guni Sharon
Department of Information Systems Engineering

Ben-Gurion University of the Negev
gunisharon@gmail.com

T. K. Satish Kumar and Sven Koenig
Department of Computer Science
University of Southern California

tkskwork@gmail.com and skoenig@usc.edu

Abstract

We study transportation problems where robots have to de-
liver packages and can transfer the packages among each
other. Specifically, we study the package-exchange robot-
routing problem (PERR), where each robot carries one pack-
age, any two robots in adjacent locations can exchange their
packages, and each package needs to be delivered to a given
destination. We prove that exchange operations make all
PERR instances solvable. Yet, we also show that PERR is
NP-hard to approximate within any factor less than 4/3 for
makespan minimization and is NP-hard to solve for flowtime
minimization, even when there are only two types of pack-
ages. Our proof techniques also generate new insights into
other transportation problems, for example, into the hardness
of approximating optimal solutions to the standard multi-
agent path-finding problem (MAPF). Finally, we present opti-
mal and suboptimal PERR solvers that are inspired by MAPF
solvers, namely a flow-based ILP formulation and an adap-
tation of conflict-based search. Our empirical results demon-
strate that these solvers scale well and that PERR instances
often have smaller makespans and flowtimes than the corre-
sponding MAPF instances.

Introduction

Payloads can be transferred in real-world applications such
as ride-sharing (or taxis) with passenger transfers (Coltin
and Veloso 2014) or package delivery with robots in offices
(Veloso et al. 2015). The theoretical implications of allow-
ing payload transfers are still poorly understood. In this pa-
per, we therefore study the package-exchange robot-routing
problem (PERR), where each robot carries one package, any

∗We thank Jingjin Yu for making the code of their flow-based
MAPF solver and Nathan Sturtevant for making game maps avail-
able to us. The research at USC was supported by NSF under grant
numbers 1409987 and 1319966. The views and conclusions con-
tained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or
implied, of the sponsoring organizations, agencies or the U.S. gov-
ernment.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

two robots in adjacent locations can exchange their pack-
ages, and each package needs to be delivered to a given
destination. We want to minimize the time when the last
package reaches its destination (makespan) or the sum of
the times when each package reaches its destination (flow-
time). PERR is motivated by the observation that the robots
are often interchangeable but the packages are not - due to
their different destinations.

PERR is identical to the standard multi-agent path-finding
problem (MAPF), except that MAPF does not permit ex-
change operations: Each robot needs to move to a given
destination but two robots in adjacent locations cannot
exchange their positions. MAPF is NP-hard to solve for
both makespan and flowtime minimization (Yu and LaValle
2013b). Furthermore, several optimal and suboptimal MAPF
solvers have been developed, including (Kornhauser, Miller,
and Spirakis 1984; Silver 2005; Sturtevant and Buro 2006;
Wagner and Choset 2011; Surynek 2012; Erdem et al. 2013;
de Wilde, ter Mors, and Witteveen 2013; Sharon et al. 2013;
Goldenberg et al. 2014; Cohen, Uras, and Koenig 2015).

Figures 1(a) & 1(b) illustrate that exchange operations can
improve the makespan and flowtime by arbitrary factors.
We prove by construction that exchange operations make
all PERR instances solvable, and derive polynomial upper
bounds on makespan and flowtime. Yet, we also show that
PERR is NP-hard to approximate within any factor less than
4/3 for makespan minimization and is NP-hard to solve
for flowtime minimization, even when there are only two
types of packages (where packages of the same type are in-
terchangeable). Our proof techniques also generate new in-
sights into other transportation problems, for example, into
the hardness of approximating optimal MAPF solutions.

Finally, we present optimal and suboptimal PERR solvers
that are inspired by MAPF solvers, namely a flow-based
ILP formulation (Yu and LaValle 2013a) and an adaptation
of conflict-based search (Sharon et al. 2015). Our empiri-
cal results demonstrate that these solvers scale well and that
PERR instances often have smaller makespans and flow-
times than the corresponding MAPF instances.

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

3166

�� ��
��
��

��
��

(a)

�� ��

��
��

��
��

�������	
���

(b)

�� �� �� ��
� ��

�� �� �� ��

�� �� �� ��

(c)

Figure 1: (a) (b) Motivating examples that demonstrate the
power of exchange operations. Two robots carrying pack-
ages p1 and p2 have to deliver them to their destination ver-
tices d1 and d2, respectively. They can exchange their pack-
ages. If exchange operations are not allowed in (a), then no
solution exists. If exchange operations are not allowed in (b),
then one robot must take the long path. (c) Package p1 can
be moved from vertex u to vertex v via a series of exchange
operations along the path 〈u . . . v〉. Then, package p4 can be
moved from vertex w to u via a series of exchange operation
along the path 〈w . . . u〉, restoring the original positions of
packages p2 and p3.

Package-Exchange Robot-Routing Problem

We formalize the package-exchange robot-routing problem
(PERR) as follows: We are given an undirected connected
graph G = (V,E) and M packages {p1, p2 . . . pM}. Each
package pi has a source vertex si and a destination vertex
di. Let li(t) be the vertex of pi at time t = 0 . . .∞. A plan
assigns a function li to each package pi. A solution is a plan
that satisfies the following conditions: 1. For all packages
i, li(0) = si (each package starts at its source vertex). 2.
For all packages i, there exists a time T end

i such that, for
all times t = T end

i . . .∞, li(t) = di (each package ends at
its destination vertex). We assume without loss of generality
that T end

i is the smallest such time. 3. For all packages i
and all times t, (li(t), li(t + 1)) ∈ E or li(t) = li(t + 1)
(each package repeatedly either moves to an adjacent vertex
in a single time step or does not move). 4. For all pairs of
different packages i and j and all times t, li(t) �= lj(t) (two
packages are not at the same vertex at the same time). The
makespan of a solution is maxi T

end
i , and the flowtime of

the solution is
∑

i T
end
i .

We also study a generalization of PERR, namely the K-
type package-exchange robot-routing problem (K-PERR),
where the packages and destination vertices are partitioned
into K types. If there are Mk packages of type k, then there
must also be Mk destination vertices of type k. Packages of
the same type are interchangeable: Each package of type k
must be delivered to a different destination vertex of type k.
PERR is a special case of K-PERR with K = M .

In PERR and K-PERR, two packages pi and pj can be
exchanged in a single time step by the robots carrying them
when they are at adjacent vertices. If this happens, then pi
and pj traverse the same edge in opposite directions, result-
ing in li(t) = lj(t + 1) and lj(t) = li(t + 1) at the corre-
sponding time t.

Feasibility

Figure 1(a) shows that some instances of multi-agent path
finding problems (MAPF) are not solvable. The following
theorem proves that all PERR instances are solvable:

Theorem 1. All PERR instances are solvable. Solutions
with polynomial makespans and flowtimes can be found in
polynomial time.

Proof. Without loss of generality, we assume that all ver-
tices are initially occupied by robots carrying packages. (In
the following, if neither of two adjacent vertices is occupied
by a robot, then an exchange operation involving them is
replaced by a no-op operation. If only one of them is oc-
cupied by a robot, then the exchange operation is replaced
by the robot moving to the adjacent vertex.) Then, any two
packages can switch vertices without affecting the vertices
of the other packages. To see this, consider two packages
pi and pj and their current vertices u and v, respectively.
Let 〈u . . . w, v〉 be a shortest path from u to v, where w
is the vertex on the path directly before v. A series of ex-
change operations along this path moves pi to v and every
other package on this path against the path one edge closer
to u (in at most |V | − 1 time steps). In particular, it moves
pj to w. A series of exchange operations against the path
〈u . . . w〉 then moves pj to u and every other package on
this path back to its original vertex (in at most |V | − 2 time
steps), hence proving the claim. Figure 1(c) shows an exam-
ple. This property allows one to route all packages to their
destination vertices one at a time. Our algorithm performs
only a polynomial number of operations, which implies that
the makespans and flowtimes of the resulting solutions are
also polynomial.

Letting any two packages switch vertices, as done in the
proof of Theorem 1, takes at most (|V | − 1) + (|V | − 2) =
2|V | − 3 time steps. This operation needs to be repeated
at most M − 1 times since one additional package reaches
its destination vertex each time. An upper bound on the
makespan of the resulting solutions is thus

Um = (M − 1)(2|V | − 3). (1)

Since each package reaches its destination vertex by time
Um, an upper bound on the flowtime of the resulting solu-
tions is

Uf = MUm = M(M − 1)(2|V | − 3). (2)

The proof of Theorem 1 applies unchanged to K-PERR if
all packages of the same type are first assigned arbitrary dif-
ferent destination vertices of the same type, yielding the fol-
lowing corollary:

Corollary 2. All K-PERR instances are solvable. Solutions
with polynomial makespans and flowtimes can be found in
polynomial time.

Intractability

We now prove that PERR is NP-hard to approximate within
any factor less than 4/3 for makespan minimization and

3167

s1T s1F

w1T u1T u1F w1F

v1

t1T

x1T x1F

t1F

c1

b1

d1

s2T s2F

w2T u2T u2F w2F

v2

t2T

x2T x2F

t2F

b2

c2

a2

d2

s3T s3F

w3T u3T u3F w3F

v3

t3T

x3T x3F

t3F

c3

a3

d3

b3

Figure 2: A PERR instance reduced from the ≤3,=3-
SAT instance (X1 ∨ X2 ∨ X3) ∧ (X1 ∨ X2 ∨ X3) ∧
(X1 ∨ X2 ∨ X3). Clause C1 is the first clause that lit-
eral X1 appears in. The corresponding clause path is
〈c1, w1T , b1, d1〉. Since clause C3 is the second clause that
X1 appears in, vertex a3 is introduced. The correspond-
ing clause path is 〈c3, a3, x1T , d3〉. The red (directed) edges
represent one optimal solution to the PERR instance of
makespan three, which corresponds to the satisfying assign-
ment (X1, X2, X3) = (False,True,True).

is NP-hard to solve for flowtime minimization, by reduc-
ing an NP-complete version of the satisfiability problem,
called ≤3,=3-SAT (Tovey 1984), to PERR. A ≤3,=3-SAT
instance consists of n Boolean variables X1 . . . Xn and m
disjunctive clauses C1 . . . Cm. Each variable appears in ex-
actly three clauses, uncomplemented at least once and com-
plemented at least once. Each clause contains at most three
literals. The decision question asks whether the instance is
satisfiable.
Theorem 3. For any ε > 0, it is NP-hard to find a 4/3 − ε
approximate solution to PERR for makespan minimization.

Proof. We construct a PERR instance that has a solution
with makespan three if and only if a given ≤3,=3-SAT in-
stance is satisfiable. Figure 2 shows an example.

For each variable Xi in the ≤3,=3-SAT instance, we
construct two “literal” packages, piT and piF , with source
vertices siT and siF and destination vertices tiT and tiF ,
respectively. For each literal package, we construct two
paths to get to its destination vertex in three time steps:
a “shared” path, namely 〈siT , uiT , vi, tiT 〉 for piT and
〈siF , uiF , vi, tiF 〉 for piF , and a “private” path, namely
〈siT , wiT , xiT , tiT 〉 for piT and 〈siF , wiF , xiF , tiF 〉 for piF .
The shared paths for piT and piF intersect at vertex vi. Only
one of the two paths can thus be used if a makespan of three
is to be achieved. Sending literal package piT (or piF) along
the shared path corresponds to assigning True (or False) to
Xi in the ≤3,=3-SAT instance.

For each clause Cj in the ≤3,=3-SAT instance, we con-
struct a “clause” package pj with source vertex cj and desti-
nation vertex dj . It has multiple (but at most three) “clause”
paths to get to its destination vertex in three time steps,
which have a one-to-one correspondence to the literals in

Cj . Every literal Xi (or Xi) can appear in at most two
clauses. If Cj is the first clause that it appears in, then the
clause path is 〈cj , wiT , bj , dj〉 (or 〈cj , wiF , bj , dj〉). If Cj

is the second clause that it appears in, a vertex aj is in-
troduced and the clause path is instead 〈cj , aj , xiT , dj〉 (or
〈cj , aj , xiF , dj〉). The clause path of each Cj with respect
to any literal in that clause and the private path of the literal
intersect. Only one of the two paths can thus be used if a
makespan of three is to be achieved.

Suppose that a satisfying assignment to the ≤3,=3-SAT
instance exists. Then, a solution with makespan three is
obtained by sending literal packages of true literals along
their shared paths, the other literal packages along their pri-
vate paths and clause packages along the clause paths corre-
sponding to one of the true literals in those clauses.

Conversely, suppose that a solution with makespan three
exists. Then, each clause package traverses the clause path
corresponding to one of the literals in that clause, and the
corresponding literal package traverses its shared path. Since
the packages of a literal and its complement cannot both use
their shared path if a makespan of three is to be achieved,
we can assign True to every literal whose package uses its
shared path without assigning True to both the uncomple-
mented and complemented literals. If the packages of both
literals use their private paths, we can assign True to any one
of the literals and False to the other one. A solution to the
PERR instance with makespan three thus yields a satisfying
assignment to the ≤3,=3-SAT instance.

To summarize, the PERR instance has a solution with
makespan three if and only if the ≤3,=3-SAT instance is
satisfiable. Also, the PERR instance cannot have a solution
with makespan smaller than three and always has a solu-
tion with makespan four, even if the ≤3,=3-SAT instance is
unsatisfiable. For any ε > 0, any approximation algorithm
for PERR with ratio 4/3 − ε thus computes a solution with
makespan three whenever the ≤3,=3-SAT instance is satis-
fiable and therefore solves ≤3,=3-SAT.

The PERR instance in the proof of Theorem 3 has the
property that the length of every path from a source vertex to
the corresponding destination vertex is at least three. Thus,
if the makespan is three, then every package is delivered in
exactly three time steps and the flowtime is 3M . Moreover,
if the makespan exceeds three, then the flowtime exceeds
3M , yielding the following corollary:
Corollary 4. It is NP-hard to minimize flowtime for PERR.

The construction in the proof of Theorem 3 almost applies
in case all literal packages are of the same type and all clause
packages are of the same type - but not quite since, if clause
Ck is the first clause that literal Xi appears in and clause
Cj is the second such clause, then clause package pk could
travel from its source vertex ck along path 〈ck, wiT , xiT , dj〉
of length three to destination vertex dj . Thus, a solution to
the PERR instance with makespan three does not necessar-
ily yield a satisfying assignment to the ≤3,=3-SAT instance.
We therefore now prove that even 2-PERR is NP-hard to ap-
proximate within any factor less than 4/3 for makespan min-
imization and is NP-hard to solve for flowtime minimiza-
tion, by reducing a different NP-complete version of the sat-

3168

isfiability problem, called 2/2/3-SAT, to 2-PERR. A 2/2/3-
SAT instance consists of n Boolean variables X1 . . . Xn

and m disjunctive clauses C1 . . . Cm. Each variable appears
complemented in one clause of size two, appears uncomple-
mented in one clause of size two and appears a third time
in a clause of size three. The decision question asks whether
the instance is satisfiable.

Lemma 5. 2/2/3-SAT is NP-complete.

Proof. 2/2/3-SAT is clearly in NP. 3-SAT is NP-complete
and can be reduced to 2/2/3-SAT as follows, similar
to (Tovey 1984): Given a standard 3-SAT instance with vari-
ables Yi and exactly three literals per clause, we delete all
clauses that contain a variable that does not appear in any
other clause. Then, we consider each remaining variable
Yi in turn. Let Ki > 1 be the number of literals that it
occurs in. We replace the k-th occurrence of variable Yi

by a new variable Xi,k, that is, replace literal Yi (or Y i)
with literal Xi,k (or Xi,k). Then, we append the follow-
ing clauses of two literals each to the constructed instance:(∧Ki−1

k=1 (Xi,k ∨Xi,k+1)
)
∧ (Xi,Ki ∨ Xi,1). The clause

Xi,k ∨ Xi,k+1 implies that Xi,k+1 must be false if Xi,k is
false and that Xi,k must be true if Xi,k+1 is true. The cyclic
structure of the clauses therefore forces all Xi,1 . . . Xi,Ki to
have the same truth value. Thus, the constructed instance is
satisfiable if and only if the original 3-SAT instance is sat-
isfiable. Each Xi,k appears complemented in one clause of
size two, appears uncomplemented in one clause of size two
and appears a third time in a clause of size three. Moreover,
the transformation requires only polynomial time.

Theorem 6. For any ε > 0, it is NP-hard to find a 4/3−ε ap-
proximate solution to 2-PERR for makespan minimization.

Proof. We construct a 2-PERR instance that has a solution
with makespan three if and only if a given 2/2/3-SAT in-
stance is satisfiable. Figure 3 shows an example. Then, the
remainder of the proof of Theorem 3 applies without change.

We follow the construction in the proof of Theorem 3,
with the exception of making every clause path for clauses
cj of size two of the form 〈cj , wiT /wiF , bj , dj〉 (vertex aj is
not introduced in this case) and every clause path for clauses
ck of size three of the form 〈ck, ak, xiT /xiF , dk〉. We dis-
tinguish only two package types, namely literal and clause
packages. Every vertex siT and siF (or tiT and tiF) is a
source (or destination) vertex of a literal package, and ev-
ery vertex cj (or dj) is a source (or destination) vertex of a
clause package.

Suppose that a satisfying assignment to the 2/2/3-SAT
instance exists. Then, a solution with makespan three is ob-
tained, as in the proof of Theorem 3, by sending literal pack-
ages of true literals along their shared paths, the other literal
packages along their private paths and clause packages along
the clause paths corresponding to one of the true literals in
those clauses.

Conversely, suppose that a solution with makespan three
exists. Then, the only paths of length three from source ver-
tex siT or siF to a destination vertex of a literal package

s1T s1F

w1T u1T u1F w1F

v1

t1T

x1T x1F

t1F

c1

b1

d1

s2T s2F

w2T u2T u2F w2F

v2

t2T

x2T x2F

t2F

b2

c2

d2

s3T s3F

w3T u3T u3F w3F

v3

t3T

x3T x3F

t3F

c3

d3

b3

c4

a4

d4

Figure 3: A 2-PERR instance reduced from the 2/2/3-
SAT instance (X1 ∨ X2) ∧ (X1 ∨ X3) ∧ (X2 ∨ X3) ∧
(X1 ∨ X2 ∨ X3). Consider any solution with makespan
three. The only paths of length three from source vertex c4
to a destination vertex of a clause package have the form
〈c4, a4, xiT /xiF , d4〉. Clause package p4 thus must arrive at
destination vertex d4. The only paths of length three from
source vertex c1 to a destination vertex of a clause package
have the form 〈c1, wiT /wiF , b1, d1〉 or 〈c1, w1T , x1T , d4〉.
Paths of the latter form cannot be used because d4 must re-
ceive p4. Clause package p1 thus must arrive at destination
vertex d1. The colored (directed) edges represent one opti-
mal solution to the 2-PERR instance with makespan three,
which yields the satisfying assignment (X1, X2, X3) =
(True,True,True). The red edges represent paths of the literal
packages, and the blue edges represent paths of the clause
packages.

are the shared or private paths that end at destination ver-
tex tiT or tiF . The shared paths of packages piT and piF
intersect at their penultimate vertices. Since the two pack-
ages cannot occupy the same vertex at time t = 2, at most
one of them can traverse its shared path if a makespan of
three is to be achieved. Package piT cannot arrive at tiF
since then piF has no path of length three to a destination
vertex of a literal available, and vice versa for piF . Now con-
sider an arbitrary clause Ck of size three. The only paths of
length three from source vertex ck to a destination vertex of a
clause package have the form 〈ck, ak, xiT /xiF , dk〉. Clause
package pk thus must arrive at destination vertex dk. Finally,
consider an arbitrary clause Cj of size two. The only paths
of length three from source vertex cj to a destination vertex
of a clause package have the form 〈cj , wiT /wiF , bj , dj〉 or
〈cj , wiT /wiF , xiT /xiF , dk′〉, where the clause Ck′ of size
three shares a literal with clause Cj . Paths of the latter form
cannot be used because destination vertex dk′ must receive
clause package pk′ . Clause package pj thus must arrive at
destination vertex dj . The situation is now identical to that
in the proof of Theorem 3 because every package piT (or
piF , pj or pk) travels from its source vertex siT (or siF , cj
or ck) to destination vertex tiT (or tiF , dj or dk). A solution
to the 2-PERR instance with makespan three thus yields a
satisfying assignment to the 2/2/3-SAT instance when as-
signing True to every literal whose package uses its shared

3169

ut+1
in

vt
out

ut
out

vt+1
in

s1

s2

d1

d2

s1

s2

d2

d1

0 out 1 in 1 out 2 in 2 out …

Figure 4: An example of reducing a PERR instance to an
integer multi-commodity network-flow instance.

path, as explained in the proof of Theorem 3.

Corollary 7. It is NP-hard to minimize flowtime for 2-
PERR.

Theorem 6 and Corollary 7 hold not only for 2-PERR but
also for K-PERR for all K = 3 . . .M because one can pad
the graph of the constructed 2-PERR instance with addi-
tional vertices, each being both the source and destination
of a package of a different type. This padding leaves the
makespan and flowtime of any solution unchanged.

Generalizations

None of our proofs require exchange operations. Thus,
they apply unchanged to many variants of PERR, includ-
ing where 1. robots cannot exchange packages; 2. packages
or robots disappear upon delivery; 3. robots can carry more
than one package; and 4. robots exchange packages more
slowly or more quickly than moving along an edge. In par-
ticular, our proofs apply unchanged to MAPF, even if there
are only two types of robots (where each robot of a given
type must move to a different destination vertex of the same
type), yielding the following corollary:

Corollary 8. For any ε > 0, it is NP-hard to find a 4/3− ε
approximate solution to MAPF for makespan minimization,
even if there are only two types of robots.

Corollary 8 improves the state-of-the-art NP-hardness re-
sult of MAPF for makespan minimization (Yu and LaValle
2013b), which is based on reducing 2/2/4-SAT to the (n2−
1)-puzzle (Ratner and Warmuth 1990), since it shows not
only the NP-hardness of solving MAPF but also the NP-
hardness of approximating it with constant-factor approxi-
mations. Their proof does not transfer to PERR.

Network Flow and PERR

We now reduce K-PERR to the integer multi-commodity
network-flow problem. We then use this reduction to solve
PERR optimally.

Reducing K-PERR to Multicommodity Flow

Given a K-PERR instance and a fixed number of time steps
T , we construct a directed flow network N with vertex set

V ′ =
⋃

v∈V

⋃T
t=0{vint , voutt }. Vertex vint (or voutt) repre-

sents vertex v ∈ V in the beginning (or at the end) of time
t. For each 1 ≤ i ≤ M , set a supply of one at source vertex
(si)

out
0 and a demand of one at destination vertex (di)

out
T ,

both for commodity type k where k is the type of package pi.
Construct edge set E′ as follows: All edges are directed and
have unit capacity. For all v ∈ V and t = 0 . . . T − 1, create
(green) edges (voutt , vint+1) to allow a robot to stay at the ver-
tex. For all (u, v) ∈ E and t = 0 . . . T − 1, create (black)
edges (uout

t , vint+1) and (voutt , uin
t+1) to allow a robot to move

along the edge or exchange a package along the edge. For
all v ∈ V and t = 1 . . . T , also create (blue dashed) edges
(vint , voutt) to prevent more than one robot from being at the
same vertex at the same time. Figure 4 shows an example.
The construction implies the following theorem:
Theorem 9. Every feasible integer multi-commodity flow on
N = (V ′, E′) yields a K-PERR solution with makespan of
at most T , and vice versa.

The proof of this theorem mirrors the one for the reduc-
tion of MAPF to the integer multi-commodity network-flow
problem (Yu and LaValle 2013a).

Computing Optimal Solutions

We use our reduction to solve PERR for makespan and flow-
time minimization. An integer multi-commodity network-
flow problem can be expressed as an integer linear program
(ILP) using the following standard formulation. Let δ+(v)
(or δ−(v)) be the set of incoming (or outgoing) edges of ver-
tex v. The 0/1 variable xi[e] represents the amount of flow
of type i on edge e.

∀e ∈ E′ 0 ≤
M∑

i=1

xi[e] ≤ 1

∀i = 1 . . .M ∀v ∈ V \ {(si)out0 , (di)
out
T }∑

e∈δ+(v)

xi[e]−
∑

e∈δ−(v)

xi[e] = 0.

∀i = 1 . . .M
∑

e∈δ−((si)
out
0)

xi[e] =
∑

e∈δ+((di)
out
T

)

xi[e] = 1

Minimizing Makespan Binary search on T finds the min-
imum value of T for which feasible solution exists, simi-
lar to (Yu and LaValle 2013a). This requires a lower and
an upper bound on T . For the former we use the maximum
over i of the length of a shortest path from si to di in G.
Our upper bound is given by Equation 1. Thus, the binary
search requires at most O(logUm) = O(log(M |V |)) ≤
O(log |V |2) = O(log |V |) iterations. In our experiments,
we actually assign the lower bound to T and then repeat-
edly increment T until we reach feasibility (since we no-
ticed that we get feasibility right away). However, we have
developed a way to minimize makespan by solving one ILP
only, namely by using our upper bound for T and adding
a single auxiliary variable z. We minimize z subject to
z ≥ (t + 1)xi[(u

out
t , vint+1)] for all i = 1 . . .M , (u, v) ∈ E

and t = 0 . . . U − 1. The last movement of any package sets
the value of z, thereby minimizing the makespan.

3170

Minimizing Flowtime A similar formulation allows us to
minimize flowtime by solving one ILP only, namely by us-
ing an upper bound for T and adding auxiliary variables
zi for all i = 1 . . .M . We minimize

∑M
i=1 zi subject to

zi ≥ (t+ 1)xi[(u
out
t , vint+1)] for all i = 1 . . .M , (u, v) ∈ E

and t = 0 . . . U − 1. The last movement of package pi sets
the value of zi, thereby minimizing the flowtime.

The Special Case of 1-PERR

In the special case of 1-PERR, the integer multi-commodity
network-flow problem becomes a regular feasible circula-
tion problem, which is easily converted to a maximum flow
problem. Since all supply and demand values are one, any
polynomial or pseudopolynomial time algorithm for maxi-
mum flow determines the feasibility of 1-PERR for any par-
ticular T in polynomial time. Binary search on T yields the
following corollary:
Corollary 10. Minimizing makespan for 1-PERR is solvable
in polynomial time.

In variant 2 of 1-PERR, where packages disappear upon
delivery, flow time can be minimized in polynomial time
by setting all edge costs to one and adding “disappearance”
edges ((di)outt , (di)

out
T) which for each destination vertex di

permit a package there at any time t to disappear. This cre-
ates a minimum cost flow problem with unit costs, which
therefore can be solved in polynomial time by any polyno-
mial or pseudopolynomial time algorithm.

Experiments

We now report our experimental results for makespan mini-
mization. We implemented a flow-based PERR solver based
on a software package provided by the authors of (Yu and
LaValle 2013a). Our flow-based solver casts a PERR in-
stance as a series of integer multi-commodity network-
flow problems as described in Section “Network Flow and
PERR”, each of which is formulated as an ILP and given
to the ILP solver Gurobi 6.0. We also use a version of this
flow-based solver that determines a solution only on the sub-
graph given by the set of shortest individual paths of all
packages from their source vertices to their destination ver-
tices. This version sacrifices optimality for reducing the size
of the graph to be searched. Both flow-based solvers are
written in Java. Additionally, we adapted the Conflict-Based
Search (CBS) algorithm (Sharon et al. 2015) from MAPF
to PERR, which requires only the addition of exchange op-
erations. The adapted CBS solver is correct, complete and
optimal, as can be shown with arguments similar to those in
(Sharon et al. 2015) using the upper bound from Equation 1.
It is written in C#. We ran all solvers on a 2.50GHz Intel
Core i5-2450M computer with 6GB RAM, a 1.5GB JVM
and a single thread. We performed three experiments.

In the first experiment, we studied the effect of exchange
operations by solving both PERR instances and the corre-
sponding MAPF instances (which do not permit exchange
operations) on small benchmark maps with three to six-
teen robots each (Sajid, Luna, and Bekris 2012). Table 1
reports the makespans of the MAPF solutions found by Se-
quential Push and Swap (Luna and Bekris 2011), Parallel

Table 1: Makespans on small benchmark maps (with the
numbers of exchange operations for some PERR solutions
given in parentheses). Dashed entries indicate that the ten-
minute runtime limit was reached.

MAPF PERR

Map Sequ.
PS

Par.
PS

Sequ.
PS

with Par.
ODA* CBS Adaptive

CBS
Optimal

Flow
Suboptimal

Flow

Tree 39 9 20 6 6 3 3 (2) 3 (2)
Corners 68 21 27 8 8 8 8 (2) 8 (2)
Tunnel 159 44 49 6 - 4 4 (6) 4 (6)

Connect 126 37 29 - - 11 11 (9) 11 (9)
String 39 15 23 8 8 6 6 (4) 6 (4)

TwoLoop 5,269 1,015 - - - - 8 (40) 8 (40)

Push and Swap (Sajid, Luna, and Bekris 2012), Sequential
Push and Swap with Parallelization, ODA* (Standley 2010;
Standley and Korf 2011) and CBS. The first three solvers are
suboptimal ones, and the last two solvers are optimal ones.
The results for the first four solvers are copied from (Sajid,
Luna, and Bekris 2012). Table 1 also reports the makespans
of the PERR solutions found by adapted CBS, the optimal
flow-based solver and the suboptimal flow-based solver. The
first two solvers are optimal ones, and the last solver is a
suboptimal one. Both flow-based solvers managed to com-
pute optimal solutions for all PERR instances within 0.1 sec-
onds each. Adapted CBS computed optimal solutions for all
PERR instances but reached the ten-minute runtime limit for
the last one, while CBS solved even fewer MAPF instances.
Table 1 suggests that the PERR instances are easier to solve
than the corresponding MAPF instances and have smaller
makespans.

In the second experiment, we compared the scalability
of the three PERR solvers on four-neighbor 20×15 con-
nected grid maps. We generated thirty instances with ran-
domly blocked cells and random source and destination ver-
tices each for different numbers of robots (varied from 10
to 50 in increments of 10) and obstacle densities (varied
from 0% to 30% in increments of 5%). The two flow-based
solvers solved all instances, while the adapted CBS solver
solved only some of them. Table 2 and Figure 5 suggest
that the flow-based solvers perform better on instances with
many robots, while the adapted CBS solver performs better
on instances with few robots.

In the third experiment, we ran the adapted CBS solver on
the benchmark map brc202d from the video game Dragon
Age: Origins (Sturtevant 2012), discretized to a grid map
of 254,930 cells. We generated thirty instances with random
source and destination vertices each for different numbers of
robots (varied from 5 to 50 in increments of 5). Both flow-
based solvers reached the ten-minute runtime limit on this
sparse grid map with many bottlenecks. They do not scale
well for ILPs with large numbers of time steps. Table 3 sug-
gests that the adapted CBS solver scales well. It is thus pos-
sible to adapt a MAPF solver to PERR with little effort and
have it perform well on a grid map from an actual game.

3171

�����

�����

�	���

�
���

�����

�����

�����

�	���

�
���

�
 �
 ��
 ��
 ��
 ��
 ��

�
��
��
��
��

��

��

��

	�

��

����

�����

�����

�����

�����

������

������

�� �� ��� ��� ��� ��� ���

�
��

��
���

	�

��
�

��
��
�

��

��

��

��

��

����

������

������

������

������

������

������

������

�� �� ��� ��� ��� ��� ���

��
�
��

��
�	�

�
��

	�

��
��
��
��

��

��

��

��

��

Figure 5: Makespans, numbers of exchange operations and runtimes of the optimal flow-based solver for different numbers of
robots (colors) and obstacle densities (x-axis).

Conclusion

We studied the package-exchange robot-routing problem
(PERR) as a first step toward understanding more general
transportation problems with payload exchanges (and trans-
fers). There is a continuum of problems. One robot yields the
long-studied classic rural postman problem. As many robots
as packages yields the less understood MAPF and PERR
problems. Understanding the extremes, as done in this pa-
per, improves our ability to attack the middle in future work,
where many real-world applications are positioned.

References
Cohen, L.; Uras, T.; and Koenig, S. 2015. Feasibility study: Us-
ing highways for bounded-suboptimal multi-agent path finding. In
Annual Symposium on Combinatorial Search, 2–8.
Coltin, B., and Veloso, M. 2014. Scheduling for transfers in pickup
and delivery problems with very large neighborhood search. In
AAAI Conference on Artificial Intelligence, 2250–2256.
de Wilde, B.; ter Mors, A.; and Witteveen, C. 2013. Push and ro-
tate: Cooperative multi-agent path planning. In International Conf.
on Autonomous Agents and Multi-Agent Systems, 87–94.
Erdem, E.; Kisa, D. G.; Öztok, U.; and Schüller, P. 2013. A general
formal framework for pathfinding problems with multiple agents.
In AAAI Conference on Artificial Intelligence.
Goldenberg, M.; Felner, A.; Stern, R.; Sharon, G.; Sturtevant, N.;
Holte, R.; and Schaeffer, J. 2014. Enhanced partial expansion A*.
Journal of Artificial Intelligence Research 50:141–187.
Kornhauser, D.; Miller, G.; and Spirakis, P. 1984. Coordinating
pebble motion on graphs, the diameter of permutation groups, and
applications. In Annual Symposium on Foundations of Computer
Science, 241–250.
Luna, R., and Bekris, K. 2011. Push and swap: Fast cooperative
path-finding with completeness guarantees. In International Joint
Conference on Artificial Intelligence, 294–300.
Ratner, D., and Warmuth, M. 1990. The (n2−1)-puzzle and related
relocation problems. J. of Symbolic Computation 10(2):111 – 137.
Sajid, Q.; Luna, R.; and Bekris, K. 2012. Multi-agent pathfinding
with simultaneous execution of single-agent primitives. In Annual
Symposium on Combinatorial Search.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013. The
increasing cost tree search for optimal multi-agent pathfinding. Ar-
tificial Intelligence 195:470–495.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. 2015. Conflict-
based search for optimal multi-agent pathfinding. Artificial Intelli-
gence 219:40–66.
Silver, D. 2005. Cooperative pathfinding. In Artificial Intelligence
and Interactive Digital Entertainment, 117–122.

Standley, T., and Korf, R. 2011. Complete algorithms for cooper-
ative pathfinding problems. In International Joint Conference on
Artificial Intelligence, 668–673.
Standley, T. 2010. Finding optimal solutions to cooperative
pathfinding problems. In AAAI Conference on Artificial Intelli-
gence.
Sturtevant, N., and Buro, M. 2006. Improving collaborative
pathfinding using map abstraction. In Artificial Intelligence and
Interactive Digital Entertainment, 80–85.
Sturtevant, N. 2012. Benchmarks for grid-based pathfinding.
Transactions on Computational Intelligence and AI in Games
4(2):144 – 148.
Surynek, P. 2012. Towards optimal cooperative path planning in
hard setups through satisfiability solving. In Pacific Rim Interna-
tional Conference on Artificial Intelligence, 564–576.
Tovey, C. 1984. A simplified NP-complete satisfiability problem.
Discrete Applied Mathematics 8:85–90.
Veloso, M.; Biswas, J.; Coltin, B.; and Rosenthal, S. 2015. Cobots:
Robust symbiotic autonomous mobile service robots. In Interna-
tional Joint Conference on Artificial Intelligence, 4423.
Wagner, G., and Choset, H. 2011. M*: A complete multirobot
path planning algorithm with performance bounds. In IEEE/RSJ
International Conf. on Intelligent Robots and Systems, 3260–3267.
Yu, J., and LaValle, S. 2013a. Planning optimal paths for multiple
robots on graphs. In IEEE International Conference on Robotics
and Automation, 3612–3617.
Yu, J., and LaValle, S. 2013b. Structure and intractability of opti-
mal multi-robot path planning on graphs. In AAAI Conference on
Artificial Intelligence, 1444–1449.

3172

Table 2: Results on four-neighbor connected 20×15 grid
maps for different numbers of robots and obstacle densities
(given as averages over the instances solved within the ten-
minute runtime limit). The number of exchange operations is
given in parentheses. Black entries indicate that all instances
were solved. Red entries indicate that only some instances
were solved. Blue entries indicate that one or more solutions
were suboptimal.

Adaptive CBS Optimal Flow Suboptimal Flow
Robots Density Solved Time Makespan Time Makespan Time

10 0% 100.00% 0.03s 20.67 (0.70) 1.78s 20.67 (2.70) 0.55s
10 5% 100.00% 0.06s 20.77 (1.07) 1.61s 20.77 (2.37) 0.53s
10 10% 100.00% 0.12s 21.13 (0.83) 1.52s 21.13 (3.13) 0.54s
10 15% 100.00% 0.06s 22.37 (1.57) 1.65s 22.37 (3.30) 0.64s
10 20% 100.00% 0.19s 23.23 (2.23) 1.57s 23.23 (3.77) 0.63s
10 25% 100.00% 0.11s 24.70 (3.50) 1.52s 24.70 (4.97) 0.70s
10 30% 100.00% 0.53s 30.67 (5.37) 2.01s 30.73 (7.03) 1.02s
20 0% 100.00% 0.10s 23.67 (6.83) 5.20s 23.67 (9.87) 2.05s
20 5% 100.00% 0.28s 23.77 (5.77) 4.89s 23.77 (10.90) 2.09s
20 10% 100.00% 0.23s 24.07 (6.50) 4.61s 24.07 (11.67) 2.19s
20 15% 100.00% 0.23s 23.67 (7.80) 3.92s 23.67 (12.77) 1.87s
20 20% 96.67% 1.68s 25.20 (9.37) 3.88s 25.20 (15.20) 2.00s
20 25% 96.67% 1.51s 28.77 (13.27) 5.05s 28.77 (19.97) 2.95s
20 30% 73.33% 21.40s 33.03 (20.80) 7.20s 33.03 (26.30) 3.97s
30 0% 100.00% 1.24s 24.10 (13.70) 9.52s 24.10 (18.40) 5.41s
30 5% 100.00% 0.63s 25.63 (16.80) 10.81s 25.63 (22.10) 6.48s
30 10% 96.67% 0.44s 24.20 (15.30) 8.59s 24.20 (21.37) 4.73s
30 15% 100.00% 0.87s 24.97 (19.00) 8.07s 24.97 (24.47) 4.71s
30 20% 83.33% 3.11s 26.70 (23.60) 9.17s 26.77 (31.27) 6.91s
30 25% 53.33% 5.39s 30.27 (30.37) 22.16s 30.27 (38.73) 22.90s
30 30% 23.33% 112.27s 34.87 (41.53) 36.47s 34.87 (53.63) 35.46s
40 0% 96.67% 11.16s 25.13 (23.83) 23.78s 25.13 (31.93) 13.31s
40 5% 100.00% 15.47s 25.67 (27.77) 22.55s 25.67 (33.60) 15.09s
40 10% 96.67% 30.44s 25.40 (31.67) 20.76s 25.43 (38.53) 14.25s
40 15% 90.00% 90.10s 25.67 (34.83) 18.75s 25.67 (41.77) 16.35s
40 20% 53.33% 60.06s 25.33 (39.53) 22.27s 25.33 (44.70) 19.67s
40 25% 13.33% 118.03s 28.77 (46.20) 53.38s 28.77 (55.40) 61.20s
40 30% 0.00% - 33.20 (68.83) 130.33s 33.20 (79.53) 92.78s
50 0% 96.67% 22.33s 26.20 (39.93) 78.38s 26.20 (46.50) 55.31s
50 5% 93.33% 7.22s 26.07 (40.93) 61.78s 26.07 (51.73) 49.57s
50 10% 80.00% 15.74s 25.40 (45.50) 46.91s 25.40 (54.00) 37.02s
50 15% 30.00% 61.46s 26.73 (55.43) 68.54s 26.73 (62.20) 56.52s
50 20% 16.67% 141.95s 27.50 (61.17) 89.05s 27.50 (67.53) 94.40s
50 25% 3.33% 378.24s 30.33 (75.50) 259.08s 30.37 (86.83) 268.41s
50 30% 0.00% - 34.97 (105.53) 596.25 s 34.97 (123.83) 522.42s

Table 3: Results on benchmark game map brc202d for differ-
ent numbers of robots (given as averages over the instances
solved within the ten-minute runtime limit).

Adaptive CBS
Robots Solved Makespan Time

5 100.00% 732.10 0.34s
10 100.00% 809.03 17.75s
15 96.67% 882.28 3.51s
20 86.67% 905.15 5.43s
25 96.67% 931.34 22.73s
30 86.67% 942.19 29.03s
35 76.67% 963.13 50.80s
40 53.33% 974.25 30.50s
45 70.00% 974.10 77.49s
50 36,67% 943.36 86.76s

3173

