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Abstract

Graph-based clustering methods perform clustering on
a fixed input data graph. If this initial construction is
of low quality then the resulting clustering may also be
of low quality. Moreover, existing graph-based cluster-
ing methods require post-processing on the data graph
to extract the clustering indicators. We address both of
these drawbacks by allowing the data graph itself to be
adjusted as part of the clustering procedure. In partic-
ular, our Constrained Laplacian Rank (CLR) method
learns a graph with exactly k connected components
(where k is the number of clusters). We develop two
versions of this method, based upon the L1-norm and
the L2-norm, which yield two new graph-based clus-
tering objectives. We derive optimization algorithms
to solve these objectives. Experimental results on syn-
thetic datasets and real-world benchmark datasets ex-
hibit the effectiveness of this new graph-based cluster-
ing method.

Introduction

State-of-the art clustering methods are often based on graph-
ical representations of the relationships among data points.
For example, spectral clustering (Ng, Jordan, and Weiss
2001), normalized cut (Shi and Malik 2000) and ratio
cut (Hagen and Kahng 1992) all transform the data into
a weighted, undirected graph based on pairwise similari-
ties. Clustering is then accomplished by spectral or graph-
theoretic optimization procedures. See (Ding and He 2005;
Li and Ding 2006) for a discussion of the relations among
these graph-based methods, and also the connections to non-
negative matrix factorization. All of these methods involve
a two-stage process in which an data graph is formed from
the data, and then various optimization procedures are in-
voked on this fixed input data graph. A disadvantage of this
two-stage process is that the final clustering structures are
not represented explicitly in the data graph (e.g., graph-cut
methods often use K-means algorithm to post-process the
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results to get the clustering indicators); also, the clustering
results are dependent on the quality of the input data graph
(i.e., they are sensitive to the particular graph construction
methods). It seems plausible that a strategy in which the op-
timization phase is allowed to change the data graph could
have advantages relative to the two-phase strategy.

In this paper we propose a novel graph-based clustering
model that learns a graph with exactly k connected com-
ponents (where k is the number of clusters). In our new
model, instead of fixing the input data graph associated to
the affinity matrix, we learn a new data similarity matrix
that is a block diagonal matrix and has exactly k connected
components—the k clusters. Thus, our new data similarity
matrix is directly useful for the clustering task; the cluster-
ing results can be immediately obtained without requiring
any post-processing to extract the clustering indicators. To
achieve such ideal clustering structures, we impose a rank
constraint on the Laplacian graph of the new data similar-
ity matrix, thereby guaranteeing the existence of exactly k
connected components. Considering both L2-norm and L1-
norm objectives, we propose two new clustering objectives
and derive optimization algorithms to solve them. We also
introduce a novel graph-construction method to initialize the
graph associated with the affinity matrix.

We conduct empirical studies on simulated datasets and
seven real-world benchmark datasets to validate our pro-
posed methods. The experimental results are promising—
we find that our new graph-based clustering method consis-
tently outperforms other related methods in most cases.

Notation: Throughout the paper, all the matrices are writ-
ten as uppercase. For a matrix M , the i-th row and the ij-th
element of M are denoted by mi and mij , respectively. The
trace of matrix M is denoted by Tr(M). The L2-norm of
vector v is denoted by ‖v‖2, the Frobenius and the L1 norm
of matrix M are denoted by ‖M‖F and ‖M‖1, respectively.

New Clustering Formulations

Graph-based clustering approaches typically optimize their
objectives based on a given data graph associated with an
affinity matrix A ∈ R

n×n (which can be symmetric or non-
symmetric), where n is the number of nodes (data points) in
the graph. There are two drawbacks with these approaches:
(1) the clustering performance is sensitive to the quality of
the data graph construction; (2) the cluster structures are not
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explicit in the clustering results and a post-processing step
is needed to uncover the clustering indicators.

To address these two challenges, we aim to learn a new
data graph S based on the given data graph A such that the
new data graph is more suitable for the clustering task. In
our strategy, we propose to learn a new data graph S that
has exactly k connected components, where k is the number
of clusters.

In order to formulate a clustering objective based on this
strategy, we start from the following theorem. If the affinity
matrix A is nonnegative, then the Laplacian matrix LA =
DA − (AT + A)/2, where the degree matrix DA ∈ R

n×n

is defined as a diagonal matrix whose i-th diagonal element
is

∑
j(aij + aji)/2, has the following important property

(Mohar 1991; Chung 1997):

Theorem 1 The multiplicity k of the eigenvalue zero of the
Laplacian matrix LA is equal to the number of connected
components in the graph associated with A.

Given a graph with affinity matrix A, Theorem 1 indi-
cates that if rank(LA) = n − k, then the graph is an ideal
graph based on which we already partition the data points
into k clusters, without the need of performing K-means or
other discretization procedures as is necessary with tradi-
tional graph-based clustering methods such as spectral clus-
tering.

Motivated by Theorem 1, given an initial affinity matrix
A ∈ R

n×n, we learn a similarity matrix S ∈ R
n×n such that

the corresponding Laplacian matrix LS = DS−(ST +S)/2
is constrained to be rank(LS) = n − k. Under this con-
straint, the learned S is block diagonal with proper permuta-
tion, and thus we can directly partition the data points into k
clusters based on S (Nie, Wang, and Huang 2014). To avoid
the case that some rows of S are all zeros, we further con-
strain the S such that the sum of each row of S is one. Under
these constraints, we learn that S that best approximates the
initial affinity matrix A. Considering two different distances,
the L2-norm and the L1-norm, between the given affinity
matrix A and the learned similarity matrix S, we define the
Constrained Laplacian Rank (CLR) for graph-based cluster-
ing as the solution to the following optimization problem:

JCLR L2 = min∑
j sij=1,sij≥0,rank(LS)=n−k

‖S −A‖2F (1)

JCLR L1 = min∑
j sij=1,sij≥0,rank(LS)=n−k

‖S −A‖1. (2)

These problems seem very difficult to solve since LS =
DS − (ST +S)/2, and DS also depends on S, and the con-
straint rank(LS) = n−k is a complex nonlinear constraint.
In the next section, we will propose novel and efficient algo-
rithms to solve these problems.

Optimization Algorithms

Optimization Algorithm for Solving JCLR L2 in
Eq. (1)

Let σi(LS) denote the i-th smallest eigenvalue of LS . Note
that σi(LS) ≥ 0 because LS is positive semidefinite. The

problem (1) is equivalent to the following problem for a
large enough value of λ:

min∑
j sij=1,sij≥0

‖S −A‖2F + 2λ

k∑
i=1

σi(LS). (3)

When λ is large enough, note that σi(LS) ≥ 0 for every i,
thus the optimal solution S to the problem (3) will make the

second term
k∑

i=1

σi(LS) equal to zero and thus the constraint

rank(LS) = n− k in the problem (1) will be satisfied.
According to Ky Fan’s Theorem (Fan 1949), we have

k∑
i=1

σi(LS) = min
F∈Rn×k,FTF=I

Tr(FTLSF ). (4)

Therefore, the problem (3) is further equivalent to the fol-
lowing problem:

min
S,F

‖S −A‖2F + 2λTr(FTLSF )

s.t.
∑

j sij = 1, sij ≥ 0, F ∈ R
n×k, FTF = I.

(5)

Compared with the original problem (1), the problem (5) is
much easier to solve.

When S is fixed, the problem (5) becomes

min
F∈Rn×k,FTF=I

Tr(FTLSF ). (6)

The optimal solution of F is formed by the k eigenvectors
of LS corresponding to the k smallest eigenvalues.

When F is fixed, the problem (5) becomes

min∑

j
sij=1,sij≥0

∑
i,j

(sij − aij)
2
+ λ

∑
i,j

‖fi − fj‖22 sij . (7)

Note that the problem (7) is independent for different i, so
we can solve the following problem separately for each i:

min∑

j
sij=1,sij≥0

∑
j

(sij − aij)
2
+ λ

∑
j

‖fi − fj‖22 sij . (8)

Denoting vij = ‖fi − fj‖22, and denoting vi as a vector with
the j-th element equal to vij (and similarly for si and ai), the
problem (8) can be written in vector form as

min
sTi 1=1,si≥0

∥∥∥∥si − (ai − λ

2
vi)

∥∥∥∥
2

2

. (9)

This problem can be solved with a closed form solution
as in Eq. (30), or solved by an efficient iterative algorithm
(Huang, Nie, and Huang 2015).

In Algorithm 1 we provide a detailed algorithm for solv-
ing the problem (1). In this algorithm, we only update the m
nearest similarities for each data point in S and thus the com-
plexity of updating S and updating F (which only requires
computing the top k eigenvectors of a very sparse matrix)
is thereby reduced significantly. Further work, however, will
be needed to makis this technique practicable on very large-
scale data sets.
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Algorithm 1 Algorithm to solve JCLR L2 in Eq. (1).
input A ∈ R

n×n, cluster number k, a large enough λ.
output S ∈ R

n×n with exactly k connected components.
Initialize F ∈ R

n×k, which is formed by the k eigenvec-
tors of LA = DA−AT+A

2 corresponding to the k smallest
eigenvalues.
while not converge do

1. For each i, update the i-th row of S by solving the
problem (9), where the j-th element of vi is vij =

‖fi − fj‖22.
2. Update F , which is formed by the k eigenvectors
of LS = DS − ST+S

2 corresponding to the k smallest
eigenvalues.

end while

Optimization Algorithm for Solving JCLR L1 in
Eq. (2)

Similarly, the problem (2) is equivalent to the following
problem for a large enough value of λ:

min∑
j sij=1,sij≥0

‖S −A‖1 + 2λ

k∑
i=1

σi(LS), (10)

and the problem (10) is further equivalent to the following
problem:

min
S,F

‖S −A‖1 + 2λTr(FTLSF )

s.t.
∑

j sij = 1, sij ≥ 0, F ∈ R
n×k, FTF = I.

(11)

This problem can also be solved by the alternative optimiza-
tion approach.

For fixed S, the matrix F is updated as in Eq. (6). For
fixed F , the problem (11) becomes

min∑

j
sij=1,sij≥0

∑
i,j

|sij − aij |+ λ
∑
i,j

‖fi − fj‖22 sij .

Note that the above problem is independent between differ-
ent i, so we can solve the following problem separately for
each i:

min∑

j
sij=1,sij≥0

∑
j

|sij − aij |+ λ
∑
j

‖fi − fj‖22 sij . (12)

Similarly to Eqs. (8) and (9), the problem (12) can be written
in vector form as:

min
sTi 1=1,si≥0

‖si − ai‖1 + λsTi vi. (13)

Using the iterative reweighted method, the problem (13) can
be solved by iteratively solving the following problem:

min
sTi 1=1,si≥0

Tr(si − ai)
TU(si − ai) + λsTi vi, (14)

where U is a diagonal matrix with the j-th diagonal element
equal to 1

2|s̃ij−aij | , and s̃ij is the current solution. It has been
proved that this iterative method decreases the objective of
problem (13) in each iteration and will converge to the opti-
mal solution to the problem (13) (Nie et al. 2010).

The problem (14) can be simplified to

min
sTi 1=1,si≥0

1

2
sTi Usi − sTi (Uai − λ

2
vi). (15)

Let pi = Uai − λ
2 vi, so for each i, we need to solve the

following problem

min
sTi 1=1,si≥0

1

2
sTi Usi − sTi pi. (16)

This problem can be solved efficiently. The Lagrangian
function of problem (16) is

L(si, η, αi) =
1

2
sTi Usi−sTi pi−η(sTi 1−1)−αT

i si, (17)

where η and αi ≥ 0 are the Lagrangian multipliers.
Taking the derivative of Eq. (17) w.r.t. si and setting to

zero, we have

Usi − pi − η1− αi = 0. (18)

Then for the j-th element of si, we have

uiisij − pij − η − αij = 0. (19)

Note that sijαij = 0 according to the KKT condition, then
from Eq. (19) we have:

sij = (
1

uii
η +

1

uii
pij)+, (20)

where (v)+ = max(0, v). We define the following function
w.r.t. η

gi(η) =
∑
i

(
η

uii
+

pij
uii

)+ − 1. (21)

Then according to Eqs. (20)-(21), and the constraint sTi 1 =
1, we have the following equation:

gi(η) = 0. (22)

Therefore, the value of η is the root of function gi(x). Note
that gi(x) is a piecewise linear and monotonically increas-
ing function, thus the root can be easily obtained by New-
ton’s method. After computing η, the optimal solution to the
problem (16) can be obtained by Eq. (20).

Based on the above analysis, the detailed procedure for
solving Eq. (2) is summarized in Algorithm 2.

Algorithm 2 Algorithm to solve JCLR L1 in Eq. (2).
input A ∈ R

n×n, cluster number k, a large enough λ.
output S ∈ R

n×n with exactly k connected components.
Initialize F ∈ R

n×k, which is formed by the k eigenvec-
tors of LA = DA−AT+A

2 corresponding to the k smallest
eigenvalues.
while not converge do

1. For each i, update the i-th row of S by solving the
problem (16), where U is a diagonal matrix with the j-
th diagonal element as 1

2|sij−aij | and pi = Uai − λ
2 vi,

the j-th element of vi is vij = ‖fi − fj‖22.
2. Update F , which is formed by the k eigenvectors
of LS = DS − ST+S

2 corresponding to the k smallest
eigenvalues.

end while
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Learning An Initial Graph

In the proposed algorithms, an initial graph affinity matrix
A ∈ R

n×n is required to be given before learning the nor-
malized and block-diagonal similarity matrix S ∈ R

n×n.
We propose an approach to initialize graph A. Since we are
to learn a nonnegative and normalized similarity matrix S
such that the sum of each row of S is equal to one, it is de-
sirable for the initial graph A to have the same constraint.
If we do not have any information about the data, we can
set all the affinities of A to the same value, which could be
seen as a prior. Under these nonnegativity and normalization
constraints, minimizing the L2-norm of each row of A will
result in the affinities with the same value. Therefore, we
can use the L2-norm of each row of A as the regularization
to learn the affinity values of A.

Given the data points {x1, ..., xn}, it is desirable to
learn the affinity values of A such that smaller distance
‖xi − xj‖22 between data points xi and xj corresponds to a
larger affinity value aij . In addition, we simply set aii = 0.
We propose to solve the following problem:

min
aT
i 1=1,ai≥0,aii=0

n∑
j=1

‖xi − xj‖22 aij + γ

n∑
j=1

a2ij . (23)

In many cases, we prefer a sparse affinity matrix A for ef-
ficiency and higher performance. Therefore, we learn the
affinities with the maximal γ such that the optimal solution
ai to the problem (23) has exactly m nonzero values; i.e.,
the L0-norm of ai is constrained to be m. To this end, we
solve the following problem:

max
γ,‖âi‖0=m

γ, (24)

where â is the optimal solution to the problem (23).
Let us define

eij = ‖xi − xj‖22 (25)
and denote ei as a vector with the j-th element as eij , then
the problem (23) can be simplified as

min
aT
i 1=1,ai≥0,aii=0

1

2

∥∥∥∥ai + ei
2γ

∥∥∥∥
2

2

. (26)

The Lagrangian function of problem (26) is

L(ai, η, βi) =
1

2

∥∥∥∥ai + ei
2γ

∥∥∥∥
2

2

− η(aTi 1− 1)− βT
i ai, (27)

where η and βi ≥ 0 are the Lagrange multipliers.
The optimal solution â should satisfy that the derivative

of Eq. (27) w.r.t. ai is equal to zero, so we have

âi +
ei
2γ

− η1− βi = 0. (28)

Then for the j-th element of âi, we have

âij +
eij
2γ

− η − βij = 0. (29)

Noting that aijβij = 0 according to the KKT condition,
from Eq. (29) we have

âij = (− eij
2γ

+ η)+. (30)

Without loss of generality, suppose ei1, ei2, ..., ein are or-
dered from small to large. In order to impose âii = 0, we
always let eii place this value last despite having eii = 0.
According to the constraint ‖âi‖0 = m in problem (24), we
know âim > 0 and âi,m+1 = 0. Therefore, we have

−eim
2γ

+ η > 0, and − ei,m+1

2γ
+ η ≤ 0 . (31)

According to Eq. (30) and the constraint aTi 1 = 1 in prob-
lem (23), we have

m∑
j=1

(− eij
2γ

+ η) = 1⇒ η =
1

m
+

1

2mγ

m∑
j=1

eij . (32)

So we have the following inequality for γ according to
Eq. (31) and Eq. (32):

m

2
eim − 1

2

m∑
j=1

eij < γ ≤ m

2
ei,m+1 − 1

2

m∑
j=1

eij . (33)

Therefore, to obtain the optimal solution âi to the problem
(23) that has exactly m nonzero values, the maximal γ is

γ=
m

2
ei,m+1 − 1

2

m∑
j=1

eij . (34)

According to Eqs. (30), (32) and (34), we get the optimal
affinities âij as follows:

âij =

{ ei,m+1−eij
mei,m+1−

∑m
h=1 eih

j ≤ m

0 j > m
. (35)

The affinities âij computed by Eq. (35) have the following
advantages:

(1). Eq. (35) only involves the basic operations of addi-
tion, subtraction, multiplication and division. Methods such
as LLE (Roweis and Saul 2000) and sparse coding which are
often can be used to compute the affinities require computa-
tions of Gaussian functions and other more operations that
make them less efficient than the current method.

(2). The learned matrix Â is naturally sparse. A sparse
graph is computationally efficient for graph-based learning
tasks such as clustering and semi-supervised classification.

(3). The affinities are distance consistent. This property
is guaranteed from the motivation of this method. If the dis-
tance between xi and xj is smaller than the distance between
xi and xk, then the affinity âij computed by Eq. (35) is larger
than the affinity âik. In LLE and sparse coding this property
is not guaranteed.

(4). The affinities are scale invariant. If the data points
{x1, ..., xn} are scaled by an arbitrary scalar t, i.e., let xi be
t · xi for each i, then eij is changed to be t · eij for each
i, j, but the affinities âij computed by Eq. (35) will not be
changed. While in Gaussian function, the affinities will be
changed in this case, which makes the parameter difficult to
tune.

(5). Computing the affinities by Eq. (35) only involves one
parameter: the number of neighbors m. This parameter is an
integer, which is easy to tune. In most cases, m < 10 is
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likely to yield reasonable results. This property is important
since the tuning of hyperparameters remains a difficult and
open problem in clustering. In graph-based clustering (and
more generally in semi-supervised learning), there are few
labeled data points and thus traditional supervised hyperpa-
rameter tuning techniques such as cross validation can not
be used.

Connection to Normalized Cut

In this section, we show that the proposed problem (1) is
closely connected to the Normalized Cut problem in (Shi
and Malik 2000).

We add a regularization term to S in Eq. (1), and solve the
following problem for graph-based clustering:

min∑
j sij=1,sij≥0,rank(LS)=n−k

‖S −A‖2F + γ ‖S‖2F , (36)

where A is a doubly stochastic matrix.

Theorem 2 When γ → ∞, the problem (36) is equivalent
to the Normalized Cut problem.

PROOF. The problem (36) can be written as

min
S1=1,S≥0,rank(LS)=n−k

−2Tr(STA) + (1 + γ) ‖S‖2F .

(37)
Due to the constraint rank(LS) = n − k, the solution S
has exactly k components (that is, S is block diagonal with
proper permutation). Suppose the i-th component of S is
Si ∈ R

ni×ni , where ni is the number of data points in the
component, then solving problem (37) is to solve the follow-
ing problem for each i:

min
Si1=1,Si≥0

−2Tr(ST
i Ai) + (1 + γ) ‖Si‖2F . (38)

When γ →∞, then the problem (38) becomes

min
Si1=1,Si≥0

‖Si‖2F . (39)

The optimal solution to the problem (39) is that all the ele-
ments of Si are equal to 1

ni
.

Therefore, the optimal solution S to the problem (37)
should be the following form when γ →∞:

sij =

{
1
np

xi, xj are in the same component p
0 otherwise.

(40)

We denote the solution set that satisfies the form in Eq. (40)
by V . Note that for any possible partition of the k compo-
nents such that S has the form in Eq. (40), ‖S‖2F has the
same value, i.e., ‖S‖2F = k. Therefore, the problem (37) or
(36) becomes

min
S∈V

‖S −A‖2F . (41)

It can be easily verified that when A is a doubly stochastic
matrix, ‖S −A‖2F is exactly the Ratio Cut under the parti-
tion with S. Note that Normalized Cut is equal to Ratio Cut
if A is doubly stochastic, thus the problem (36) is equivalent
to the Normalized Cut problem when γ →∞.

�

Data sets Num of Instances Dimensions Classes
Yeast 1484 8 10

Abalone 4177 8 29
COIL20 1440 1024 20

COIL100 7200 1024 100
AR 840 768 120

XM2VTS 1180 1024 295
Umist 165 3456 15

Table 1: Descriptions of seven benchmark datasets.

Experiments

In this section, we explore the performance of our cluster-
ing methods on both synthetic and real benchmark data sets.
For simplicity, we denote our Constrained Laplacian Rank
L1-norm clustering method as CLR L1, and our Frobenius
norm clustering method as CLR L2.

Block Diagonal Synthetic Data

The first synthetic dataset we used is a 100×100 matrix with
four 25 × 25 block matrices diagonally arranged. The data
within each block denotes the affinity of two corresponding
points in one cluster, while the data outside all blocks de-
notes noise. The affinity data within each block is randomly
generated in the range of 0 and 1, while the noise data is
randomly generated in the range of 0 and c, where c is set as
0.6, 0.7 and 0.8 respectively. Moreover, to make this cluster-
ing task more challenging, we randomly pick out 25 noise
data points and set their values to be 1.

Fig. 1 shows the original random matrix and the cluster-
ing results under different settings. We can notice that both
CLR L1 and CLR L2 exhibit good performance in this clus-
tering task.

We also compared the clustering accuracy with other
graph-based clustering methods, among which the Normal-
ized Cut (NCut) performed best. When noise = 0.6, the clus-
tering accuracy of NCut, CLR L1, CLR L2 are all 100%.
When noise = 0.7, the clustering accuracy of NCut, CLR L1,
CLR L2 are 99%, 100%, 100%, respectively. When noise =
0.8, the clustering accuracy of NCut, CLR L1, CLR L2 are
85%, 99%, 99%, respectively.

Two-Moon Synthetic Data

The second toy data set we used is a randomly generated
two-moon matrix. In this test, there are two clusters of data
distributed in the moon shape. Each cluster has a volume of
100 samples and the noise percentage is set to be 0.13. Our
goal is to recompute the similarity matrix such that the num-
ber of connected components in the learned similarity matrix
is exactly two. We tested with CLR L1 and CLR L2 meth-
ods and obtain good results on both of them. From Fig. 2 we
can easily observe the effectiveness of our proposed meth-
ods. In this figure, we set the color of the two clusters to
be red and blue respectively and let the width of connect-
ing lines denote the affinity of two corresponding points.
In the original matrix, there are several pairs of connected
points from different clusters. However, after the computa-
tion, there is not even a single line between the two clusters,
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Figure 1: Clustering results on the block diagonal synthetic data by CLR L1 and CLR L2 methods.

ACC

Yeast Abalone COIL20 COIL100 AR XM2VTS Umist
K-means 0.4063 0.148 0.6382 0.5153 0.2798 0.4814 0.4052

RCut 0.4144 0.1427 0.7958 0.6304 0.3619 0.5873 0.6557
NCut 0.4003 0.1547 0.7944 0.6535 0.3643 0.661 0.6365
NMF 0.4009 0.1568 0.7104 0.5332 0.3833 0.6873 0.5757

CLR L1 0.4158 0.2025 0.8535 0.8122 0.4202 0.722 0.7287

CLR L2 0.4872 0.1968 0.8736 0.8035 0.4202 0.722 0.7287

NMI

Yeast Abalone COIL20 COIL100 AR XM2VTS Umist
K-means 0.2619 0.1504 0.7794 0.753 0.6195 0.8065 0.6367

RCut 0.2795 0.1532 0.8894 0.8435 0.6841 0.8078 0.8148
NCut 0.2536 0.1568 0.8877 0.8473 0.6986 0.8883 0.8009
NMF 0.2521 0.1482 0.8404 0.7581 0.7026 0.8929 0.7595

CLR L1 0.1946 0.1619 0.945 0.9401 0.6242 0.8942 0.8634

CLR L2 0.2622 0.1715 0.945 0.9407 0.5909 0.8951 0.8634

Table 2: Experimental results on real benchmark datasets.
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(c) CLR L1 Result
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(d) CLR L2 Result

Figure 2: Clustering results on the two-moon synthetic data by CLR L1 and CLR L2 methods.

which indicates our proposed clustering methods have suc-
cessfully partitioned the original data into two classes.

Experimental Results on Real Benchmark Datasets

We also evaluated the proposed clustering methods on 7
benchmark datasets: Yeast (Asuncion and Newman 2007),
Abalone (Asuncion and Newman 2007), COIL20 (Nene,
Nayar, and Murase 1996b), COIL100 (Nene, Nayar, and
Murase 1996a), AR (Martinez 1998), XM2VTS (XM2VTS
) and UMIST (Graham and Allinson 1998), the first two of
which are bioinformatics datasets from UCI Machine Learn-
ing Repository while the latter five are image datasets. The
descriptions of these 7 datasets are summarized in Table 1.

We compared our clustering methods with K-means, Ra-
tio Cut (RCut), Normalized Cut (NCut) and NMF methods.
For RCut and NCut methods, we utilized the widely used
self-tune Gaussian method (Zelnik-Manor and Perona 2004)
to construct the affinity matrix (the value of σ is self-tuned).
For both self-tune Gaussian and our method, we set the num-
ber of neighbors, m, to be five for the affinity matrix con-
struction. As for our clustering method, we determined the
value of λ in a heuristic way to accelerate the procedure:
first set λ with a small value, then in each iteration, we com-
puted the number of zero eigenvalues in LS , if it was larger
than k, we divided λ by two; if smaller we multiplied λ by
two; otherwise we stopped the iteration. Moreover, we set
the number of clusters to be the ground truth in each dataset
for all methods. The standard clustering accuracy (ACC) and
normalized mutual information (NMI) metrics were used to
evaluate all clustering methods.

For all the methods involving K-means, including K-

means, RCut and NCut methods, we used the same initial-
ization and repeated 50 times to compute their respective
best initialization vector in terms of objective value of K-
means. For the four compared methods, since their perfor-
mance is unstable with different initializations, we only re-
port their respective best results (in terms of objective value
of K-means) over the 50 repetitions. As for our methods, we
ran only once with the initialization described in Eq. (35).
Table 2 shows the clustering results of each method.

From Table 2, we conclude that our proposed methods
outperform the competing methods on most of the bench-
mark datasets. Our proposed clustering methods CLR L1
and CLR L2 learn the data similarity matrix as part of the
clustering task, and we believe that this confers robustness
on the procedure in addition to accuracy improvements.

Conclusions

In this paper, we proposed a novel graph-based clustering
model to learn a new data graph with exactly k connected
components, which is an ideal structure for clustering. This
differs from existing graph-based approaches which fixed
the input data graph (associated with an affinity matrix). We
instead learned a new block diagonal data similarity matrix
such that the clustering results can be immediately obtained
without requiring any post-processing to extract the cluster-
ing indicators. Considering both L2 norm and L1 norm dis-
tances, we proposed two new clustering objectives and de-
rived optimization algorithms to solve them. Empirical re-
sults on two synthetic datasets and seven real benchmark
datasets showed our methods outperform competing clus-
tering approaches.
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