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Abstract

In this paper, we propose a novel model for learning graph
representations, which generates a low-dimensional vector
representation for each vertex by capturing the graph struc-
tural information. Different from other previous research ef-
forts, we adopt a random surfing model to capture graph
structural information directly, instead of using the sampling-
based method for generating linear sequences proposed by
Perozzi et al. (2014). The advantages of our approach will
be illustrated from both theorical and empirical perspectives.
We also give a new perspective for the matrix factorization
method proposed by Levy and Goldberg (2014), in which the
pointwise mutual information (PMI) matrix is considered as
an analytical solution to the objective function of the skip-
gram model with negative sampling proposed by Mikolov et
al. (2013). Unlike their approach which involves the use of
the SVD for finding the low-dimensitonal projections from
the PMI matrix, however, the stacked denoising autoencoder
is introduced in our model to extract complex features and
model non-linearities. To demonstrate the effectiveness of our
model, we conduct experiments on clustering and visualiza-
tion tasks, employing the learned vertex representations as
features. Empirical results on datasets of varying sizes show
that our model outperforms other stat-of-the-art models in
such tasks.

1 Introduction

Graphs are common representations used for information
management in many real-world problems. For example, in
protein network research, mining protein complexes from
protein-protein interaction networks plays an important role
in the description of functional diversity of homologous pro-
teins and serves valuable evolutionary insights, which is es-
sentially a clustering problem. It is therefore crucial to de-
velop automated algorithms to extract useful, deep informa-
tion from graphs. One of effective means towards organiz-
ing such information associated with the potentially large
and complex graph is to learn the graph representations,
which assign to each vertex of the graph a low-dimensional
dense vector representation, encoding meaningful informa-
tion conveyed by the graph.

Recently, there has been significant interest in the work
of learning word embeddings (Bullinaria and Levy 2007;
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Mikolov et al. 2013). Their goal is to learn for each nat-
ural language word a low-dimensional vector representa-
tion based on their contexts, from a large amount of nat-
ural language texts. Such works can be regarded as learn-
ing representations for linear sequences, since the corpora
consist of linear structures which are natural language word
sequences. The resulting compact, low-dimensional vector
representations are believed to be able to capture rich se-
mantic information and are proven to be useful for various
natural language processing tasks. While efficient and ef-
fective methods for learning good representations for lin-
ear structures have been identified (Mikolov et al. 2013;
Pennington, Socher, and Manning 2014), dealing with gen-
eral graph structures with rich topologies is more compli-
cated. To this end, one natural approach is to identify ef-
fective means to cast the task of learning vertex representa-
tions for general graph structures into the task of learning
representations from linear structures. DeepWalk proposed
by Perozzi et al. (2014) presented an idea to transform un-
weighted graphs into collections of linear sequences by a
uniform sampling method known as truncated random walk.
In their approach, sampled vertex sequences characterize the
connections between vertices in a graph. This step can be un-
derstood as a process for converting a general graph struc-
ture into a large collection of linear structures. Next, they
utilized the skip-gram model proposed by Mikolov et al.
(2013) to learn low-dimensional representations for vertices
from such linear structures. The learned vertex representa-
tions were shown to be effective across a few tasks, outper-
forming several previous approaches such as spectral clus-
tering and modularity method (Tang and Liu 2009a; 2009b;
2011; Macskassy and Provost 2003).

While such an approach for learning vertex representa-
tions of a unweighted graph is effective, two important is-
sues remain to be answered. First, how to accurately and
more directly capture the graph structural information for
weighted graphs? Second, is there a better method of rep-
resenting vertices of linear structures? To answer the first
question, we design a random surfing model suitable for
weighted graphs, which can directly yield a probabilistic
co-occurrence matrix. Such a matrix is similar to the co-
occurrence matrix obtained by sampling linear sequences
from graphs (Bullinaria and Levy 2007), but no sampling
process is required in our approach. To answer the sec-
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ond question, we first revisit one popular existing method
used for learning vertex representations for linear structures.
A recent study by Levy and Goldberg (2014) showed that
optimizing the objective function associated with the skip-
gram with negative sampling method (Mikolov et al. 2013)
has a intrinsic relation with factorzing a shifted positive
pointwise mutual information (PPMI) matrix (Bullinaria and
Levy 2007) of the words and their contexts. Specifically,
they showed that it was possible to use the standard singular
value decomposition (SVD) method to factorize the PPMI
matrix to induce the vertex/word representations from the
decomposed matrices. Our recent approach called GraRep
(Cao, Lu, and Xu 2015) has been shown to achieve good
empirical results on the task of learning graph representa-
tions. However, the approach employs SVD for performing
linear dimension reduction, while better non-linear dimen-
sion reduction techniques were not explored.

In this paper, we give a new perspective to the work of
Levy and Goldberg (2014). We argue that the original PPMI
matrix itself is an explicit representation matrix of the graph,
and the SVD step essentially plays its role as a dimen-
sion reduction toolbox. While the SVD step for inducing
the final word representations was shown effective, Levy et
al. (2015) also demonstrated the effectiveness of using the
PPMI matrix itself as the word representations. Interestingly,
as shown by the authors, the representations learned from
the SVD method cannot completely outperform the repre-
sentations from the PPMI matrix itself (Levy, Goldberg, and
Dagan 2015). Since our final goal is to learn good vertex rep-
resentations that are effective in capturing the graph’s infor-
mation, it is essential to investigate better ways of recover-
ing the vertex representations from the PPMI matrix, where
potentially complex, non-linear relations amongst different
vertices can be captured.

Deep learning sheds light on the path of modeling non-
linear complex phenomena, which has many successful ap-
plications in different domains, such as speech recogni-
tion (Dahl et al. 2012) and computer vision (Krizhevsky,
Sutskever, and Hinton 2012). Deep neural networks (DNN),
e.g., the stacked autoencoders, can be regarded as an effec-
tive method for learning high level abstractions from low
level features. This process essentially performs dimension
reduction that maps data from a high dimensional space into
a lower dimensional space. Unlike the (truncated) SVD-
based dimension reduction method, which maps from the
original representation space to a new space with a lower
rank through a linear projection, deep neural networks such
as stacked auto-encoders can learn projections which are
highly non-linear. In fact, a recent work by Tian et al. (2014)
used sparse autoencoders to replace the eigenvalue decom-
position step of spectral clustering in the clustering task,
and they achieved a significant improvement. Motivated by
their work, we also investigate the effectiveness of using al-
ternative deep learning-based approaches for learning low-
dimensional representations from the original data represen-
tations. Different from their work, we aim at learning vertex
representations for general graphs, and do not exclusively
focus on the clustering task. We apply the deep learning
method to the PPMI matrix instead of the Laplacian matrix

used in their model. The former has been shown to have the
potential to yield better representations than the latter (Per-
ozzi, Al-Rfou, and Skiena 2014). To enhance our model’s
robustness, we also employ the stacked denoising autoen-
coders for learning multiple layers of representations.

We call our proposed model DNGR (deep neural networks
for graph representations). The learned representations can
be regarded as input features that can be fed into other tasks,
such as unsupervised clustering and supervised classifica-
tion tasks. To validate the effectiveness of our model, we
conducted experiments on utilizing the learned represen-
tations for a spectrum of different tasks, where real-world
networks of different genres and topologies are considered.
To additionally demonstrate the effectiveness of our model
when simpler, yet more large-scaled practical graph struc-
tures are considered, we applied our algorithm on a very
large language dataset and conducted experiments on the
word similarity task. In all such tasks, our model outper-
forms other methods for learning graph representations, and
our model is also trivially parallelizable. Our major contri-
bution is twofold:

• Theoretically, we argue that the deep neural networks of-
fer the advantage of being able to capture non-linear in-
formation conveyed by the graph, whereas such informa-
tion can not be readily captured by many widely used
conventional linear dimension reduction methods. In ad-
dition, we argue that our random surfing model can be
used to replace widely used conventional sampling based
approaches for gathering graph information.

• Empirically, we demonstrate that our novel model is able
to learn better low-dimensional vertex representations of
a weighted graph, where meaningful semantic, relational
and structural information of the graph can be captured.
We show that the resulting representations can be effec-
tively used as features for different down-stream tasks.

2 Background and Related Work

In this section, we first present the random sampling of an
unweighed graph proposed in DeepWalk to illustrate the
feasibility of transforming vertex representations into lin-
ear representations. Next, we consider two word representa-
tion methods: skip-gram with negative sampling and matrix
factorization based on a PPMI matrix. These methods can
be viewed as linear approaches to learning word representa-
tions from linear structural data.

Notation Given an weighted graph G = 〈V,E〉, where
V = {v1, v2, . . . , vn} is the set of vertices and E = {ei,j}
is the set of edges between two vertices. In an unweighted
graph, edge weights indicate if a relationship exists be-
tween two vertices and are therefore binary. In contrast, edge
weights in weighted graphs are real numbers denoting the
degree of relatedness between two vertices. Although edge
weights in weighted graphs can be negative, we only con-
sider non-negative weights in this paper. For notational con-
venience, we also use w and c to denote vertices throughout
this paper. We seek to obtain a matrix R representing the ver-
tices of graph G by capturing deep structural information.
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2.1 Random Walk in DeepWalk

DeepWalk provides one effective way, called truncated ran-
dom walk, to transform unweighted graph structural infor-
mation into linear sequences, which express the relationship
between vertices of a graph. The proposed random walk is
a uniform sampling method that is suitable for unweighted
graphs. They first select one vertex v1 from the graph at ran-
dom, and mark it as the current vertex, then randomly select
the next vertex v2 from all the neighbours of the current ver-
tex v1. Now, they mark this newly selected vertex v2 as the
current vertex and repeat such a vertex sampling process.
When the number of vertices within one sequence reaches
a pre-set number called walk length η, the algorithm termi-
nates. After repeating the above procedure γ times (called
total walk), chunks of linear sequences are gathered.

Although truncated random walk is one effective way to
express unweighted graph structural information using lin-
ear sequences, the procedure involves a slow sampling pro-
cess, and the hyper parameters η and γ are not easy to de-
termine. We note that the DeepWalk yields a co-occurrence
matrix based on the sampled linear sequences. In Section 3,
we describe our random surfing model that directly construct
a probabilistic co-occurrence matrix from a weighted graph,
which avoids the expensive sampling process.

2.2 Skip-gram with Negative Sampling

Natural language corpora consist of streams of words which
are linear sequences. Recently, neural embedding methods
and matrix factorization based approaches have been widely
used in learning word representations. The skip-gram model
proposed in (Mikolov et al. 2013) has proven to be an ef-
fective and efficient way to learn word representations. Two
notable ways to improve the skip-gram model are negative
sampling (SGNS) and hierarchical softmax. In this paper,
we choose to use the former approach.

In SGNS, a simplified variant of the noise contrastive es-
timation (NCE) approach (Gutmann and Hyvärinen 2012;
Mnih and Teh 2012) is employed to enhance the robustness
of the skip-gram model. SGNS stochastically creates nega-
tive pairs (w, cN ) from an empirical unigram word distribu-
tions and attempts to represent each word w ∈ V and con-
text word c ∈ V pair using a low dimensional vector. The
objective function of SGNS aims to maximize positive pairs
(w, c) and minimize negative pairs (w, cN ).

argmax
�w,�c

log σ(�w · �c) + λ · EcN∼PD [log σ(−�w · �cN )]

where σ(·) is the sigmoid function defined as σ(x) = (1 +
e−x)−1 and λ is the number of negative samples. EcN∼pD

[·]
is the expectation when the instance obtained from negative
sampling cN conforms to the distribution pD = #(c)

|D| (the
distribution of the unigram c in the dataset D).

2.3 PMI matrix and SVD

An alternative approach to learning graph representations
(especially word representations) is based on matrix fac-
torization techniques. Such approaches learn representations
based on statistics of global co-occurrence counts, and can
outperform neural network method based on separate local

context windows in certain prediction tasks (Bullinaria and
Levy 2012; Levy, Goldberg, and Dagan 2015).

An example of a matrix factorization method is hyper-
space analogue analysis (Lund and Burgess 1996) which
factorizes a word-word co-occurrence matrix to yield word
representations. A major shortcoming of such an approach
and related methods is that frequent words with relatively
little semantic value such as stop words have a dispropor-
tionate effect on the word representations generated. Church
and Hanks’s pointwise mutual information (PMI) matrix
(Church and Hanks 1990) was proposed to address this prob-
lem and has since been proven to provide better word repre-
sentations (Bullinaria and Levy 2007):

PMIw,c = log

(
#(w, c) · |D|
#(w) ·#(c)

)

where |D| = ∑
w

∑
c #(w, c).

A common approach to improving performance is to as-
sign each negative value to 0, detailed in (Levy and Goldberg
2014), to form the PPMI matrix

Xw,c = max(PMIw,c, 0)

where X is the PPMI matrix.
Although the PPMI matrix is a high dimensional ma-

trix, performing dimension reduction using truncated SVD
method (Eckart and Young 1936) yields the optimal rank
d factorization with respect to L2 loss (Levy and Goldberg
2014). We assume matrix X can be decomposed into three
matrices UΣV T , where U and V are orthonormal matrices,
and Σ is a diagonal matrix. In other words,

X ≈ Xd = UdΣdV
T
d

Here Ud and Vd are the left d columns of U and V corre-
sponding to the top-d singular values (in Σd). According to
Levy et al. (2015), the word representation matrix R can be:

R = Ud(Σd)
1/2 or R = Ud

The PPMI matrix X is the product of the word representa-
tion matrix and the context matrix. The SVD procedure pro-
vides us a way of finding the matrix R from the matrix X ,
where the row vectors of R, which are the low-dimensional
representations for words/vertices, can be obtained through
a linear projection from their high-dimensional representa-
tions as given by X . We argue that such a projection does not
have to be a linear projection. In this work, we investigate the
use of non-linear projection methods to replace linear SVD
approach through the use of deep neural networks.

2.4 Deep Neural Networks

Deep neural networks, which can be used to learn multi-
ple levels of feature representations, has achieved success-
ful results in different fields (Dahl et al. 2012; Krizhevsky,
Sutskever, and Hinton 2012). Training such networks were
shown difficult. One effective solution, proposed in (Hin-
ton and Salakhutdinov 2006; Bengio et al. 2007), is to use
the greedy layer-wise unsupervised pre-training. This strat-
egy aims at learning useful representations of each layer at
a time. The learned low-level representations are then fed
as the inputs to the next layer for subsequent representation
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Figure 1: Main components: random surfing, calculation of PPMI matrix and feature reduction by SDAE

learning. Neural networks typically employ non-linear acti-
vation function such as sigmoid or tanh to capture complex,
non-linear projections from the inputs to the outputs.

To train a deep architecture that involves multiple lay-
ers of feature representations, autoencoders have emerged
as one of the commonly used building blocks (Bourlard
and Kamp 1988; Hinton and Zemel 1994). An autoencoder
performs two actions – an encoding step, followed by a
decoding step. In the encoding step, a function fθ1(·) is
applied to the vector in the input space and send it to a
new feature space. An activation function is typically in-
volved in this process to model the non-linearities between
the two vector spaces – the space of input vectors and the
space of latent vector representations. At the decoding step,
a reconstruction function gθ2(·) is used to reconstruct the
original input vectors back from the latent representation
space. Let us assume that fθ1(x) = σ(W1x + b1) and
gθ2(y) = σ(W2y+b2), where σ(·) is the activation function,
θ1 = {W1, b1} are the weights (parameters) involved in the
encoder, and θ2 = {W2, b2} are the weights (parameters) in-
volved in the decoder. Here W1 and W2 are linear maps (ma-
trices) transforming the vectors from the input space, and b1
and b2 are the bias vectors. Our goal is to minimize the fol-
lowing reconstruction loss function by finding θ1 and θ2:

∑
i

L
(
x(i), gθ2(fθ1(x

(i)))
)

where L is sample-wise loss, and x(i) is the i-th instance.
A stacked autoencoder is a multi-layer deep neural net-

work consisting of multiple layers of such autoencoders.
Stacked autoencoders use the layer-wise training approach
to extract essential regularities capturing different levels of
abstractions from the data layer by layer, with higher layers
conveying higher-level abstractions from the data.

3 DNGR Model

We now detail our DNGR model. As shown in Figure 1, the
model consists of three major steps. First, we introduce ran-
dom surfing model (Sec 3.1) to capture graph structural in-
formation and generate a probabilistic co-occurrence matrix.
Next we calculate the PPMI matrix based on our probabilis-
tic co-occurrence matrix by following (Bullinaria and Levy
2007) (See Sec 2.3). After that, a stacked denoising autoen-
coder (Sec 3.2) is used to learn low-dimensional vertex rep-
resentations.

3.1 Random Surfing and Context Weighting

Although effective, the sampling method for transforming a
graph structure into linear sequences has some weaknesses.
First, the sampled sequences have finite lengths. This makes
it difficult to capture the correct contextual information for
vertices that appear at the boundaries of the sampled se-
quences. Second, it is not straightforward to determine cer-
tain hyper parameters such as walk length η and total walks
γ, especially for large graphs.

To resolve these issues, we consider using a random surf-
ing model motivated by the PageRank model used for rank-
ing tasks. We first randomly order the vertices in a graph.
We assume our current vertex is the i-th vertex, and there is
a transition matrix A that captures the transition probabili-
ties between different vertices.

We introduce a row vector pk, whose j-th entry indicates
the probability of reaching the j-th vertex after k steps of
transitions, and p0 is the initial 1-hot vector with the value
of the i-th entry being 1 and all other entries being 0. We
consider a random surfing model with restart: at each time,
there is a probability α that the random surfing procedure
will continue, and a probability 1 − α that it will return to
the original vertex and restart the procedure. This leads to
the following recurrence relation:

pk = α · pk−1A+ (1− α)p0

If we assume there is no random restart in the procedure,
the probabilities for arriving at different vertices after ex-
actly k steps of transitions is specified by the following:

p∗k = p∗k−1A = p0A
k

Intuitively, the distance between two vertices is closer, the
more intimate relationship they should have. Thus, it is rea-
sonable to weigh the importance of contextual nodes based
on their relative distance to the current node. Such weight-
ing strategies were implemented in both word2vec (Mikolov
et al. 2013) and GloVe (Pennington, Socher, and Manning
2014) and were found important for achieving good empiri-
cal results (Levy, Goldberg, and Dagan 2015). Based on this
fact, we can see that ideally the representation for the i-th
vertex should be constructed in the following way:

r =
K∑

k=1

w(k) · p∗k
where w(·) is a decreasing function, i.e., w(t+ 1) < w(t).

We argue that the following way of constructing the vertex
representation based on the above-mentioned random surf-
ing procedure actually satisfies the above condition:
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Figure 2: Different context weighting strategies in
word2vec, Glove and random surfing. The weight as-
signed to a context node is a function of the distance
between the context node and the current node in the graph.

r =
K∑

k=1

pk

In fact, it can be shown that we have the following:

pk = αkp∗k +

k∑
t=1

αk−t(1− α)p∗k−t

where p∗0 = p0. The coefficient of p∗t in r is

w(t) = αt + αt(1− α)(K − t)

where w(t) is a decreasing function since α < 1. While the
weighting function in skip-gram can be described as

w
′
(t) = − t

K
+ (1 +

1

K
)

and the weighting function in GloVe is:

w
′′
(t) =

1

t

As we can see from Figure 2, all the weighting func-
tions are monotonically decreasing functions. Similar to
word2vec and GloVe, our model also allows contextual in-
formation to be weighed differently based on their distance
to the target, which was previously shown to be important
for constructing good word representations. We will assess
the importance of this aspect through experiments.

3.2 Stacked Denoising Autoencoder

Our study aims to investigate the construction of high-
quality low-dimensional vector representations for vertices
from the PPMI matrix that conveys essential structural in-
formation of the graph. The SVD procedure, though effec-
tive, essentially only yields linear transformations that map
from vector representations contained by the PPMI matrix to
the final low-dimensional vertex vector representations. We
believe that potentially a non-linear mapping can be estab-
lished between the two vector spaces. Thus we use stacked
denosing autoencoders, a popular model used in deep learn-
ing, to generate compressed, low-dimensional vectors from
the original high-dimensional vertex vectors.

As described in Table 1, we first initialize the parame-
ters of the neural networks, and then we use the greedy

layer-wise training strategy to learn high-level abstractions
at each layer. In order to enhance the robustness of DNN, we
use stacked denoising autoencoders (SDAE). Different from
conventional autoencoders, denoising autoencoders partially
corrupt the input data before taking the training step. Specif-
ically, we corrupt each input sample x (a vector) randomly
by assigning some of the entries in the vector to 0 with a cer-
tain probability. This idea is analogous to that of modeling
missing entries in matrix completion tasks, where the goal
is to exploit regularities in the data matrix to effectively re-
cover the complete matrix under certain assumptions. In the
SDAE structure as shown in Figure 1, Xi’s correspond to the
input data, Yi’s correspond to the learned representations in
the first layer, and Zi’s correspond to the learned represen-
tations in the second layer. The temporarily corrupted nodes
(e.g. X2, X5 and Y2) are highlighted with red color.

Similar to standard autoencoders, we again reconstruct
data from the latent representations. In other words, we are
interested in:

min
θ1,θ2

n∑
i=1

L
(
x(i), gθ2(fθ1(x̃

(i)))
)

where x̃(i) is corrupted input data of x(i), and L is the stan-
dard squared loss.

3.3 Discussions of the DNGR Model

Here, we analyze the advantages of DNGR. Its empirical ef-
fectiveness will be presented in Sec 4.
• Random Surfing Strategy: As we have analyzed above

in Sec 3.1, the random surfing procedure overcomes the
limitations associated with the sampling procedures used
in previous works, and it provides us with certain desired
properties which are shared by previous implementations
to embedding models, such as word2vec and GloVe.

• Stacking Strategy: The stacked structure provides a
smooth way of performing dimension reduction. We be-
lieve the learned representations at different layers of the
deep architecture can provide different levels of meaning-
ful abstractions to the input data.

• Denoising Strategy: High dimensional input data often
contains redundant information and noise. It is believed
that the denoising strategy can effectively reduce noise
and enhance robustness (Vincent et al. 2008).

• Efficiency: Following previous analysis (Tian et al.
2014), inference with the autoencoder used in DNGR has
a lower time complexity than SVD-based matrix factor-
ization method with respect to the number of vertices in
the graph. SVD has a time complexity at least quadratic in
the number of vertices. However, the inference time com-
plexity of DNGR is linear in the number of vertices in the
graph.

4 Datasets, Baselines and Experiments
To assess the performance of the DNGR model, we con-
ducted experiments on real datasets. Besides showing results
for graph representations, we also assess the effectiveness of
word embeddings learned from a natural language corpus
consisting of linear sequences.
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Table 1: SDAE description

Input: PPMI matrix X , Number of SDAE layers Γ
1. Initialize SDAE

Set number of nodes nj in layer j, X(1) = X
2. Greedy layer-wised training
For j = 2 to Γ

2.1 Construct one hidden layer SDAE with input of X(j)

2.2 Learn hidden layer representation h(j)

2.3 X(j) = h(j)
(
X(j) ∈ R

n×nj
)

Output: Matrix of vertices representations R

Table 2: Neural Network Structures

dataset #nodes in each layer
Wine [178-128-32]
3NG [600-512-256]
6NG [1200-512-256]
9NG [1800-1024-512-256]
Word Representation [10000-4096-2048-1024-256]

4.1 Datasets

1. 20-NewsGroup contains around 20, 000 News Group
(NG) documents and is split into 20 different groups ac-
cording to category. In our experiments, each document is a
single vertex represented by a word vector produced via TF-
IDF and the weight of the edges between two documents is
the cosine similarity of the two documents. To show the ro-
bustness of our model, as demonstrated in (Tian et al. 2014),
we constructed 3 groups from 3, 6 and 9 different categories
respectively, and randomly selected 200 documents from
each category. In our experiments, we selected the same cat-
egories as those used in (Tian et al. 2014). These three net-
works are represented by fully-connected, weighted graphs
which contain 200, 400 and 600 documents respectively.

2. Wine, a dataset from UCI Machine Learning Reposi-
tory (Lichman 2013), is the the results of a chemical analysis
of wines grown in the same region in Italy but derived from
three different cultivars. The analysis determined the quanti-
ties of 13 constituents found in each of the 3 types of wines
and comprises 178 instances. Following (Tian et al. 2014),
we built a graph using cosine similarity of two different in-
stances as edge weights, and labels as ground truth.

3. Wikipedia Corpus is a free and open content on-
line encyclopedia. We picked the April 2010 snapshot from
(Shaoul 2010) used in (Huang et al. 2012) as our training
corpus for learning word representations. The dataset has
2 million articles and 990 million tokens. To demonstrate
the effectiveness of deep learning as compared to SVD, we
chose a dictionary of 10,000 most frequent words (10,000
selected due to the time complexity of the SVD algorithm).

To evaluate the performance of word representations gen-
erated by each algorithm, we conducted experiments on
word similarities (Mikolov et al. 2013) on 4 datasets, in-
cluding the popular WordSim353 (Finkelstein et al. 2001),
WordSim Similarity (Zesch, Müller, and Gurevych 2008)
and WordSim Relatedness (Agirre et al. 2009) and MC
(Miller and Charles 1991), as used in (Pennington, Socher,
and Manning 2014; Levy, Goldberg, and Dagan 2015). All
datasets have word pairs and human-assigned similarities.

Table 3: Clustering Results on 20-NewsGroup

NMI (%) 3NG 6NG 9NG
DNGR(α=0.98) 80.44 68.76 59.13
DNGR(α=0.95) 74.30 68.87 57.32
DNGR(α=1) 74.63 66.70 58.22
SVD (α=0.98) 62.95 66.18 52.90
SVD (α=0.95) 62.83 65.33 50.00
SVD (α=1) 60.27 63.52 53.52
PPMI 62.84 66.52 52.30
DeepWalk (128) 55.83 58.11 46.86
DeepWalk (256) 56.34 58.40 46.62
DeepWalk (512) 59.64 59.82 46.29
SGNS (128) 64.34 62.99 48.14
SGNS (256) 62.56 63.25 48.10
SGNS (512) 63.97 63.16 49.04

4.2 Baseline Algorithms

We consider the following four baseline algorithms1.
1. DeepWalk (Perozzi, Al-Rfou, and Skiena 2014) is a

recently proposed method to learn representations of
networks. It transforms a graph structure into linear se-
quences by truncated random walks and processes the
sequences using skip-gram with hierarchical softmax.

2. SGNS (Mikolov et al. 2013) is proposed in word2vec.
It is suitable for capturing linear structures. SGNS has
been proven to be an effective model to learn word rep-
resentations both theoretically and empircally.

3. PPMI (Bullinaria and Levy 2007) is a measure often
used in information theory. PPMI was used for word
representations in (Levy, Goldberg, and Dagan 2015)
and is a sparse high dimensional representation.

4. SVD (Levy and Goldberg 2014) is a common ma-
trix factorization method that is used to reduce dimen-
sions or extract features. Following (Levy and Gold-
berg 2014), we used SVD to compress the PPMI matrix
to obtain low dimensional representations.

5.1 Parameters

In baseline systems, we set walk length η = 40, total walks
γ = 80 ∗ |V |, where |V | is the number of graph vertices
as suggested in (Perozzi, Al-Rfou, and Skiena 2014). To
reach optimal performance for each baseline algorithm, we
set negative samples λ = 5, context window size K = 10
for DeepWalk and SGNS, as stated in (Levy, Goldberg, and
Dagan 2015). For our model, we tuned the dropout ratio
which reduces error in the optimization process. As listed
in Table 2, the neural networks for 3NG and 6NG have 3
layers and 9NG and Blogcatalog have 4 layers. All neurons
were activated by the sigmoid function.

5.2 Experiments

We present empirical results of our proposed method against
each baseline algorithm. The results demonstrate the advan-
tage of using the weighting strategy by our random surfing
procedure and the effectiveness of deep architectures. Our
source code will be released at http://shelson.top.

1
Since we are considering weighted graphs in this work, for the first two baseline algorithms,

we used weighted sampling to sample sequences based on the weights on the edges of the graph
rather than adopting the uniform sampling method used in their original papers which is only appli-
cable to unweighted graphs.
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(a) DNGR (α=0.98) (b) DNGR(α=1) (c) SVD (α=0.98) (d) DeepWalk (e) SGNS

Figure 3: Visualization Results of Wine. Vector representations serve as features to feed into t-SNE tool and points in the same
color indicate instances of the same type.

5.2.1 Clustering Task on the 20-NewsGroup Network
In this experiment, we ran each baseline algorithm to gener-
ate a representation vector for each vertex, which is used as
a feature representation for clustering. We used the K-means
algorithm (Arthur and Vassilvitskii 2007), and the normal-
ized mutual information (NMI) (Strehl, Ghosh, and Mooney
2000) as the metric to measure performance. We ran each al-
gorithm 10 times with different initializations and reported
the average scores in Table 3. To illustrate the impact of dif-
ferent dimensions, we also listed the results of 128 and 512
dimensions for DeepWalk and SGNS.

From the results, we can see that our DNGR model sig-
nificantly outperform other baseline algorithms, especially
when α=0.98. When α=1, contextual information is not
weighed based on their distance, and we obtain lower re-
sults, confirming the importance of the weighing strategy
discussed in Sec 3.1. Increasing the dimensions used in
DeepWalk and SGNS did not lead to consistent improve-
ments in scores. Comparing DNGR and PPMI, the improve-
ment in scores demonstrated the benefits of extracting mean-
ingful information and reducing dimensions for sparse high
dimensional matrices. Under the same setting of α, DNGR
consistently gives better results than SVD. This provides
empirical justifications to our previous discussions – the fact
that SVD does not always outperform PPMI indicates that
potentially a better dimension reduction method is needed.

5.2.2 Visualization of Wine Another way of assessing the
quality of the vertex representations is through visualiza-
tion. We conducted visualization experiments by following
(Tang et al. 2015) to compare the performance of DNGR with
SVD, deepwalk and SGNS on Wine. The vertex representa-
tion matrix was fed as features into t-SNE (Van der Maaten
and Hinton 2008), which mapped all points into a 2D space,
where the same type of wines were highlighted with the
same color. Under the same setting, a clustering with clearer
boundaries between different color groups indicates better
representations.

From Figure 3, we can see that the visualization of out-
puts from DeepWalk and SGNS showed unclear boundaries
and diffuse clusters. DNGR(α=1) is much better. Although
SVD is superior to DNGR(α=1), in the results we can see
the green points are still intermixed with some red points.
DNGR(α=0.98) is the clear winner. We can see that points of
different colors appear in 3 separate poles and the majority
of the points of the same color are clustered together.

Table 4: Results of Word Similarity Task

Algorithm Finkelstein et al. Zesch et al. Agirre et al. Miller et al.
WS353 WS Similarity WS Relatedness MC

DNGR 72.45 74.84 68.73 84.64

PPMI 62.28 67.52 56.02 66.07
SVD 72.22 73.96 68.44 83.57
SGNS 70.78 74.37 64.60 75.36

Table 5: Layer-wise NMI Values on 20-NewsGroup

Layer 1 2 3 4
3NG 62.84 75.83 80.44 —
6NG 66.25 66.46 68.76 —
9NG 52.30 56.09 56.52 59.13

5.2.3 Word Similarity Task To further understand the ef-
fectiveness of the deep learning component of our DNGR
model, we conducted experiments on a large scale language
corpus, where we learn word representations from large
linear structured graph data. In this experiment, since the
data consists of strictly linear sequences, the random surfing
procedure is not required. Instead, we could directly count
word-word pairs from training corpus. To compare the per-
formance of the different algorithms, we conducted evalua-
tions on a word similarity task over standard datasets. Spear-
man’s rank correlation coefficient (Zar 1972) was used to
evaluate the results produced by the algorithms. Following
the findings reported in (Levy, Goldberg, and Dagan 2015),
to obtain optimal results, we set the number of negative sam-
ples to 5, 1, 1 for SGNS, DNGR and SVD respectively.

As shown in Table 4, the performance of DNGR outstrips
other baseline algorithms. Both SVD and DNGR yields sig-
nificantly better results than PPMI, demonstrating the im-
portance of the dimension reduction in this task. The per-
formance of DNGR is higher than SVD and SGNS across all
datasets, which reveals the importance of capturing complex
non-linear regularities when learning representations, and il-
lustrates the capability of learning better abstractions using
our deep learning approach.

5.2.4 Importance of Deep Structures To understand ne-
cessity of deep structures, we further measured the layer-
wise NMI value of 20-NewsGroup. For 3NG and 6NG, we
use a 3-layer neural network to construct representations,
and for 9NG we used 4 layers as shown in Table 2. From Ta-
ble 5, we can see that the performance in general increased
from shallow layers to deep layers for all three networks,
which demonstrated the importance of deep structures.
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6 Conclusion

In this paper, we have proposed a deep graph representa-
tion model for encoding each vertex as a low dimensional
vector representation. Our model demonstrated the ability
of stacked denosing autoencoders in extracting meaning-
ful information and generating informative representations.
We conducted experiments on real-world datasets in differ-
ent tasks and showed that the performance of the proposed
model outperformed several state-of-the-art baseline algo-
rithms. Although the process of tuning the hyper-parameters
of neural networks requires efforts and expertise, we con-
clude that exploring the underlying structure of data via deep
learning can lead to improved representations for graphs.
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