
Complexity of Shift Bribery in Committee Elections

Robert Bredereck1, Piotr Faliszewski2, Rolf Niedermeier1, and Nimrod Talmon1

1Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Berlin, Germany
{robert.bredereck, rolf.niedermeier}@tu-berlin.de, nimrodtalmon77@gmail.com

2AGH University of Science and Technology, Krakow, Poland
faliszew@agh.edu.pl

Abstract

We study the (parameterized) complexity of SHIFT BRIBERY
for multiwinner voting rules. We focus on the SNTV, Bloc,
k-Borda, and Chamberlin–Courant rules, as well as on ap-
proximate variants of the Chamberlin–Courant rule, since the
original rule is NP-hard to compute. We show that SHIFT
BRIBERY tends to be significantly harder in the multiwin-
ner setting than in the single-winner one by showing set-
tings where SHIFT BRIBERY is easy in the single-winner
cases, but is hard (and hard to approximate) in the multi-
winner ones. We show that the non-monotonicity of those
rules which are based on approximation algorithms for the
Chamberlin–Courant rule sometimes affects the complexity
of SHIFT BRIBERY.

Introduction

We study the complexity of campaign management—
modeled as the SHIFT BRIBERY problem—for the case
of multiwinner elections. In the SHIFT BRIBERY prob-
lem we want to ensure that our candidate is in a winning
committee by convincing some of the voters—at a given
price—to rank him or her more favorably. In particular,
this models campaigns based on direct meetings with vot-
ers, in which the campaigner presents positive features of
the candidate he or she works for. While the complex-
ity of campaign management is relatively well-studied for
single-winner elections, it has not been studied for the mul-
tiwinner setting yet (there are, however, studies of manipula-
tion and control for multiwinner elections (Meir et al. 2008;
Aziz et al. 2015b)).

Based on the preferences of the voters, the goal of a mul-
tiwinner election is to pick a committee of k candidates.
These k candidates might, for example, form the country’s
next parliament, be a group of people short-listed for a job
opening, or be a set of items a company offers to its cus-
tomers (see the papers of Lu and Boutilier (2011), Skowron
et al. (2015), and Elkind et al. (2014) for a varied description
of applications of multiwinner voting). Since the election
results can affect the voters and the candidates quite signif-
icantly, we expect that they will run campaigns to achieve
the most desirable results: a person running for parliament
would want to promote her or his political platform; a job

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

candidate would want to convince the HR department of her
or his qualities.

We study the standard, ordinal model of voting, where
each voter ranks the candidates from the one he or she likes
best to the one he or she likes least. We focus on rules that
are based either on the Borda scores of the candidates or on
their t-Approval scores (briefly put, if we have m candidates,
then a voter gives Borda score m − 1 to his or her most
preferred candidate, score m− 2 to the next one, and so on;
a voter gives t-Approval score 1 to each of his or her top-t
candidates and score 0 to the other ones).

The most basic multiwinner rules simply pick k candi-
dates with the highest scores (for example, SNTV uses 1-
Approval scores, Bloc uses k-Approval scores, and k-Borda
uses Borda scores). While such rules may be good for
short-listing tasks, they do not seem to perform well for
cases where the committee needs to be varied (or repre-
sent the voters proportionally; see the work of Elkind et
al. (2014)). In this case, we may prefer other rules, such
as the Chamberlin–Courant family of rules (Chamberlin and
Courant 1983), which try to ensure that every voter is rep-
resented well by some member of the committee (see the
Preliminaries section for an exact definition).

Unfortunately, while the winners of SNTV, Bloc, and
k-Borda rules are polynomial-time computable, this is not
the case for the Chamberlin–Courant rules (Procaccia et
al. (2008) and Lu and Boutilier (2011) show NP-hardness).
We deal with this problem in two ways. First, there are
FPT algorithms for computing Chamberlin–Courant win-
ners (for example, for the case of few voters). Second,
there are good approximation algorithms (due to Lu and
Boutilier (2011) and Skowron et al. (2015)). Following
Caragiannis et al. (2014) and Elkind et al. (2014), we con-
sider these approximation algorithms as voting rules in their
own right (societies may use them in place of the original,
hard-to-compute ones).

The idea of the SHIFT BRIBERY problem is as follows.
We are given an election and a preferred candidate p, and we
want to ensure that p is a winner (in our case, is a member
of a winning committee) by shifting him or her forward in
some of the votes, at an appropriate cost, without exceeding
a given budget. The costs of shifting p correspond to invest-
ing resources into convincing the voters that our candidate
is of high quality. For example, if a company is choosing

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

2452

which of its products to continue selling, the manager re-
sponsible for a given product may wish to prepare a demon-
stration for the company’s higher management. Similarly,
a person running for parliament would invest money into
meetings with the voters, appropriate leaflets, and so on.
Thus, we view SHIFT BRIBERY as a model of (a type of)
campaign management.

SHIFT BRIBERY was introduced by Elkind et al. (2009;
2010), and since then a number of other researchers studied
both SHIFT BRIBERY (e.g. Schlotter et al. (2011) and Bred-
ereck et al. (2014; 2015b)), and related campaign manage-
ment problems (e.g. Dorn and Schlotter (2012), Baumeister
et al. (2012), and Faliszewski et al. (2014)). Naturally, the
problem also resembles other bribery problems, such as the
original bribery problem of Faliszewski et al. (2009) or those
studied by Mattei et al. (2012) and Mattei, Goldsmith, and
Klapper (2012). We point the reader to the overview of Fal-
iszewski and Rothe (2015) for more details and references.

For single-winner elections, SHIFT BRIBERY is a rela-
tively easy problem. Specifically, it is polynomial-time solv-
able for the t-Approval rules and for the Borda rule, for
which it is NP-hard, there is a good polynomial-time ap-
proximation algorithm (Elkind and Faliszewski 2010) and
exact FPT algorithms (Bredereck et al. 2014). In the mul-
tiwinner setting the situation is quite different. The main
findings of our research are as follows (see also Table 1):

1. The computational complexity of SHIFT BRIBERY for
multiwinner rules strongly depends on the setting. In gen-
eral, for the cases of few candidates we find FPT al-
gorithms while for the cases where the preferred candi-
date is shifted by few positions only we find hardness re-
sults (even though these cases are often easy in the single-
winner setting).

2. The computational complexity for the case of few vot-
ers most strongly depends on the underlying scoring rule.
Generally, for the rules based on t-Approval scores the
complexity of SHIFT BRIBERY tends to be lower than for
analogous rules based on Borda scores.

We did not study such multiwinner rules as the STV rule, the
Monroe rule (Monroe 1995), or other Approval-based rules
(see, e.g., the works of Brams and Kilgour (2014) and Aziz
et al. (2015a; 2015b)), in order to compare our results to
those for the single-winner setting, while keeping the con-
sidered set of rules small. Due to space constraints, most
proofs are deferred to a full version of the paper.

Preliminaries

Elections and Voting Rules. For each integer n, we set
[n] := {1, . . . , n}. An election E = (C, V) consists of
a set of candidates C = {c1, . . . , cm} and a collection of
voters V = (v1, . . . , vn). Each voter v is associated with
a preference order, i.e., with a ranking of the candidates in
decreasing order of appreciation by the voter. For exam-
ple, if C = {c1, c2, c3}, then by writing v : c1 � c2 �
c3 we mean that v likes c1 best, then c2, and then c3.
We write posv(c) to denote the position of candidate c in
voter v’s preference order (e.g., in the preceding example we

would have posv(c1) = 1). When we write a subset A ⊆ C
of candidates in a description of a preference order, we mean
listing all members of A in some fixed, easily computable or-
der. If we put

←−
A in a preference order, then we mean listing

members of A in the reverse of this fixed order.
Let E = (C, V) be an election with m candidates and

n voters. The Borda score of candidate c in the vote of v,
v ∈ V , is βv(c) = m − posv(c). The Borda score of c in
the election E is βE(c) =

∑
v∈V βv(c). The single-winner

Borda rule elects the candidate with the highest Borda score
(if there are several such candidates, they tie as winners).
For each t ∈ [m], we define the t-Approval score as follows:
for a candidate c and voter v, αt

v(c) = 1 if v ranks c among
the top t positions and otherwise it is 0; we set αt

E(c) =∑
v∈V αt

v(c). We define the single-winner t-Approval rule
analogously to the Borda rule.

A multiwinner voting rule R is a function that, given an
election E = (C, V) and an integer k ∈ [|C|], outputs a
set R(E, k) of k-element subsets of C. Each size-k subset
of C is called a committee and each member of R(E, k) is
called a winning committee. We consider the following rules
(below, E = (C, V) is an election and k is the committee
size):

SNTV, Bloc, and k-Borda compute the score of each can-
didate and output the committee of k candidates with the
highest scores (or all such committees, if there are sev-
eral). SNTV and Bloc use, respectively, 1-Approval and
k-Approval scores, while k-Borda uses Borda scores. For
these rules winners can be computed in polynomial time.1

Under the Chamberlin–Courant rules (the CC rules), for
a committee S, a candidate c ∈ S is a representative of
those voters that rank c highest among the members of S.
The score of a committee is the sum of the scores that the
voters give to their representatives (highest-scoring com-
mittees win); Borda-CC uses Borda scores, t-Approval-
CC uses t-Approval scores. Winner determination for CC
rules is NP-hard (Procaccia, Rosenschein, and Zohar 2008;
Lu and Boutilier 2011), but is in FPT when parameterized
by the number of voters or candidates (Betzler, Slinko, and
Uhlmann 2013).

Greedy-Borda-CC is a (1 − 1
e)-approximation algorithm

for the Borda-CC rule, due to Lu and Boutilier (2011). (The
approximation is in the sense that the score of the committee
output by the algorithm is at least a 1− 1

e fraction of the score
of the winning committee under Borda-CC.) The algorithm
starts with an empty set W and executes k iterations, in each
one adding to W the candidate c that maximizes the Borda-
CC score of (W ∪ {c}).2 For example, it always picks a
Borda winner in the first iteration. Greedy-Borda-CC always
outputs a unique winning committee.

Greedy-Approval-CC works in the same way, but uses t-
Approval scores instead of Borda scores. It is a (1 − 1

e)-
approximation algorithm for t-Approval-CC. We refer to t-

1There may be exponentially many winning committees, but it
is easy to compute their score and to check for a subset of candi-
dates if it can be extended to a winning committee.

2If there is a tie between several candidates, then we assume
that the algorithm breaks it according to a prespecified order.

2453

Approval-Greedy-CC for t = �m·w(k)
k � (where w is Lam-

bert’s W function; w(k) is O(log k)), as PTAS-CC; it is the
main part of Skowron et al.’s (2015) polynomial-time ap-
proximation scheme for Borda-CC.
Parameterized Complexity. In a parameterized problem,
we declare some part of the input as the parameter (e.g.,
the number of voters). A parameterized problem is fixed-
parameter tractable (is in FPT) if there is an algorithm that
solves it in time f(ρ) · |I|O(1), where |I| is the size of a given
instance encoding, ρ is the value of the parameter, and f is
some computable function. There is a hierarchy of classes
of hard parameterized problems, FPT ⊆ W[1] ⊆ W[2] ⊆
· · · ⊆ XP. It is widely believed that if a problem is hard for
one of the W[·] classes, then it is not in FPT. The notions
of hardness and completeness for parameterized classes are
defined through parameterized reductions. For this paper, it
suffices to use standard polynomial-time many-one reduc-
tions that guarantee that the value of the parameter in the
problem we reduce to exclusively depends on the value of
the parameter of the problem we reduce from.

Definition 1. An instance of MULTICOLORED INDEPEN-
DENT SET consists of a graph where each vertex has one of
h colors. We ask if there are h vertices of pairwise-distinct
colors such that no two of them are connected by an edge.

Parameterized by the solution size h, MULTICOLORED
INDEPENDENT SET is W[1]-complete. If a parameterized
problem can be solved in polynomial time under the as-
sumption that the parameter is constant, then we say that
it is in XP. If a problem is NP-hard even for some constant
value of the parameter, then we say that it is para-NP-hard.

For details on parameterized complexity, we point to the
books of Cygan et al. (2015), Downey and Fellows (2013),
Flum and Grohe (2006), and Niedermeier (2006).

Shift Bribery

Let R be a multiwinner rule. In the R-SHIFT BRIBERY
problem we are given an election E = (C, V) with m can-
didates and n voters, a preferred candidate p, a committee
size k, voter price functions (see below), and an integer B,
the budget. The goal is to ensure that p belongs to at least
one winning committee (according to the rule R),3 and to
achieve this goal we are allowed to shift p forward in the
preference orders of the voters. However, each voter v has
a price function πv : [m] → N, and if we shift p by i po-
sitions forward in the vote of v, then we have to pay πv(i).
We assume that the price functions are nondecreasing (i.e., it
cannot cost less to shift our candidate farther than to shift her
or him nearer) and that the cost of not shifting p is zero (i.e.,
πv(0) = 0 for each v). Bredereck et al. (2014) have consid-
ered several different families of price functions. In this pa-
per we focus on two of them: unit price functions, where for
each voter v it holds that πv(i) = i, and all-or-nothing price

3Our approach is a natural extension of the non-unique winner
model from the world of single-winner rules. Naturally, one might
alternatively require that p is a member of all winning committees
or put an even more demanding goal that would involve other can-
didates. We refer to a brief discussion in the Conclusion section.

functions, where for each voter v it holds that πv(i) = qv
for each i > 0 (where qv is some voter-dependent value)
and πv(0) = 0.

A shift action is a vector (s1, . . . , sn) of natural num-
bers, that for each voter specifies by how many positions
to shift p. If �s = (s1, . . . , sn) is a shift action, then we
write shift(E,�s) to denote the election obtained from E by
shifting p an appropriate number of positions forward in
each vote. If Π = (π1, . . . , πn) are the price functions of
the n voters, then we write Π(�s) =

∑n
i=1 πi(si) to denote

the total cost of applying �s. For a shift action �s, we define
#�s =

∑n
i=1 si and we call it the number of unit shifts in �s.

Formally, we define R-SHIFT BRIBERY as follows.
Definition 2. Let R be a multiwinner voting rule. An
instance I of R-SHIFT BRIBERY consists of an election
E = (C, V), a preferred candidate p ∈ C, a committee
size k, a collection Π = (π1, . . . , πn) of price functions for
the voters, and an integer B, the budget. We ask if there is
a shift action �s = (s1, . . . , sn) such that: (a) Π(�s) ≤ B
and (b) there is a committee W ∈ R(shift(E,�s), k) such
that p ∈ W (we refer to such a shift action as a successful
shift action; we write OPT(I) to denote the cost of the least
expensive successful shift action).

Following Bredereck et al. (2014), we consider the most
natural parameterizations by the number n of the voters, by
the number m of the candidates, and by the minimum num-
ber s of unit shifts in a successful shift action.

General Results
We start our discussion by providing several results that ei-
ther apply to whole classes of multiwinner rules (including
many of those that we focus on) or that are proven using gen-
eral, easily adaptable techniques. These results form a base-
line for our research regarding specific rules. In this section,
when we say that a given rule has a winner determination
procedure with a given complexity, we mean a procedure
with that complexity that tests whether a given candidate is
in some winning committee. All polynomial-time, FPT,
and XP winner determination procedures for the rules we
study in this paper can be modified to answer such queries.

First, we note that for each of the rules that we study,
SHIFT BRIBERY with unit price functions is in FPT when
parameterized by the number of candidates. This result fol-
lows by applying the standard technique of modeling the
problem through an integer linear program and invoking
Lenstra’s theorem (Lenstra 1983). We believe that, using the
MILP technique of Bredereck et al. (2015a), it is also possi-
ble to generalize this result to all-or-nothing price functions.
Theorem 1. For the parameterization by the number of can-
didates, SHIFT BRIBERY with unit prices is in FPT for
k-Borda, Approval-CC, Borda-CC, Greedy-Approval-CC,
PTAS-CC, and Greedy-Borda-CC.

(Theorem 1 does not mention SNTV and Bloc since, as
we will see in the next section, for them the problem is in P.)

Due to their round-based nature, this result is somewhat
intricate for the case of Greedy-Approval-CC, PTAS-CC,
and Greedy-Borda-CC. For these rules, we first guess how
the rounds proceed and only then use Lenstra’s algorithm.

2454

voting rule R R-WINNER DE- R-SHIFT BRIBERY

TERMINATION #candidates (m) #voters (n) #shifts (s)
si

ng
le

w
in

ne
r t-Approval

P�
P�

Borda FPT♦ FPT(0/1-pr.), FPT-AS♦,
FPT♦

and W[1]-h (Thm. 4)

m
ul

ti
w

in
ne

r

SNTV

P�
P (Thm. 3)

Bloc
k-Borda

FPT (Thm. 1)

FPT(0/1-pr.) (Prop. 1), W[1]-h (Thm. 5)

Borda-CC NP-h♠, FPT-AS (Thm. 2), and
Para-NP-h♠FPT(n)♥, and W[1]-h (Cor. 1+Cor. 2)

Approval-CC FPT(m)♥
FPT (Prop. 2)Greedy-Approval-CC

P� W[2]-h (Thm. 7)PTAS-CC
Greedy-Borda-CC W[1]-h (Cor. 2)

Table 1: Overview of our complexity results for the SHIFT BRIBERY problem (for reference, we also mention the complexity
of the WINNER DETERMINATION problem). The results in each cell apply to all the voting rules listed in the leftmost column
which span the height of the cell. All the results are for the case of unit price functions, with the exceptions of those marked
as FPT(0/1-pr.), which are for all-or-nothing price functions (many other results extend to other price functions, but we do not
list them here). FPT-AS stands for FPT approximation scheme (cf. Theorem 2). Note that all variants which are W[·]-hard
are also in XP. Results marked by � follow from the work of Elkind et al. (2009), by ♦ follow from the work of Bredereck et
al. (2014), by ♠ follow from the works of Procaccia et al. (2008) and Lu and Boutilier (2011), by ♥ follow from the work of
Betzler et al. (2013), and by � are folk results.

Second, we note that for the parameterization by the num-
ber of voters we can provide a strong, general FPT approx-
imation scheme for candidate-monotone rules. Candidate
monotonicity, a notion introduced by Elkind et al. (2014),
requires that if a member of a winning committee is shifted
forward in some vote, then this candidate still belongs to
some (possibly different) winning committee.
Theorem 2. Consider parameterization by the number of
voters. Let R be a candidate-monotone multiwinner rule
with an FPT winner determination procedure. For every
positive constant number ε there is an FPT algorithm that,
given an instance I of R-SHIFT BRIBERY (for arbitrary
price functions), outputs a successful shift action �s with cost
at most (1 + ε)OPT(I).

Proof. Bredereck et al. (2014) show an FPT algorithm (pa-
rameterized by the number of voters) that, given an in-
stance I of SHIFT BRIBERY and a positive value ε, for each
possible shift action �s = (s1, . . . , sn) tries a shift action
�s′ = (s′1, . . . , s

′
n) such that for each i ∈ [n] we have s′i ≥ si,

and the cost of �s′ is at most (1 + ε) greater than that of �s.
This algorithm also works for multiwinner rules.

Among our rules, only Greedy-Borda-CC, Greedy-
Approval-CC, and PTAS-CC are not candidate-monotone
(see the work of Elkind et al. (2014) for the argument re-
garding Greedy-Borda-CC). Thus, the above result applies
to all the remaining rules.

For the case of all-or-nothing prices, we can strengthen
the above result to an exact FPT algorithm.

Proposition 1. Consider parameterization by the number
of voters. Let R be a candidate-monotone multiwinner rule,
with an FPT winner determination procedure. There is an
FPT algorithm for R-SHIFT BRIBERY with all-or-nothing
price functions.

Proof. Since R is candidate-monotone and we have all-or-
nothing prices, it suffices to try all subsets of voters: for
each subset, for each vote from it, shift p to the top. If this
makes p a winner without exceeding the budget, then accept.

A similar approach works for those of our rules that are
based on approval scores, even for arbitrary price functions:
with approval scores, for each voter we either shift our can-
didate exactly to the first approved position or we do not shift
him or her at all. Thus, trying all subsets of voters suffices.

Proposition 2. There is an FPT algorithm for SHIFT
BRIBERY under Approval-CC, Greedy-Approval-CC, and
PTAS-CC, for the parameterization by the number of voters
and for arbitrary price functions.

Finally, using smart brute-force algorithm, we provide
XP algorithms for SHIFT BRIBERY parameterized either by
the number of voters or the number of unit shifts (for rules
that can be efficiently computed in the given setting).

Proposition 3. Consider parameterization by the number of
voters. For every multiwinner rule with an XP winner de-
termination procedure, there is an XP algorithm for SHIFT
BRIBERY and arbitrary price functions.

2455

Proposition 4. Consider parameterization by the number
of unit shifts. For every multiwinner rule with a polynomial-
time winner determination procedure, there is an XP algo-
rithm for SHIFT BRIBERY and arbitrary price functions.

SNTV, Bloc, and k-Borda

We now move on to results specific to SNTV, Bloc, and k-
Borda. These rules pick k candidates with the highest 1-
Approval, k-Approval, and Borda scores, respectively, and,
so, one might suspect that the efficient algorithms for cor-
responding single-winner rules would translate to the multi-
winner setting. While this is the case for SNTV and Bloc,
for k-Borda the situation is more intricate. As a side ef-
fect of our research, we resolve the parameterized complex-
ity of Borda-SHIFT BRIBERY, left open by Bredereck et
al. (2014).

We first show that SHIFT BRIBERY is polynomial-time
solvable for SNTV and Bloc. We use the same algorithm
for both SNTV and Bloc. Briefly put, the idea is to guess
the final score of the preferred candidate and to compute the
set of candidates that have higher scores. Then, it is easy
to compute the cheapest way to ensure that all but k − 1 of
them, where k is the committee size, have smaller score than
the guessed score of p, while ensuring that p indeed obtains
this guessed score.

Theorem 3. SNTV-SHIFT BRIBERY and Bloc-SHIFT
BRIBERY are both in P (for arbitrary price functions).

The situation for k-Borda is different. SHIFT BRIBERY is
NP-hard for Borda due to Elkind et al. (2009) so the same
holds for k-Borda. We show that Borda-SHIFT BRIBERY
is W[1]-hard for parameterization by the number of voters,
resolving a previously open case. This result immediately
implies the same hardness for all our Borda-based rules.

Theorem 4. Parameterized by the number of voters, Borda
SHIFT BRIBERY is W[1]-hard (even for unit price func-
tions).

Proof. We give a parameterized reduction from the MULTI-
COLORED INDEPENDENT SET problem. Let (G, h) be our
input instance. Without loss of generality, we assume that
the number of vertices of each color is the same and that
there are no edges between vertices of the same color. We
write V (G) to denote the set of G’s vertices, and E(G) to
denote the set of G’s edges. Further, for every color i ∈ [h],
we write V (i) = {v(i)1 , . . . , v

(i)
q } to denote the set of ver-

tices of color i. For each vertex v, we write E(v) to denote
the set of edges incident to v. For each vertex v, we write
δ(v) to denote its degree, i.e., δ(v) = |E(v)| and we let
Δ = maxu∈V (G) δ(u). be the highest degree of a vertex G.

We form an instance of Borda-SHIFT-BRIBERY as fol-
lows. We let the candidate set be C = {p}∪V (G)∪E(G)∪
F (G) ∪D′ ∪D′′, where F (G), D′, and D′′ are sets of spe-
cial dummy candidates. For each vertex v, we let F (v) be
the set of Δ− δ(v) dummy candidates, and we let F (G) =⋃

v∈V (G) F (v) and F (V,−i) =
⋃

v∈V (i′),i′ �=i F (v). We
will specify D′ and D′′ later. For each vertex v, we define
the partial preference order S(v) to be v � E(v) � F (v).

For each color i, we define R(i) to be a partial preference
order that ranks first all members of D′, then all vertex can-
didates of colors other than i, then all edge candidates corre-
sponding to edges that are not incident to a vertex of color i,
then all dummy vertices from F (V,−i), and finally all can-
didates from D′′.

We use unit price functions and we set the budget to be
B = h(q + (q − 1)Δ). We set D′ and D′′ to consist of
2B dummy candidates each.

First, for each color i ∈ [h], we introduce four voters:
voters xi and x′

i with the following preference orders:

xi : S(v
(i)
1) � S(v

(i)
2) � · · · � S(v(i)q) � p � R(i),

x′
i :

←−−−−
S(v(i)q) �

←−−−−−
S(v

(i)
q−1) � · · · �

←−−−−
S(v

(i)
1) � p � R(i),

and voters yi and y′i whose preference orders are reverses
of those of xi and x′

i, respectively, except that candidates
from D′′ are ranked last in their votes as well.

Second, we create a voter z with the preference order

z : F (G) � V (G) � E(G) � D′ � p � D′′,

and a voter z′ with the preference order that is obtained from
that of z by first reversing it, and then shifting each member
of V (G) ∪E(G) by one position forward, and shifting p by
B positions back.

Let L be the score of p prior to executing any shift actions.
The scores of the candidates in our election are as follows:
each candidate in V (G) ∪ E(G) has score L + B + 1, and
each candidate in F (G)∪D′∪D′′ has score at most L+B.

We show that it is possible to ensure the victory of p in our
election by a bribery of cost at most B if and only if there is
a multicolored independent set for G of size h.

First, we show that if G has a multicolored independent
set, then there is a successful shift action of cost B in our
election. Let us fix a multicolored independent set for G

and, for each color i ∈ [h], let v(i)si be the vertex of color i
from this set. For each pair of voters xi, x

′
i, we shift p so that

in xi he or she ends up right in front of v(i)si+1 (or p does not
move if si = q), and in x′

i he or she ends up right in front
of v(i)si . This way, p passes every vertex candidate from V (i)

and every edge candidate from
(⋃

t∈[q] E(v
(i)
t)

)
\ E(v

(i)
si).

This shift action costs B/h for every pair of voters xi, x
′
i,

so, in total, costs exactly B. Further, clearly, it ensures that p
passes every vertex candidate so each of them has score L+
B. Finally, since we chose vertices from an independent set,
every edge candidate also has score at most L+B (if p does
not pass some edge e between vertices of colors i and j for
a pair of voters xi, x

′
i, then p certainly passes e in the pair of

votes xj , x
′
j because visi and vjsj are not adjacent).

Second, we show that if there is a successful shift action
for our instance, then there is a multicolored independent set
for G. We note that a shift action of cost B gives p score L+
B. Thus, for the shift action to be successful, it has to cause
all candidates in V (G)∪E(G) to lose a point. We claim that
a successful shift bribery has to use exactly B/h = (q+(q−
1)Δ) unit shifts for every pair of voters xi, x′

i. Why is this
so? Let us fix some color i ∈ [h]. Every successful shift

2456

action has to decrease the score of every vertex candidate
and xi, x′

i are the only votes where p can pass the vertex
candidates from V (i) without exceeding the budget. If we
spend less than B/h units of budget on xi, x

′
i, then there will

be some vertex candidates corresponding to a vertex from
V (i) that p did not pass (and, in effect, which does not lose
a point), and so p will not be a winner. Thus, we know
that a successful shift action spends B/h units of budget on
every pair of voters xi, x

′
i. Further, we can assume that for

each color i there is a vertex v
(i)
si ∈ V (i) such that in xi

candidate p is shifted to be right in front of v(i)si+1 and in x′
i

candidate p is shifted to be right in front of v
(i)
si . We call

such a vertex v
(i)
si selected. If for a given pair of voters xi, x

′
i

neither of the vertices from V (i) was selected, then there
would be some vertex candidate in V (i) that p does not pass.

If for some pair of voters xi, x
′
i vertex v

(i)
si is selected,

then in this pair of votes p does not pass the edge candidates
from E(v

(i)
si). However, this means that in a successful shift

action the selected vertices form an independent set of G. If
two vertices v

(i)
si and v

(j)
sj were selected, i �= j, and there

were an edge e connecting them, then p would not pass the
candidate e in either of the pairs of votes xi, x

′
i or xj , x

′
j .

Since these are the only votes where p can pass e without
exceeding the budget, in this case e would have L + B + 1
points, p would have L+B points and would lose.

Corollary 1. Parameterized by the number of voters, k-
Borda-SHIFT BRIBERY is W[1]-hard.

Corollary 1 shows that the FPT approximation scheme
from Theorem 2 can presumably not be replaced by an FPT
algorithm. By Proposition 1, we also know that k-Borda-
SHIFT BRIBERY is in FPT for all-or-nothing prices and the
parameterization by the number of voters.

The next result is, perhaps, even more surprising than
Theorem 4. It turns out that k-Borda-SHIFT BRIBERY is
W[1]-hard also for the parameterization by the number of
unit shifts, whereas Borda-SHIFT BRIBERY is in FPT.

Theorem 5. Parameterized by the number s of unit shifts,
k-Borda SHIFT BRIBERY is W[1]-hard.

Chamberlin–Courant and Its Variants

We now move on to the CC rules and their approximate vari-
ants. For the parameterizations by the number of candidates,
Theorem 1 gives FPT results. For the parameterization by
the number of voters, by Proposition 2 we have FPT results
for (Greedy)-Approval-CC and PTAS-CC. We inherit W[1]-
hardness for (Greedy)-Borda-CC from Theorem 4.

Corollary 2. SHIFT BRIBERY parameterized by the number
of voters is W[1]-hard for Borda-CC and for Greedy-Borda-
CC (even for unit price functions).

By Theorem 2, we have that there is an FPT approxi-
mation scheme for Borda-CC. However, since Theorem 2
strongly relies on candidate monotonicity of the rule, it
does not apply to Greedy-Borda-CC. Indeed, we believe that
there is no constant-factor FPT approximation algorithm

for Greedy-Borda-CC-SHIFT BRIBERY (parameterized by
the number of voters). So far we could prove this only for
the case of weighted elections, i.e., for the case where each
voter v has an integer weight wv and counts as wv sepa-
rate voters for computing the result of the election (but not
for the computation of the parameter). On the one hand, one
could say that using weighted votes goes against the spirit of
parameterization by the number of voters and, to some ex-
tent, we agree. On the other hand, however, all our FPT re-
sults for parameterization by the number of voters (including
the FPT approximation scheme) do hold for the weighted
case. By a parameterized reduction from the MULTICOL-
ORED CLIQUE problem, we obtain the following.

Theorem 6. Unless W[1] = FPT, Greedy-Borda-CC-
SHIFT BRIBERY with weighted votes is not α-approximable
for any constant α, even in FPT time with respect to the
number of voters (even for unit price functions).

For the parameterization by the number of unit shift
actions, both Borda-CC and Approval-CC are para-NP-
hard due to the hardness of their winner determination.4
For Greedy-Approval-CC, PTAS-CC, and Greedy-Borda-
CC we obtain W[2]-hardness results and inapproximability
results.

Theorem 7. Parameterized by the total number s of unit
shifts, SHIFT BRIBERY is W[2]-hard for Greedy-Borda-CC,
Greedy-Approval-CC, and PTAS-CC (even in case of unit
prices). Further, unless W[2] = FPT, in these cases the
problem is not α-approximable for any constant α.

Conclusions

We studied the complexity of SHIFT BRIBERY for two fam-
ilies of multiwinner rules: SNTV, Bloc, and k-Borda, which
pick k best candidates according to appropriate single-
winner scoring rules, and the Chamberlin–Courant family of
rules and their approximate variants, which focus on provid-
ing good representatives. While we have shown low com-
plexity for SNTV and Bloc (just like for the single-winner
rules on which they are based), we have shown that SHIFT
BRIBERY is significantly harder to solve for k-Borda than
for its single-winner variant, Borda. The situation is even
more dramatic for the Chamberlin–Courant family of rules,
where in addition to W[1]- and W[2]-hardness results, we
also obtain inapproximability results.

We focused on the case where we want to ensure a can-
didate’s membership in some winning committee; it would
also be natural to require membership in all winning com-
mittees. In fact, all our results hold in this model as well.
Below we briefly explain why this is so for the tractability
results (for the intractability ones, it requires minor tweaks).

Tractability results with respect to the number of candi-
dates. For SNTV, Bloc, and k-Borda, we can ensure in our
ILP formulations that the score of p is strictly greater than
the score of the candidates which are not part of the com-
mittee. For the round-based rules, the committee is always

4The literature speaks of hardness of computing the score of
a winning committee, but one can show that deciding whether a
given candidate is in some winning committee is NP-hard as well.

2457

unique and, hence, our results already apply. For the CC
rules, we can build upon the maximum matching algorithm
of Betzler, Slinko, and Uhlmann (2013) (trying matchings
where p is already matched to one part of the voters, and
other ones, where p is not matched at all).

Tractability results with respect to the number of voters or
the number of shifts. Our algorithms basically try all bribed
elections where p is in at least one winning committee (ex-
cept for the FPT-AS, where we overshoot; due to monotonic-
ity, this does not hurt). Then, for each bribed election we can
adopt the algorithm of Betzler, Slinko, and Uhlmann (2013)
that partitions the voters into groups of voters with the same
representative and check whether p is part of all cheapest
matchings of representatives to candidates.

Areas of future research include studying bribery prob-
lems for multiwinner settings with partial preference orders
and studying multiwinner rules based on the Condorcet cri-
terion.

Acknowledgments

The authors were supported in part by the DFG
project PAWS (NI 369/10), the NCN project DEC-
2012/06/M/ST1/00358. Nimrod Talmon was supported by
the DFG Research Training Group MDS (GRK 1408). Piotr
Faliszewski’s visit to TU Berlin was supported by the COST
action IC1205.

References
Aziz, H.; Brill, M.; Conitzer, V.; Elkind, E.; Freeman, R.; and
Walsh, T. 2015a. Justified representation in approval-based com-
mittee voting. In Proc. of AAAI ’15, 784–790.
Aziz, H.; Gaspers, S.; Gudmundsson, J.; Mackenzie, S.; Mattei,
N.; and Walsh, T. 2015b. Computational aspects of multi-winner
approval voting. In Proc. of AAMAS ’15, 107–115.
Baumeister, D.; Faliszewski, P.; Lang, J.; and Rothe, J. 2012. Cam-
paigns for lazy voters: Truncated ballots. In Proc. of AAMAS ’12,
577–584. IFAAMAS.
Betzler, N.; Slinko, A.; and Uhlmann, J. 2013. On the computation
of fully proportional representation. Journal of Artificial Intelli-
gence Research 47:475–519.
Brams, S., and Kilgour, M. 2014. Satsifaction approval voting. In
Fara, R.; Leech, D.; and Salles, M., eds., Voting Power and Proce-
dures: Essays in Honour of Dan Felsenthal and Moshé Machover.
Springer. 323–346.
Bredereck, R.; Chen, J.; Faliszewski, P.; Nichterlein, A.; and Nie-
dermeier, R. 2014. Prices matter for the parameterized complexity
of shift bribery. In Proc. of AAAI ’14, 1398–1404.
Bredereck, R.; Faliszewski, P.; Niedermeier, R.; Skowron, P.; and
Talmon, N. 2015a. Elections with few candidates: Prices, weights,
and covering problems. In Proc. of ADT ’15, 414–431.
Bredereck, R.; Faliszewski, P.; Niedermeier, R.; and Talmon,
N. 2015b. Large-scale election campaigns: Combinatorial shift
bribery. In Proc. of AAMAS ’15, 67–75.
Caragiannis, I.; Kaklamanis, C.; Karanikolas, N.; and Procaccia,
A. 2014. Socially desirable approximations for Dodgson’s voting
rule. ACM Transactions on Algorithms 10(2):Article No. 6.
Chamberlin, B., and Courant, P. 1983. Representative deliberations
and representative decisions: Proportional representation and the
Borda rule. American Political Science Review 77(3):718–733.

Cygan, M.; Fomin, F. V.; Kowalik, L.; Lokshtanov, D.; Marx, D.;
Pilipczuk, M.; Pilipczuk, M.; and Saurabh, S. 2015. Parameterized
Algorithms. Springer.
Dorn, B., and Schlotter, I. 2012. Multivariate complexity analysis
of swap bribery. Algorithmica 64(1):126–151.
Downey, R. G., and Fellows, M. R. 2013. Fundamentals of Pa-
rameterized Complexity. Springer.
Elkind, E., and Faliszewski, P. 2010. Approximation algorithms
for campaign management. In Proc. of WINE ’10, volume 6484 of
LNCS, 473–482. Springer.
Elkind, E.; Faliszewski, P.; Skowron, P.; and Slinko, A. 2014.
Properties of multiwinner voting rules. In Proc. of AAMAS ’14,
53–60. IFAAMAS.
Elkind, E.; Faliszewski, P.; and Slinko, A. 2009. Swap bribery. In
Proc. of SAGT ’09, volume 5814 of LNCS, 299–310. Springer.
Faliszewski, P., and Rothe, J. 2015. Control and bribery in voting.
In Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; and Procaccia,
A. D., eds., Handbook of Computational Social Choice. Cambridge
University Press. chapter 7.
Faliszewski, P.; Reisch, Y.; Rothe, J.; and Schend, L. 2014. Com-
plexity of manipulation, bribery, and campaign management in
Bucklin and fallback voting. In Proc. of AAMAS ’14, 1357–1358.
IFAAMAS.
Faliszewski, P.; Hemaspaandra, E.; and Hemaspaandra, L. A. 2009.
How hard is bribery in elections? Journal of Artificial Intelligence
Research 35:485–532.
Flum, J., and Grohe, M. 2006. Parameterized Complexity Theory.
Springer.
Lenstra, H. W. 1983. Integer programming with a fixed number of
variables. Mathematics of Operations Research 8(4):538–548.
Lu, T., and Boutilier, C. 2011. Budgeted social choice: From
consensus to personalized decision making. In Proc. of IJCAI ’11,
280–286. AAAI Press.
Mattei, N.; Pini, M. S.; Rossi, F.; and Venable, K. B. 2012.
Bribery in voting over combinatorial domains is easy. In Proc.
of ISAIM ’12.
Mattei, N.; Goldsmith, J.; and Klapper, A. 2012. On the com-
plexity of bribery and manipulation in tournaments with uncertain
information. In Proc. of FLAIRS ’12, 549–554. AAAI Press.
Meir, R.; Procaccia, A.; Rosenschein, J.; and Zohar, A. 2008. The
complexity of strategic behavior in multi-winner elections. Journal
of Artificial Intelligence Research 33:149–178.
Monroe, B. 1995. Fully proportional representation. American
Political Science Review 89(4):925–940.
Niedermeier, R. 2006. Invitation to Fixed-Parameter Algorithms.
Oxford University Press.
Procaccia, A.; Rosenschein, J.; and Zohar, A. 2008. On the com-
plexity of achieving proportional representation. Social Choice and
Welfare 30(3):353–362.
Schlotter, I.; Faliszewski, P.; and Elkind, E. 2011. Campaign man-
agement under approval-driven voting rules. In Proc. of AAAI ’11,
726–731. AAAI Press.
Skowron, P.; Faliszewski, P.; and Lang, J. 2015. Finding a collec-
tive set of items: From proportional multirepresentation to group
recommendation. In Proc. of AAAI ’15, 2131–2137. AAAI Press.
Skowron, P.; Faliszewski, P.; and Slinko, A. 2015. Achieving fully
proportional representation: Approximability results. Artificial In-
telligence 222:67–103.

2458

