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Abstract

Multiple kernel k-means (MKKM) clustering aims to opti-
mally combine a group of pre-specified kernels to improve
clustering performance. However, we observe that existing
MKKM algorithms do not sufficiently consider the corre-
lation among these kernels. This could result in selecting
mutually redundant kernels and affect the diversity of in-
formation sources utilized for clustering, which finally hurts
the clustering performance. To address this issue, this pa-
per proposes an MKKM clustering with a novel, effective
matrix-induced regularization to reduce such redundancy and
enhance the diversity of the selected kernels. We theoreti-
cally justify this matrix-induced regularization by revealing
its connection with the commonly used kernel alignment cri-
terion. Furthermore, this justification shows that maximiz-
ing the kernel alignment for clustering can be viewed as a
special case of our approach and indicates the extendability
of the proposed matrix-induced regularization for designing
better clustering algorithms. As experimentally demonstrated
on five challenging MKL benchmark data sets, our algorithm
significantly improves existing MKKM and consistently out-
performs the state-of-the-art ones in the literature, verifying
the effectiveness and advantages of incorporating the pro-
posed matrix-induced regularization.

Introduction

Clustering algorithms aim to partition a group of samples
into k clusters, where the similarity of samples from intra-
clusters shall be greater than that from inter-clusters (Har-
tigan 1975). As one of the classical clustering algorithms,
k-means provides an intuitive and effective way to perform
clustering. In specific, the k-means clustering is composed
of (i) calculating k prototypes (i.e., centres of k clusters)
given an assignment of samples to clusters and (ii) updating
the assignment matrix by minimizing the sum-of-squares
cost given the prototypes. These two steps are alternately
performed until convergence. Due to its conceptual simplic-
ity, easy-implementation and high efficiency, k-means clus-
tering has been intensively studied and extended (Yu et al.
2012; Gonen and Margolin 2014; Cai, Nie, and Huang 2013;
Du et al. 2015). As an important extension, kernel k-means
first maps data onto a high-dimensional space through a fea-
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ture mapping and then conducts a standard k-means cluster-
ing in that space (Scholkopf, Smola, and Miiller 1998). This
enables kernel k-means to handle the linearly non-separable
problem in an input space that k-means suffers from.

In many practical applications of clustering, samples are
represented by multiple groups of features extracted from
different information sources. For example, three kinds of
feature representationsl, colour, shape and texture, are ex-
tracted to distinguish one flower from another (Nilsback and
Zisserman 2006). These different sources usually provide
complementary information, and it is better to let learning
algorithms optimally combine them in order to obtain excel-
lent clustering. This line of research is known as multiple
kernel (view) clustering in the literature.

Many efforts have been devoted to improving multiple
kernel clustering from all kinds of aspects (Zhao, Kwok, and
Zhang 2009; Lu et al. 2014; Xia et al. 2014; Zhou et al. 2015;
Kumar and Daumé 2011). In this paper, we explore a bet-
ter way to combine a set of pre-specified kernels for clus-
tering. The existing research on this aspect can roughly be
grouped into two categories. The first category learns a con-
sensus matrix via low-rank optimization (Xia et al. 2014;
Zhou et al. 2015; Kumar and Daumé 2011). In (Xia et al.
2014), a transition probability matrix is constructed from
each single view, and they are used to recover a shared
low-rank transition probability matrix as a crucial input to
the standard Markov chain method for clustering. The work
in (Zhou et al. 2015) proposes to capture the structures of
noises in each kernel and integrate them into a robust and
consensus framework to learn a low-rank matrix. The al-
gorithm (Kumar and Daumé 2011) learns the clustering in
one view and uses it to “label” the data in other views to
modify a similarity matrix. By following multiple kernel
learning (MKL) framework, the other category optimizes a
group of kernel coefficients, and uses the combined kernel
for clustering (Yu et al. 2012; Gonen and Margolin 2014;
Du et al. 2015; Lu et al. 2014). The work in (Yu et al. 2012)
proposes a multiple kernel k-means clustering algorithm.
Similar work has also been done in (Génen and Margolin
2014), with the difference that the kernels are combined in a
localized way to better capture the sample-adaptive charac-
teristics of data. Differently, by replacing the squared error

'In literature, each representation is also termed as a view.



in k-means with an /5 ;-norm based one, (Du et al. 2015)
presents a robust multiple kernel k-means algorithm that si-
multaneously finds the best clustering labels and the optimal
combination of multiple kernels. In (Lu et al. 2014), kernel
alignment maximization is employed to jointly perform the
k-means clustering and MKL. Our work in this paper falls
into the second category.

Though the above clustering algorithms in the second cat-
egory have demonstrated excellent performance in various
scenarios, we find that none of them has sufficiently consid-
ered the correlation among the pre-specified kernels. Specif-
ically, in these algorithms, the update of one kernel combi-
nation coefficient is (generally) independent of the others.
Nevertheless, this would cause the following problems: i)
Kernels with high correlation are selected together. This un-
necessarily increases the number of kernels and information
sources used for clustering; and ii) Kernels with low cor-
relation could undesirably be suppressed due to the sparsity
constraint imposed on the combination coefficients. This de-
creases the diversity among the selected kernels and prevents
the complementary kernels from being utilized. Both prob-
lems make the pre-specified kernels less effectively utilized,
and in turn adversely affect the clustering performance.

To reduce the redundancy and enhance the diversity of se-
lected kernels, we propose a multiple kernel k-means clus-
tering algorithm with a matrix-induced regularization, where
the correlation of each pair of kernels is measured and used
to constrain the cost function of kernel k-means. After that,
we show that maximizing the well-known kernel alignment
criterion for clustering (Lu et al. 2014) can be viewed as a
special case of our approach, and this provides the theoreti-
cal justification for the incorporation of the proposed matrix-
induced regularization. Also, we can see that the proposed
algorithm is readily extendable to develop better clustering
algorithms by designing the matrix-induced regularization
appropriate for a given clustering task. To solve the resul-
tant optimization problem, we develop an efficient algorithm
with proved convergence. Extensive experimental study has
been conducted on five MKL benchmark data sets to eval-
uate clustering performance of the proposed algorithm. As
indicated, our algorithm significantly improves the perfor-
mance of MKKM and consistently demonstrates superior
performance when compared with the state-of-the-art ones.
This validates the effectiveness and advantage of incorporat-
ing the proposed matrix-induced regularization.

Related Work

Kernel £-means clustering (KKM)

Let {x;}_; C X be a collection of n samples, and ¢(-) :
x € X — H be a feature mapping which maps x onto a
reproducing kernel Hilbert space H. The objective of kernel
k-means clustering is to minimize the sum-of-squares loss
over the cluster assignment matrix Z € {0,1}"**, which
can be formulated as the following optimization problem,

n,k

k
S Zicllo(xi) = pllz st > =1,
i=1,c=1 =
(D

min
ZG{O,I}”Xk

1889

where n, = > | Zic and p, = n% S Zied(x;) are the
number and centroid of the ¢ — th (1 < ¢ < k) cluster.

The optimization problem in Eq.(1) can be equivalently
rewritten as the following matrix-vector form,

min  Tr(K) — Tr(L2ZTKZL?) s.t. Z1; = 1,,
Ze{0,1}nxk
2

where K is a kernel matrix with K;; = ¢(x;) " ¢(x;), L =
diag([ny ,nz -
with all elements 1.

The variables Z in Eq.(2) is discrete, which makes the op-
timization problem very difficult to solve. However, we can
approximate this problem through relaxing Z to take arbi-
trary real values. Specifically, by defining H = ZL2 and
letting H take real values, we obtain a relaxed version of the
above problem.

,n;,']) and 1, € R? is a column vector

min  Tr (K(I, -HH")) st. HH=1I,,
HER"X’C

3)

where I, is an identity matrix with size k x k. Noting that
Z7Z = L', we have LzZTZL? = I;, and this leads to
the orthogonality constraint on H. Finally, one can obtain
the optimal H for Eq.(3) by taking the k eigenvectors that
correspond to the & largest eigenvalues of K.

Multiple kernel k-means clustering (MKKM)

In a multiple kernel setting, each sample has multiple feature
representations via a group of feature mappings {¢,(-)};% ;.
Specifically, each sample is represented as ¢, (x) =
(111 (%) T, pada(x) T, -+, ftmdm (%) 7], where p
[f1, p2y -+, ] denotes the coefficients of each base ker-
nel that we need to optimize during learning. Correspond-
ingly, the kernel function over the above mapping function
can be calculated as

o (0, %)) = Bu(x) " Bu(x5) = 3 i (%, %5)-
4)
By replacing the kernel matrix K in Eq.(3) with K, com-
puted via Eq.(4), we obtain the optimization objective of
MKKM as follows,

min
HcRn Xk vHERT

st. HH=1I,, p'1,, = 1.

Tv (K,.(I, - HH))
&)

This problem can be solved by alternatively updating H and
p: 1) Optimizing H given p. With the kernel coefficients
p fixed, the H can be obtained by solving a kernel k-means
clustering optimization problem in Eq.(3); ii) Optimizing o
given H. With H fixed, ¢ can be optimized via solving the
following quadratic programming with linear constraints,
Jg}g}f p2Tr (K,y(I, —HH")) st.p'l, =1
(6)
As noted in (Yu et al. 2012; Gonen and Margolin 2014),
using a convex combination of kernels 3" | 11, K, to re-

place K, in Eq.(5) is not a viable option, because this could

p=1



make only one single kernel be activated and all the oth-
ers assigned with zero weights. Also, other recent work us-
ing /5-norm combination can be found in (Kloft et al. 2011;
2009; Cortes, Mohri, and Rostamizadeh 2009).

The Proposed MKKM Clustering with
Matrix-induced Regularization

As can be seen from Eq.(6), the relative value of 1, is only
dependent on K, and the given H, while independent of the
other kernels. This clearly indicates that existing MKKM
algorithms (Yu et al. 2012; Gonen and Margolin 2014;
Du et al. 2015) do not adequately consider the mutual in-
fluence of these kernels when updating kernel coefficients.
To see this point in depth, we assume that K,, is selected
and assigned to a large weight. According to Eq.(6), the ker-
nels with high correlation with K, would be also selected
together and assigned to similar important weights. This,
clearly, would result in the high redundancy among the se-
lected kernels. On the other hand, the selection of highly
correlated kernels could suppress the weights of kernels that
are less correlated with K, due to the sparsity constraint
(an £1-norm) imposed on the kernel coefficients. This would
cause the low diversity among the selected kernels or even
prevent complementary kernels from being utilized.

Following the above analysis, we can see that existing
MKKM algorithms do not take a sufficient consideration
of the characteristics of these pre-specified kernels, which
could lead to unsatisfying clustering performance. This mo-
tivates us to derive a matrix-induced regularization on the
kernel coefficients to improve this situation.

The proposed formulation

To reduce the redundancy and enforce the diversity of the
selected kernels, we need a regularization term that is able
to characterise the correlation of each pair of kernels.

To this end, we first define a criterion M(K,,K,) to
measure the correlation between K, and K,. A larger
M(K,,K,) means high correlation between K, and K,
and a smaller one implies that their correlation is low. There-
fore, a natural optimization criterion to prevent two highly
correlated kernels from being selected can be defined as
tpttgM(K,, K,). As observed, by minimizing this term,
the risk of simultaneously assigning 1, and 1, with large
weights can be greatly reduced. Also, this regularization in-
creases the probability of jointly assigning (i, and p, with
larger weights as long as K, and K, are less correlated. As
a consequence, this criterion is beneficial to promote the di-
versity of selected kernels. Based on these observations, we
propose the following regularization term

m
“rgﬁg}n Z HphgMpg = " Mp st p' 1, =1, ()
* pag=1

where M is a matrix with M,, = M(K,, K,). We call the
objective in Eq.(7) as matrix-induced regularization.

By integrating the matrix-induced regularization into the
objective function of existing MKKM, we obtain the opti-
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mization problem of the proposed algorithm as follows,

Tr (K, (I, —-HH")) + %;JMH

min
HecR»X k7lJfERT

st. HH=I;, p'1,, =1

®)

where A is a parameter to trade off the clustering cost func-
tion and the regularization term.

Alternate optimization

We propose a two-step algorithm to solve the optimization
problem in Eq.(8) alternatively. (i) Optimizing H with fixed
p. Given p, the optimization in Eq.(8) w.r.t H is a standard
kernel k-means clustering problem, and the H can be ob-
tained by solving Eq.(3) with given K ,; (ii) Optimizing p
with fixed H. Given H, the optimization in Eq.(8) w.r.t g is
a quadratic programming with linear constraints. In specific,
we can obtain g by solving the following problem,

1
min —p' 2Z+AM)p st.op 1, =1,
MERT 2

®

where Z = diag( [Tr(Ki(I, — HH")), Tr (K2 (L, - HH"))

T (Ko (T, — HHT))] ).

Our algorithm for solving Eq.(8) is outlined in Algorithm
1, where obj(t) denotes the objective value at the ¢-th iter-
ations. The objective of Algorithm 1 is monotonically de-
creased when optimizing one variable with the other fixed
at each iteration. At the same time, the whole optimization
problem is lower-bounded. As a result, the proposed algo-
rithm can be verified to be convergent. We also record the
objective at each iteration and the results validate the conver-
gence. In addition, the algorithm usually converges in less
than ten iterations in all of our experiments.

Algorithm 1 The Proposed MKKM Clustering with Matrix-
induced Regularization

1: Input: {K,}7" ,, k, A and .

2: Output: H and p.

3: Initialize #(®) = 1,,,/mand t = 1.

4: repeat

2
t m t—1

6:  Update H® by solving Eq.(3) with given KEf).

7:  Update u® by solving Eq.(9) with given H(*).

8

9

: t=t+1.
. until (obj(t_l) - obj(t)) Jobj® <

Discussion and extension

We revisit the objective of our algorithm from the perspec-
tive of kernel alignment maximization, with the aim to better
justify the incorporation of matrix-induced regularization.
As a well-established criterion, kernel alignment maxi-
mization has been widely used to perform kernel tuning
in supervised learning (Cortes, Mohri, and Rostamizadeh
2012). Nevertheless, this criterion is not directly applicable



due to the absence of true labels in unsupervised learning. A
promising remedy is to update kernel coefficients by maxi-
mizing the alignment between the combined kernel K, and
HH', where H is composed of the discriminative eigen-
vectors generated by kernel k-means (Lu et al. 2014). In
specific, the kernel alignment maximization for clustering
can be fulfilled as,

(K,,HH )
<Kua Ku>F
st. HH=1I;, p'1,, =1,
where (K,,,HH ) Tr(K,HH"), (K,,K,)r =
f M with o = [p2, 42, ,42,]7 and M is a matrix
with My, = Tr(K) K,).

The optimization in Eq.(10) is readily understood. Di-
rectly optimizing Eq.(10), however, is difficult since it is
a four-order fractional optimization problem. By looking
into the numerator and denominator of Eq.(10) in depth,
we observe that: i) The negative of the numerator of ker-
nel alignment, i.e., —Tr(K,HHT), is conceptually equiva-
lent to the objective of MKKM, i.e., Tr (K, (I, — HH'));

and ii) The denominator, i.e., ﬂTMﬂ, is a regularization
on the kernel coefficients to prevent j, and u, from be-

ing jointly assigned to a large weight if M, is relatively
high. From the perspective of regularization, the effect of
uTMu and [LTM[L could be treated as the same. Compa-
rably, we prefer to the former one since: i) This term fully
fulfills our requirement to regularize kernel coefficients; and
ii) It leads to a much more tractable optimization problem,
i.e., a widely used quadratic programming problem with lin-
ear constraints.

Based on the above-mentioned observations, instead of
rigidly maximizing the kernel alignment by solving a frac-
tional optimization in Eq.(10), we propose to minimize the
negative of the numerator Tr (K, (I, — HH ")) and the de-

nominator via uTMu, leading to the following problem:

. T ATy

HeRvgl’glueRr T (Ko (T — HH)) + gt Mp

st. HHH=1I,, p'1,, =1,
where A is introduced to trade off the two terms.

As seen, Eq.(11) would be exactly the same as the one
in Eq.(8) by setting M(K,,K,) = Tr(K;Kq). The above
analysis has revealed the connection between the proposed
algorithm and kernel alignment maximization, and well jus-
tified the theoretical implication of incorporating matrix-
induced regularization.

In addition, the proposed algorithm is readily extendable
by finely designing M appropriate for a given clustering
task. For example, M(K,, K,) could be defined according
to some commonly used criteria such as Kullback-Leibler
(KL) divergence (Topsoe 2000), maximum mean discrep-
ancy (Gretton et al. 2006) and Hilbert-Schmidt indepen-
dence criteria (HSIC), to name just a few. Throughout this
paper, we set M(K,,K,) = Tr(K;Kq). Designing proper
M to satisfy various requirements of clustering tasks is in-
teresting and worth exploring in future.

max
HeR" >k, peR’

(10)

Y
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Experimental Results
Data sets

We evaluate the clustering performance of our algorithm
on five MKL benchmark data sets, including Oxford
Flower172, Protein fold prediction®, UCI-Digital*, Oxford
Flower1023 and Caltech102°. To test the performance of all
algorithms with respect to the number of classes, we gen-
erate ten data sets by randomly selecting samples the first
10,20, - - - , 100 classes on Flower102 and Caltech102. De-
tailed information on the data sets is given in Table 1.

Table 1: Datasets used in our experiments.

Dataset i #Samples | #Kernels | #Classes
Flowerl7 1360 7 17
Digital 2000 3 10
ProteinFold 694 12 27
Flower102 200 : 200 : 2000 4 10:10: 100
Caltech102 150 : 150 : 1500 25 10:10: 100

For ProteinFold, we generate 12 base kernel matrices by
following (Damoulas and Girolami 2008), where the second
order polynomial kernel and inner product (cosine) kernel
are applied to the first ten feature sets and the last two feature
sets, respectively. For the other data sets, all kernel matrices
are pre-computed and can be publicly downloaded from the
above websites.

Compared algorithms

Our algorithm is compared with many recently proposed
counterparts, including

e Average multiple kernel k-means (A-MKKM): All ker-
nels are uniformly weighted to generate a new kernel,
which is taken as the input of kernel k-means.

¢ Single best kernel k-means (SB-KKM): Kernel k-means
is performed on each single kernel and the best result is
reported.

e Multiple kernel k-means (MKKM) (Huang, Chuang,
and Chen 2012): The algorithm alternatively performs
kernel k-means and updates the kernel coefficients, as in-
troduced in the related work.

e Localized multiple kernel £-means (LMKKM) (G6nen
and Margolin 2014): LMMKM improves MKKM by
combining the kernels in a localized way.

¢ Robust multiple kernel £-means (RMKKM) (Du et al.
2015): RMKKM improves the robustness of MKKM by
replacing the sum-of-squared loss with an ¢ ;-norm one.

e Co-regularized spectral clustering (CRSC) (Kumar and
Daumé 2011): CRSC provides a co-regularization way to
perform spectral clustering.

2http://www.robots.ox.ac.uk/"vgg/data/flowers/17/
3http://mkl.ucsd.edu/dataset/protein-fold-prediction
“http://ss.sysu.edu.cn/py/
Shttp://www.robots.ox.ac.uk/"vgg/data/flowers/102/
Shttp://mkl.ucsd.edu/dataset/ucsd-mit-caltech-101-mkl-dataset



Table 2: ACC comparison of different clustering algorithms on five benchmark data sets.

Datasets \ A-MKKM \ SB-KKM \ MKKM \ LMKKM \ RMKKM \ CRSC \ RMSC \ RMKC H Proposed ]
Flower17 51.03 42.06 45.37 42.94 48.38 52.72 | 53.90 52.35 60.00
Digital 88.75 75.40 47.00 47.00 40.45 84.80 | 90.40 88.90 90.95
ProteinFold 28.10 33.86 27.23 23.49 26.95 34.87 | 33.00 28.82 37.32
Flower102 45.44 42.53 40.27 39.22 39.37 46.99 | 52.56 46.28 56.72
Caltech102 40.79 40.26 40.36 38.12 36.39 41.36 | 39.86 41.77 45.39
Table 3: NMI comparison of different clustering algorithms on five benchmark data sets.
Datasets [ A-MKKM [ SB-KKM [ MKKM [ LMKKM [ RMKKM [ CRSC [ RMSC [ RMKC H Proposed |
Flower17 50.19 45.14 45.35 44.12 50.73 52.13 | 53.89 50.42 57.11
Digital 80.59 68.38 48.16 48.16 46.87 73.51 81.80 80.88 83.87
ProteinFold 38.53 42.03 37.16 34.92 38.08 43.34 | 43.92 39.46 45.89
Flower102 60.58 57.88 57.54 57.03 57.13 61.28 | 66.95 60.76 68.77
Caltech102 57.36 56.85 56.78 55.04 52.52 57.48 | 57.41 58.08 60.65
Flower102 Flower102
‘ ‘ —&— AMKKM ‘ ‘ —&— A-MKKM
. =W= SB-KKM 08 + =W="'SB-KKM
—t— MKKM : —w— MKKM
LMKKM LMKKM
~4— RMKKM 075 —#-  RMKKM
—#— CRSC | —— CRSC
RMSC RMSC
RMKC _ 0. RMKC
——&— Proposed > ~——&— Proposed
=4

50 60 70 80

10 éo 36 40
Number of Classes

10 20 30 40 50 60 70 80 90 100
Number of Classes

Figure 1: ACC and NMI comparison with variation of number of classes on Flower102. (left) ACC and (right) NMI

e Robust multiview spectral clustering (RMSC) (Xia et
al. 2014): RMSC constructs a transition probability ma-
trix from each single view, and uses them to recover a
shared low-rank transition probability matrix for cluster-
ing.

e Robust Multiple Kernel Clustering (RMKC) (Zhou et
al. 2015): RMKC learns a robust yet low-rank kernel for
clustering by capturing the structure of noises in multiple
kernels.

The Matlab codes of KKM, MKKM and LMKKM are
publicly available from https://github.com/mehmetgonen/
Imkkmeans. For RMKKM, CRSC, RMSC and RCE, we
download their matlab implementations from authors’ web-
sites and use them for comparison in our experiments.

Experimental settings

In all experiments, all base kernels are first centered and then
scaled so that for all ¢ and p we have K,(x;,x;) = 1. For
all data sets, we assume that the true number of clusters is
known and we set it to be the true number of classes. In ad-
dition, the parameters of RMKKM, RMSC and RMKC are
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selected by grid search according to the suggestions in their
papers. For our proposed algorithm, its regularization pa-
rameter is chosen from [271%, 2714 ... 215] by grid search.

The widely used clustering accuracy (ACC) and nor-
malized mutual information (NMI) are applied to evaluate
the clustering performance of each algorithm. For all algo-
rithms, we repeat each experiment for 50 times with ran-
dom initialization to reduce the affect of randomness caused
by k-means, and report the best result. For Flower102 and
Caltech102, we report the aggregated ACC (NMI) of each
algorithm, which is defined as the mean of ACC (NMI) on
datasets with the number of classes varied in the range of
10, 20, - - - , 100.

Experimental results

Table 2 reports the clustering accuracy of the above men-
tioned algorithms on all data sets. From these results, we
have the following observations:

e The proposed algorithm consistently demonstrates the
best clustering accuracy on all data sets. For example, it
exceeds the second best one (RMSC) by over six percent-
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Figure 2: ACC and NMI comparison with variation of number of classes on Caltech102. (left) ACC and (right) NMI

ages on Flowerl7. Also, its superiority is confirmed by
the NMI reported in Table 3.

e Our algorithm significantly improves the performance of
existing MKKM, where the kernel coefficients are up-
dated independently. Taking the result on Digital for ex-
ample, the clustering accuracy of MKKM is only 47%,
which implies that it may even not work on this dataset.
In contrast, our algorithm achieves 90.95%, which is the
best performance among all algorithms.

e As a strong baseline, A-MKKM usually demonstrates
comparable or even better clustering performance than
most of algorithms in comparison. However, our algo-
rithm outperforms this baseline consistently on all data
sets, which indicates its robustness in clustering perfor-
mance.

The NMI comparison of all algorithms are presented in Ta-

ble 3, from which we obtain the similar observations. These

results have well verified the effectiveness and advantages
of incorporating matrix-induced regularization.

We also investigate the clustering performance of each al-
gorithm with respect to the number of classes, as shown in
Figure 1 and 2. Figure 1 shows the results on Flower102.
As observed, our algorithm (in red) consistently keeps on
the top of all sub-figures when the number of classes varies,
indicating the best performance. Similar results can also be
found from the Figure 2.

From the above experiments, we conclude that the pro-
posed algorithm effectively addresses the issues of high re-
dundancy and low diversity among the selected kernels in
MKKM. This makes the pre-specified kernels be well uti-
lized, bringing to the significant improvements on clustering
performance.

Parameter selection and convergence

The proposed algorithm introduces a regularization param-
eter A\ which balances the objective of kernel k-means and
the matrix-induced regularization. We then experimentally
show the effect of this parameter on the performance of our
algorithm. Figure 3 plots the NMI of our algorithm by vary-
ing A from 2715 to 21°, where the NMI of MKKM is also

Flower17 UCI_DIGIT

085 —
’e %%,
Py - ¢ - Proposed IS i
) e . 08f, o T s P
¢y MKKM fa,
'

- - Proposed
—$—MKKM

Figure 3: The effect of the regularization parameter A on
NMI. (left) Flower17 and (right) Digital

Flower17 UCL_DIGIT

1200

1150

1000

Objective value
Objective value

A -8 0---0---0---e---4
& -~ ! . -----

2 25 3 35 4 3 4 5 3
The number of iterations The number of iterations

Figure 4: The objective value of our algorithm at each itera-
tion. (left) Flower17 and (right) Digital

incorporated as a baseline. From these figures, we have the
following observations: i) With the increasing value of A, the
NMI first increases to its highest value and then decreases;
ii) The best NMI is always achieved by appropriately inte-
grating the two terms; and iii) Our algorithm outperforms
MKKM and shows stable performance across a wide range
of smaller \ values.

We also plot the objective value of our algorithm at each
iteration in Figure 4. As observed, this value is monotoni-
cally decreased and the algorithm usually converges in less
than ten iterations.

Conclusions

This work proposes the MKKM algorithm with matrix-
induced regularization—a conceptually simple but effec-
tive algorithm which well handles the high redundancy and
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low diversity of existing MKKM algorithms. We provide a
theoretical justification to reveal the implication of incor-
porating matrix-induced regularization, and point out that
our algorithm is readily extendable by designing various
matrix-induced regularization. Extensive experimental re-
search clearly demonstrates the superiority of our algorithm
over the comparable ones in the recent literature. In the fu-
ture, we plan to extend our algorithm to a general frame-
work, and use it as a platform to revisit existing multiple
kernel clustering algorithms and uncover their relationship.
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