
SAT-to-SAT: Declarative Extension of SAT Solvers with New Propagators

Tomi Janhunen and Shahab Tasharrofi
{tomi.janhunen,shahab.tasharrofi}@aalto.fi

Helsinki Institute for Information Technology HIIT
Department of Computer Science

Aalto University, FI-00076 AALTO, Finland

Eugenia Ternovska
ter@cs.sfu.ca

Computing Science Department
Simon Fraser University, Burnaby, BC, Canada

Abstract

Special-purpose propagators speed up solving logic programs
by inferring facts that are hard to deduce otherwise. However,
implementing special-purpose propagators is a non-trivial
task and requires expert knowledge of solvers.
This paper proposes a novel approach in logic programming
that allows (1) logical specification of both the problem itself
and its propagators and (2) automatic incorporation of such
propagators into the solving process. We call our proposed
language P [R] and our solver SAT-to-SAT because it facili-
tates communication between several SAT solvers.
Using our proposal, non-specialists can specify new reason-
ing methods (propagators) in a declarative fashion and obtain
a solver that benefits from both state-of-the-art techniques im-
plemented in SAT solvers as well as problem-specific rea-
soning methods that depend on the problem’s structure. We
implement our proposal and show that it outperforms the ex-
isting approach that only allows modeling a problem but does
not allow modeling the reasoning methods for that problem.

Introduction

Motivation. Propagation mechanisms, i.e., reasoning meth-
ods that produce new information about a problem, are at
the heart of modern solver architectures. Different scien-
tific communities that develop state-of-the-art solvers such
as SAT, ASP and CP solvers (Een and Sörensson 2005;
Gebser, Kaufmann, and Schaub 2012; de la Banda et al.
2006); have long understood the need for methods to ex-
tend the existing propagation mechanisms of their solvers.
For example, modern SAT solvers such as MiniSAT and its
descendants (Een and Sörensson 2005; Audemard and Si-
mon 2009) can be easily extended with new special-purpose
propagation mechanisms (Gebser, Janhunen, and Rintanen
2014c). As another example, the ASP solver clasp (Gebser,
Kaufmann, and Schaub 2012) provides a “post propagator”
class designed to implement new inference mechanisms.

Due to the success of propagators in modern solvers, re-
cently, many new domain-specific propagation mechanisms
have been proposed. That is, existing solvers are extended
with new mechanisms that are applicable only when the
problem has a specific structure. In this sense, such extended

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

solvers are less general (they apply only to problems with
certain structures) but more efficient (for such problems).

To emphasize the importance of domain-specific propaga-
tion mechanisms, observe a few of such recent works: (1) In
(Bjørner 2012), the author extends Z3 Satisfiability Modulo
Theories (SMT) solver (De Moura and Bjørner 2008) with
several new domain-specific reasoning mechanisms (called
theories in SMT solving community). (2) In (Liang et al.
2014), the authors extend CVC4 SMT solver (Barrett et al.
2011) (or any other DPLL(T) solver (Nieuwenhuis, Oliv-
eras, and Tinelli 2004) in general) with reasoning mecha-
nisms and propagation methods for the theory of strings and
regular expressions. (3) In (Gebser, Janhunen, and Rintanen
2014b; 2014c), the authors introduce several propagation
methods to avoid cyclic graphs. They show that their rea-
soning mechanisms hugely boost the performance of SAT
solvers on the problems whose solutions are acyclic graphs.
(4) Finally, in (Gebser, Janhunen, and Rintanen 2014a), the
authors use their acyclicity reasoning methods to solve an-
swer set programs (ASP) using SAT solvers.
Problem. Despite the effectiveness of special-purpose prop-
agators, developing new propagators still requires expert
knowledge of how a general-purpose solver works and how
one can extend such solvers with new reasoning methods.
Therefore, currently, when solving a declaratively modeled
problem, one is limited only to the general-purpose infer-
ence mechanisms provided by the solver and it is impossi-
ble to extend solvers with complex reasoning techniques that
take advantage of the problem’s structure.
Goals. In this paper, we introduce a framework to (1)
declaratively specify new reasoning methods and (2) auto-
matically extend modern solvers with such reasoning meth-
ods so as to obtain fast problem-specific solvers.

Since SAT solvers form the core of many different state-
of-the-art logic programming frameworks such as (Aavani
et al. 2012; Wittocx, Marién, and Denecker 2008; De Moura
and Bjørner 2008; Barrett et al. 2011), this paper focuses
on specifying new reasoning methods for modern conflict-
driven clause learning (CDCL) SAT solvers. However, this
paper’s methods also apply to other modern solvers such as
ASP solvers. Extending our results to other logic program-
ming frameworks such as Clingo (Gebser et al. 2008) is a
subject of future research.
Contributions. New Paradigm in Logic Programming: We

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

978

introduce the syntax and semantics needed to declaratively
specify new domain-specific reasoning methods as well as
the transformations required to incorporate such new rea-
soning methods into the solving process. This way, we in-
troduce a new paradigm in logic programming in which log-
ical statements are used to describe both the problem and
the reasoning methods available to solve that problem.
Automatic Generation of Problem-specific Solvers: We pro-
vide all the algorithms required to extend existing CDCL
SAT solvers with new declaratively specified reasoning
methods. We also prove the correctness of our algorithms.
Complexity and Expressiveness: We study the expressive-
ness of our framework and show that we can express and
solve all ΣP

2 problems (2nd level of polynomial hierarchy).
Experimental Results: We implement our methods on top of
Glucose (Audemard and Simon 2009) and show that intro-
ducing new reasoning mechanisms hugely boosts the solv-
ing time of a problem. Thus, we show that our new paradigm
to solve problems by also describing their reasoning meth-
ods outperforms the existing ground and solve paradigm.

Background

This section briefly reviews the background material that is
used in this paper.
Structures and Partial Structures. Let τ be a set of vo-
cabulary symbols. A τ -structure A consists of a domain, de-
noted by dom(A), plus interpretations of vocabulary sym-
bols R ∈ τ , denoted by RA. Also, for σ-structure A and
vocabulary symbols σ′ ⊆ σ, restriction of A to vocabulary
σ′, denoted by A|σ′ , is obtained by discarding interpretation
of vocabulary symbols in σ \ σ′. Now, (σ ∪ ε)-structure B
expands σ-structure A if B|σ = A.

Partial τ -structures are similar to τ -structures except that
they may allow values in their interpretations. That is, partial
interpretation R might assign tuple t as: (1) true (denoted
by t ∈ R), (2) false (denoted by t �∈ R), or (3) unknown
(denoted by t

?∈ R). Partial structures without unknown val-
ues are structures. We also use S(σ, ε) to denote all partial
(σ ∪ ε)-structures B with B|σ not being partial (i.e., B|σ in-
terprets all tuples as true or false and not as unknown).

Now, for partial τ -structures B and B′, we say that B′ ex-
tends B, denoted by B � B′, if B′ and B agree on all known
values in B. That is, t ∈ RB implies t ∈ RB′

and t �∈ RB

implies t �∈ RB′
. Moreover, for σ-structure A, partial (σ∪ε)-

structure B is an empty expansion of A if B expands A but
has no new information. That is, t

?∈ RB if R ∈ ε.
Model Expansion. For logic L, the model expansion (MX)
task is as follows (Mitchell and Ternovska 2005):

Definition 1 (L-MX: Model Expansion for L (Mitchell and
Ternovska 2005)). For logic L, formula φ ∈ L over vocab-
ulary σ ∪ ε, and σ-structure A, the task of model expansion
(MX) for formula φ and structure A is to find expansion B
of A satisfying φ, i.e., B|σ = A and B |=L φ.

Model expansion task usually represents search problems.
There, a formula φ is fixed to specify a particular computa-
tional problem and A serves as the input to φ while B is
meant to represent the answer to problem φ with input A.

Hence, A is known as instance (input) structure and B as
expansion (output) structure. Similarly σ and ε are respec-
tively known as instance (input) and expansion (output) vo-
cabularies of problem φ. This paper always uses σ for input
and ε for output vocabulary.

The following example illustrates these concepts:
Example 1 (Hamiltonian Path). In Hamiltonian Path prob-
lem, you are given a directed graph G := (N ;A) and asked
to find a path P in the graph that passes all nodes exactly
once. This paper focuses on a version of Hamiltonian path
where the starting point s of the path is also given. In FO-
MX following formulas specify Hamiltonian path problem:

∀x∀y (P (x, y) → A(x, y)) (1)
[∀x∀y∀y′ (P (x, y) ∧ P (x, y′) → y = y′)] ∧
[∀x∀x′∀y (P (x, y) ∧ P (x′, y) → x = x′)] ∧

∀x (¬P (x, s))

}
(2)

[∀x (R0(x) ∨ · · · ∨R|N |(x))
] ∧

[∀x (R0(x) ↔ x = s)] ∧∧
0≤n<|N |

[∀y (Rn+1(y) ↔ ∃x Rn(x) ∧ P (x, y))]

⎫⎪⎬
⎪⎭ (3)

Here, Equation (1) asserts path P is a subset of arcs from
A. Equation (2) asserts that P contains each node at most
once and that starting node s cannot have incoming arcs.
Finally, Equation (3) asserts that all nodes are reachable
from s via P . Here, instance vocabulary is σ := {V,A, s}
and expansion vocabulary is ε := {P,R0, · · · , R|N |}.
CDCL SAT Solver. Conflict-driven clause-learning
(CDCL) SAT solvers (Biere et al. 2009) add clause learning
to DPLL so as to test satisfiability of CNF formulas. Imple-
menting ideas in this paper is done by extending one such
CDCL SAT solver: Glucose (Audemard and Simon 2009).
Grounding and CNF conversion procedures. In order to
solve a problem defined in a high-level language such as
first-order logic, one has to use a grounder. ENFRAGMO
(Aavani et al. 2012), IDP (Wittocx, Marién, and Denecker
2008) and SATGRND (Gebser et al. 2015) are typical off-the-
shelf grounders for SAT. This paper uses Gnd(φ;A), for a
formula φ and finite structure A, to denote the grounding
procedure of such tools. In our implementation, we use SAT-
GRND (Gebser et al. 2015) as our grounder of choice.

P [R]: Defining Problems + Reasoning

Methods

While existing logic programming frameworks only allow
users to specify the constraints that define the solution space
of a problem, our proposal allows users to axiomatize both
the problem and its reasoning methods. This section intro-
duces the syntax and semantics of P [R], our language for
declaratively specifying a problem plus its reasoning meth-
ods. We also give the grounding transformations used to
incorporate such declaratively specified reasoning methods
into our new solver, SAT-to-SAT.
Definition 2 (P [R]: Syntax and Semantics). A specification
in P [R] has the form (φ, {ψ1, . . . , ψn}) with φ, ψ1, . . . , ψn

being FO sentences. Here, φ is known as the main problem
and ψ1, . . . , ψn as φ’s propagators (reasoning methods).

979

Also, for propagator ψi, we define propagator vocabu-
lary, denoted by p-voc(ψi), as part of ψi’s vocabulary that
is not shared with the main problem φ, i.e., p-voc(ψi) =
vocab(ψi) \ vocab(φ). Moreover, if non-ambiguous, we use
τi to denote propagator vocabulary p-voc(ψi).

Finally, P [R] specification (φ, {ψ1, . . . , ψn}) is satisfied
by (σ ∪ ε)-structure B if and only if B satisfies the second-
order formula below:

φ ∧
∧

1≤i≤n

(¬∃τi ψi) (4)

Here, assuming τi = {R1, · · · , Rk}, formula ∃τi ψi abbre-
viates a second order quantification over vocabulary sym-
bols R1, . . . , Rk, i.e., ∃τi ψi := (∃R1∃R2 · · · ∃Rk ψi).

The following example describes Hamiltonian path prob-
lem in the language of P [R]:
Example 2. P [R] can specify Hamiltonian path problem
by tuple (φ, {ψ}) where φ is the conjunction of formulas in
Equations (1) and (2), and ψ is as below:

ψ :=

{
C(s) ∧ [∃x ¬C(x)]∧

[∀x∀y (P (x, y) ∧ C(x) → C(y))]
(5)

Here, main problem φ asserts all conditions on Hamil-
tonian paths except the reachability of every node from the
starting node s that is ensured by ψ: our only propagator
in this encoding. Propagator ψ uses symbols P , C and s
and, hence, its vocabulary τ is {C} because C (standing for
“Cut”) is the only symbol in vocab(ψ) \ vocab(φ).

Now, according to P [R]’s semantics, propagator ψ as-
serts the non-existence of a cutC satisfying Equation (5). In-
formally, it means that all cutsC that include s and all nodes
reachable from s (through path P) should include all nodes
u of the graph. Now, since non-existence of cut separating
s from some node u means that all nodes u are reachable
from s, the second-order formula φ ∧ (¬∃C ψ) axiomatizes
Hamiltonian path problem (as required).

Example 2 shows that P [R] can axiomatize Hamiltonian
path problem using a propagator to guarantee reachability
instead of directly encoding reachability in first-order logic
(as was done in Example 1). However, other propagators can
also be used to solve Hamiltonian path problem. For exam-
ple, in (Gebser, Janhunen, and Rintanen 2014c), the authors
use an acyclicty propagator to solve the same problem.

The most important property of P [R] is replacing special-
purpose propagator implementations with their logical de-
scription. The following example describes acyclicity prop-
agator of (Gebser, Janhunen, and Rintanen 2014c) in P [R]:
Example 3. Hamiltonian path problem can also be specified
in P [R] using pair (φ′, {ψ′}) with φ′ and ψ′ as follows:

φ′ :=

{ ∀x∀y (P (x, y) → A(x, y)).
∀x∀y∀y′ (P (x, y) ∧ P (x, y′) → y = y′).
∀y (y �= s→ ∃x (P (x, y))).

(6)

ψ′ :=
{ ∀y (C(y) → ∃x (C(x) ∧ P (x, y))).

∃x C(x). (7)

Here, main problem φ′ asserts, as before, that (1) path P
only contains arcs in the graph, (2) it contains at most one

outgoing arc per node of the graph, and, (3) except starting
node s, all nodes have at least one incoming arc.

Also, intuitively, propagator ψ′ (with vocabulary {C}
standing for “cycle”), asserts that C is a cycle formed from
arcs in P . It does so by ensuring that C is non-empty and
that P connects every node in C to some other node in C.

Therefore, according to P [R]’s semantics, structure B
satisfies (φ′, {ψ′}) iff B satisfies second-order formula φ′ ∧
(¬∃C ψ′). This means that PB is a Hamiltonian path be-
cause it is an acyclic collection of arcs with size |N |−1 such
that out-degree of all nodes is at most one and in-degree of
all nodes except s is exactly one.

Example 3 suggests that P [R] can describe many different
propagators for the same problem. Later, we show that this is
not a coincidence and P [R] can indeed describe all possible
propagators in NP.

Examples 2 and 3 show two different propagators for
the same Hamiltonian path problem and, hence, one could
also envisage specification (φ ∧ φ′, {ψ, ψ′}) in P [R] using
both propagators ψ and ψ′. Our framework translates such
a P [R]-specification into a SAT solver that avoids cycles
and unreachable nodes. That is, a SAT solver that backjumps
whenever its partial solution is cyclic or makes some node
non-reachable from s, it would backjump.

After describing the syntax and semantics of P [R], let us
now describe the grounding process of P [R] specifications:

Definition 3 (Grounding P [R]). For P [R]-specification
α = (φ, {ψ1, · · · , ψn}) and finite σ-structure A, ground-
ing of α w.r.t. A, denoted by Gnd(α;A), is a pair
(φ′, {(L1, U1, ψ

′
1), · · · , (Ln, Un, ψ

′
n)}) such that:

1. φ′ := Gnd(φ;A).
2. For each 1 ≤ i ≤ n, we have ψ′

i = Gnd(�ψi�
ε;A)

where �ψi�
ε is the same FO formula as ψi except that all

ψi’s positive occurrences ofR ∈ ε are replaced by a new
predicate symbol Rl and all ψi’s negative occurrences of
R ∈ ε are replaced by another new predicate symbolRu.

3. Finally, Li and Ui map atoms R(t̄) to, respectively,
lowerbound atoms Rl(t̄) and upperbound atoms Ru(t̄)
if they appear in ψ′

i.

As Definition 3 shows, the main difference between
P [R]’s grounding procedure and FO’s grounding procedure
is the transformation �ψ�ε that replaces positive/negative
occurrences of R ∈ ε with Rl/Ru. The new symbols Rl

and Ru (for R ∈ ε) are intended to respectively represent
the lowerbound and the upperbound of a partial interpre-
tation for R. That is, if R(t̄) is either true or false then
Rl(t̄) = Ru(t̄) = R(t̄) but if R(t̄) is unknown then Rl(t̄) is
false and Ru(t̄) is true.

Definition 4 (2-Valued Representation). Let B ∈ S(σ, ε),
εl = {Rl | R ∈ ε} and εu = {Ru | R ∈ ε}. Then, (σ ∪
εl ∪ εu)-structure B′ is the 2-valued representation of B if
B′|σ = B|σ and, for all R ∈ ε, RB′

l is the lower-bound of
RB and RB′

u is the upper-bound of RB.

Now, the intuition behind transformation �ψ�ε in Defini-
tion 3 can be described by the following theorem:

980

Theorem 1. Let (φ, {ψ1, · · · , ψn}) be a P [R] specification,
B ∈ S(σ, ε) be a partial solution to φ, and B′ be the 2-
valued representation of B. Now, if B′ |= ∃τi�ψi�

ε (for some
i). Then, all (σ∪ε)-structures B′′ extending B satisfy ∃τi ψi.

As this paper shows later, Theorem 1 is the foundation
for our SAT-to-SAT solving algorithm because it provides
a sufficient condition to discontinue a search branch in the
solver. Following corollary formalizes this point:
Corollary 1. Let α = (φ, {ψ1, · · · , ψn}) be P [R] specifi-
cation, let B ∈ S(σ, ε) be a partial structure, and let B′ be
the 2-valued representation of B. If B′ |= ∃τi �ψi�

ε then B
cannot be extended to satisfy α.

The following example describes these ideas:
Example 4. Consider propagators ψ and ψ′ of Examples 2
and 3. By Definition 3, �ψ�ε and �ψ′�ε are as follows:

�ψ�ε :=

{
C(s) ∧ ∃x (¬C(x))∧
[∀x∀y (Pu(x, y) ∧ C(x) → C(y))]

(8)

�ψ′�ε :=
{

[∀y (C(y) → ∃x (C(x) ∧ Pl(x, y)))]∧
[∃x C(x)] (9)

Remember that, Pu(x, y) is true whenever P (x, y) is true
or undefined (and false otherwise) while Pl(x, y) is false
whenever P (x, y) is false or undefined (and true otherwise).
Hence, second-order formula ∃C (�ψ�ε) is true whenever
enough Pu(x, y)’s are made false so that a cut C separat-
ing s from some node x is found even if all the currently
unassigned values in P are assigned true. Therefore, for-
mula ¬∃C (�ψ�ε) holds if no such cut exists, i.e., if all nodes
are reachable from s using P .

Similarly, formula ∃C (�ψ′�ε) is true whenever enough
Pl(x, y)’s are made true so that a cycle C (that is present in
all possible extensions of current partial structure) is found.
Thus, second-order formula ¬∃C (�ψ′�ε) guarantees the
non-existence of such cycles and, hence, the acyclicity of P .

Expressiveness and Complexity of P [R]
As Definition 2 shows, semantically, P [R] specification
α := (φ, {ψ1, · · · , ψn}) is equivalent to second-order for-
mula φ∧ (¬∃τ1ψ1)∧· · ·∧ (¬∃τnψn). Using this semantics,
we now investigate the complexity of model expansion task
for P [R] as well as its expressiveness in terms of problems
α and reasoning methods ψi that P [R] can express.

We use Fagin’s theorem (Fagin 1974), to characterize NP
with existential second-order (∃SO) logic, as well as results
from (Kolokolova et al. 2010) to relate model expansion task
and ∃SO to prove the following expressiveness results.
Theorem 2. If K is a class of finite structures that is closed
under isomorphism, then:
(1) P [R] can axiomatize K iff K is ΣP

2 -decidable.
(2) P [R] propagators can axiomatize K iff K is NP-

decidable.
Theorem 2 shows that P [R] specifications can describe

all problems in ΣP
2 . In particular, P [R] can also describe

any ΣP
2 -complete problem. Hence, we have:

Corollary 2. Let α = (φ, {ψ1, · · · , ψn}) be a fixed P [R]
specification. Given a σ-structure A, deciding the existence
of an expansion B of A that satisfies α is ΣP

2 -complete.

Note that, as Corollary 2 shows, solving P [R]-MX is ΣP
2 -

hard. Hence, unless NP= ΣP
2 , no polynomial time reduction

from P [R] to SAT exists. Thus, a new solver is needed to
solve P [R] specifications. Next section proposes our SAT-
to-SAT algorithm for that purpose.

SAT-to-SAT: Solving P [R] Specifications

This section shows how ground P [R] specifications, as in
Definition 3, can be solved using our solver, SAT-to-SAT.

Algorithm 1 shows that SAT-to-SAT extends CDCL by
introducing a new propagation handling procedure “S2S-
prop” in the common CDCL search method. Procedure
“S2S-prop” takes a list of recently propagated literals and
checks if some reasoning method ψi can find a conflict. If
so, a conflict clause is generated, it is added to learnt clauses
of CDCL solver, and the conflict analysis and backjumping
procedures are initiated.

As Algorithm 1 shows, given a grounding of P [R] spec-
ification (φ, {ψ1, · · · , ψn}), SAT-to-SAT initializes n + 1
SAT solver instances S0, S1, · · · , Sn where S0 is tasked
with solving the main problem φ while each Si (1 ≤ i ≤ n)
is tasked to help S0 by finding conflicts according to ψi.

Solving a P [R] specification using SAT-to-SAT is done
collaboratively so that main solver S0 communicates with
helping solvers S1, · · · , Sn. This communication is facili-
tated by method “S2S-prop” that takes S0’s current partial
interpretation I plus the list L of S0’s recently propagated
literals and checks if some helping solver Si can generate
some new conflict clause C. If so, C is added to S0’s clauses
and S0’s conflict analysis procedure is initialized on C. If
not, S0 continues exploring its current search branch.
Generating Conflict Clauses. SAT-to-SAT uses method
“S2S-apply” to check if the new reasoning method ψi can
generate a new conflict clause. This is done by calling Si’s
search method with assumptions that correspond to the un-
der approximation of S0’s current partial interpretation. If
Si returns a model, by Corollary 1, S0 cannot extend its cur-
rent partial structure to one that satisfies P [R] specification
(φ, {ψ1, · · · , ψn}). Hence, a conflict clause is generated so
as to prevent S0 from following its current search branch.

In SAT-to-SAT, such a conflict clause is generated by
method “S2S-reason” that takes a satisfying interpretation
I of CNF formula F and generates clause C that is falsified
by the current partial interpretation of S0. Conflict clause C
is generated by (1) iterating over all clauses C ′ ∈ F that are
satisfied by S0’s current partial solution, and then (2) negat-
ing one of literals l ∈ C ′ that satisfies C ′. The following
theorem proves the correctness of “S2S-reason”.
Theorem 3. When running SAT-to-SAT on input Gnd(α;A)
with α := (φ, {ψ1, · · · , ψn}) and A a σ-structure, every
clause C generated by “S2S-reason” is guaranteed to:
(a) be true in all expansions B of A that satisfy α, and,
(b) be false in S0’s current partial interpretation.

Theorem 3 shows that clauses C generated by “S2S-
reason” cause solver S0 to backtrack.
Example 5. Let (φ, {ψ}) be as in Example 2. Then,
all clauses generated by “S2S-reason” have the form of
P (s1, t1) ∨ · · · ∨ P (sk, tk) with P (si, ti)’s being all the

981

Algorithm 1 SAT-to-SAT algorithm to solve P [R] specs
1: procedure SAT-TO-SAT(Fφ, (Li, Ui, Fψi) : 1 ≤ i ≤ n)
2: Initiate n+ 1 SAT solvers S0, S1, · · · , Sn
3: Add clauses of Fφ to S0

4: for all i ∈ {1, · · · , n} do
5: Add clauses of Fψi to Si
6: T [i] := ∅ � i-th propagator’s trigger literals
7: Add propagator handler “S2S-PROP” to S0

8: Add backjump handler “S2S-BACKJUMP” to S0

9: TrigsInitialized := false
10: return S0 .SEARCH() � Solving main problem
11: procedure S2S-PROP(I , {l1, · · · , lk})
12: for all i ∈ {1, · · · , n} do
13: if ¬TrigsInitialized or ∃lj s.t. lj ∈ T [i] then
14: if S2S-APPLY(Si,Li,Ui,I) = (false, C) then
15: S0 .LEARN-CLAUSE(C)
16: S0 .ANALYZE-CONFLICT(C)
17: return

18: TrigsInitialized := true
19: procedure S2S-BACKJUMP
20: TrigsInitialized := false
21: procedure S2S-APPLY(Si, L, U , I)
22: A := {y|(x, y) ∈ Li, x ∈ I} ∪ {¬y|(x, y) ∈ Li, x �∈ I}
23: ∪ {¬y|(x, y) ∈ Ui,¬x ∈ I} ∪ {y|(x, y) ∈ Ui,¬x �∈ I}
24: R := Si .SEARCH(A) � Solve ψi under assumptions A
25: if R = (SAT, I ′) then � Generate conflict clause
26: Let F be all clauses in SAT Solver Si
27: C := S2S-REASON(F , L ∪ U , I ′)
28: return (false, C)
29: else if R = (UNSAT, C) then � Find trigger conditions
30: T [i] := ∅
31: for all l ∈ C do
32: Let y := var(l) (the Boolean variable inside l)
33: Let x be such that (x, y) ∈ L ∪ U
34: if l is positive then T [i] := T [i] ∪ {¬x}
35: else T [i] := T [i] ∪ {x}
36: procedure S2S-REASON(F , M , I)
37: C := ∅
38: Y := {y | (x, y) ∈ M}
39: for all clauses l1 ∨ · · · ∨ lk in F do
40: if ∀li either I �|= li or var(li) ∈ Y then
41: Let j ∈ {1, · · · , k} be such that I |= lj
42: Let y := var(lj) and x be s.t. (x, y) ∈ M
43: if lj is positive then C := C ∪ {¬y}
44: else C := C ∪ {y}
45: return clause

∨
l∈C l

arcs from inside cut C to outside it. Moreover, all P (si, ti)’s
are falsified in the current partial interpretation I of S0.
Hence, no matter how I is extended, nodes inside C (in-
cluding s) cannot be connected to nodes outside C. Thus,
the new clause correctly forces S0 to backtrack.

Trigger Conditions. Since running method “S2S-apply”
involves the heavy operation of solving another satisfiabil-
ity problem, method “S2S-prop” refrains from calling “S2S-
apply” unless a trigger condition holds for propagator ψi.

Trigger conditions for a propagator ψi are obtained dy-
namically whenever the Si’s search fails, i.e., when SAT
solver Si cannot find a new conflict in S0’s partial interpre-
tation. In such cases, Si returns (UNSAT, C) which infor-

mally means that, as long as all assumptions in C are true,
Si remains unsatisfiable. Hence, we run Si again only when
at least one assumption in C becomes false. The following
theorem guarantees the correctness of this method.

Theorem 4. In method “S2S-prop” of Algorithm 1, if vari-
able “TrigsInitialized” is true and L∩T [i] = ∅, i.e., none of
the trigger literals are recently propagated, then ψi cannot
generate a conflict clause under partial interpretation I .

The following example illustrates how triggers look like
in the case of reachability propagator for Hamiltonian path:

Example 6. Let (φ, {ψ}) be as in Example 2. Then, the trig-
ger T [1] generated by S1 always has the following form
{¬P (u1, v1), · · · ,¬P (uk, vk)} where (1) P (ui, vi) is ei-
ther true or unknown according to current partial interpre-
tation I , and, (2) (u1, v1), · · · , (uk, vk) form a rooted (and
directed) spanning tree of the graph with root s. It is thus
clear that as long as none of arcs P (ui, vi) in such a span-
ning tree become false, every node remains reachable from
s (at least through the spanning tree). Thus, in such cases,
calling solver S1 is futile because all nodes are reachable.

Looking at Examples 5 and 6, it is noteworthy that SAT
solver S1 or methods “S2S-prop” and “S2S-apply” are not
aware of the fact that they are trying to find a cut to
prove non-reachability of a node and that generating conflict
clauses, and finding trigger conditions are all done automat-
ically without knowing what problem is being solved. Yet,
as these examples show, the notions of conflict clauses and
trigger conditions take the form of known graph-theoretical
concepts with close ties to the problem that is being solved,
i.e., reachability. This is a surprising consequence of SAT-to-
SAT solving method and stands to show that our definitions
of conflict clauses and trigger conditions are indeed natural.

Finally, also note that, while reachability is a well-studied
graph-theoretical property, our P [R] language and our SAT-
to-SAT solver can describe and solve many other reason-
ing methods that are not well-studied. This generality makes
P [R] an extremely suitable framework to describe less well-
studied reasoning methods R because one can readily ben-
efit from notions of conflict clauses and trigger conditions
that may not be known about R beforehand. We conclude
this section by a theorem about SAT-to-SAT’s correctness.

Theorem 5. Algorithm 1 is correct. That is, given
Gnd(α;A) with α := (φ, {ψ1, · · · , ψn}) and A being a
σ-structure, SAT-to-SAT returns (SAT,B) if an expansion B
of A exists that satisfies α, and it returns UNSAT otherwise.

Experiments

This section includes our experimental results for our run-
ning example of Hamiltonian path and shows that, using
P [R] results in a huge boost in the solving time of Hamilto-
nian path instances. These preliminary results show the use-
fulness of P [R]’s approach to logic programming. More ex-
periments will be presented in a journal version of this paper.

We have implemented SAT-to-SAT by extending GLU-
COSE 3.0 (Audemard and Simon 2009). Our Glucose exten-
sion closely matches Algorithm 1 except for using fast data

982

Hamiltonian Path Instances (15m time limit)
Size Total Glucose SAT-to-SAT

Inst. Enc. of Ex. 1 Enc. of Ex. 2 Enc. of Ex. 3
Time # Time # Time

50 20 20 4.85s 20 0.02s 20 0.02s

100 20 4 390s 20 0.13s 20 0.63s
150 20 0 — 20 1.14s 20 7.52s
200 20 0 — 20 9.00s 20 74.0s
250 20 0 — 20 82.3s 18 283s
300 20 0 — 9 288s 5 639s

Table 1: Solving Hamiltonian path using SAT-to-SAT on two
different encodings plus using Glucose on a direct encoding.

structures such as “BitSets” to expedite problem solving. We
also use SATGRND (Gebser et al. 2015) as our grounder.

The instances of Hamiltonian path are randomly gener-
ated using a random planar graph generator that is devel-
oped as part of LEDA (Mehlhorn and Näher 1992) library.
These instances are then solved in three different ways: Us-
ing GLUCOSE to solve a direct encoding of Hamiltonian
path as in Example 1, and using SAT-TO-SAT to solve
Hamiltonian path once as encoded in Example 2, and, an-
other time as encoded in Example 3.

Table 1 summarizes the results of running our experi-
ments on an Ubuntu 14.04 Linux desktop with kernel ver-
sion 3.13.0-57, an Intel(R) Core(TM) i5-4590 CPU running
at 3.30GHz, plus 16GB of memory. The time limit for each
instance is set at 15 minutes and the “#” columns in Table 1
show the number of instances that were solved using a par-
ticular encoding in 15 minutes. Moreover, columns with title
“Time” show the average solving time for solved instances.

As Table 1 shows, both of the encodings for SAT-TO-
SAT (which is based on GLUCOSE) hugely outperform di-
rect encodings on GLUCOSE by at least two orders of mag-
nitude. We attribute this efficiency to SAT-to-SAT’s ability
to model propagators in addition to the main problem. This
way of modeling problems is not possible in existing mod-
eling frameworks and is the main novelty of current paper.

Related Work

This section summarizes the most relevant works to the cur-
rent paper and discusses the similarities and/or differences
between those works and ours.

In (Bayless et al. 2013), the authors propose a SAT mod-
ulo SAT approach to solve the partitioned Boolean satis-
fiability problem. From a technical viewpoint, their meth-
ods are similar to ours because they also instantiate sev-
eral SAT solvers to solve a problem. However, their con-
ceptual viewpoint is different because the semantics of in-
ternal solvers is not changed. This difference can be also
observed in terms of the complexity of the overall prob-
lem. While P [R] can express ΣP

2 -complete problems, the
SAT modulo SAT approach cannot solve anything beyond
NP. Informally, it means that SAT modulo SAT approach
cannot describe propagators because, as shown in this pa-
per, describing propagators requires universal second-order
quantification (e.g., quantifying over all possible cuts as in
Example 2) which is not doable by SAT modulo SAT.

In (Bayless et al. 2015), the authors strive for the same
goals as us (i.e., lowering the cost of implementing new
propagators) but they focus less on automatizability of their
approach. In fact, they require known algorithms to be im-
plemented in non-declarative languages such as C++ and be
used in correspondence with underlying SAT solvers. This is
while our SAT-to-SAT approach uses helping SAT solvers to
realize new reasoning mechanisms. As shown in this paper,
our approach yields automatic generation of conflict clauses
as well as dynamic detection of trigger conditions: two con-
cepts that cannot be easily automatized in their approach.
Furthermore, their approach only applies to monotonic the-
ories while ours can describe all propagators in NP.

In (Abı́o et al. 2013), the authors discuss the potential
disadvantage of using new propagators which may result in
creating an exponential number of learnt clauses. Instead,
they propose using propagators that are aware of the com-
pact encodings of a problem and that generate their conflict
clauses with respect to those compact encodings. While their
criticisms do not directly apply to P [R] language and SAT-
TO-SAT solver, their proposal shows an interesting potential
extension of our approach in which declaratively specified
propagators generate conflict clauses with respect to some
compact encoding of that propagator.

Conclusion and Future Works
This paper introduced a new logic programming language
P [R] plus a new solver SAT-TO-SAT to solve P [R] spec-
ifications. We showed how P [R] models both the problem
itself and the reasoning methods that help solving that prob-
lem. We also showed how SAT-TO-SAT uses several com-
municating SAT solvers to solve a ground P [R] specifica-
tion. We studied the expressiveness and complexity of P [R]
language and showed that SAT-TO-SAT hugely outper-
forms GLUCOSE (SAT-TO-SAT’s underlying SAT solver)
when solving the Hamiltonian path problem. Some of the
future directions of our approach are listed below:
Solving QBF using an Extension of SAT-to-SAT. Quanti-
fied Boolean Formulas (QBF) are an important extension of
Satisfiability problem with applications in verification and
solving modal logic formulas. QBF is a PSPACE-complete
problem and, thus, cannot be solved using either off-the-
shelf SAT solvers or SAT-TO-SAT. However, one can eas-
ily observe that, if P [R] allowed propagators to be any P [R]
specification (instead of a first-order sentence), then it could
have expressed all problems in PSPACE. The main obsta-
cle, however, is to extend SAT-TO-SAT so that it can solve
such complex instances. We believe that such an extension is
possible and, thus, we aim to extend SAT-TO-SAT as such.
Different Conflict Clause Generation Methods. SAT-TO-
SAT uses method “S2S-reason” to generate new conflict
clauses by taking a literal from each clause of ψi’s defini-
tion. While our experiments show that this strategy works
well, one could envisage many other strategies to generate
conflict clauses. Studying the effect of such different strate-
gies is one of our future research directions.
SAT-to-SAT as a ΣP

2 solver. SAT-TO-SAT can solve
ΣP

2 problems. Thus, we intend to compare its perfor-
mance against existing ΣP

2 solvers. We also intend to study

983

how SAT-TO-SAT fits into the DPLL(T) framework of
(Nieuwenhuis, Oliveras, and Tinelli 2004).

Acknowledgments

This work was supported by the Natural Sciences and En-
gineering Research Council of Canada (NSERC), the Math-
ematics of Information Technology and Complex Systems
(MITACS), LogicBlox Inc., and the Academy of Finland
(Finnish Centre of Excellence in Computational Inference
Research COIN, 251170).

References

Aavani, A.; Wu, X. N.; Tasharrofi, S.; Ternovska, E.; and
Mitchell, D. G. 2012. Enfragmo: A system for modelling
and solving search problems with logic. In LPAR 2012, 15–
22.
Abı́o, I.; Nieuwenhuis, R.; Oliveras, A.; Rodrı́guez-
Carbonell, E.; and Stuckey, P. 2013. To encode or to
propagate? the best choice for each constraint in SAT. In
Schulte, C., ed., Principles and Practice of Constraint Pro-
gramming, volume 8124 of Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg. 97–106.
Audemard, G., and Simon, L. 2009. Predicting learnt
clauses quality in modern SAT solvers. In Boutilier, C., ed.,
IJCAI 2009, 399–404.
Barrett, C.; Conway, C. L.; Deters, M.; Hadarean, L.; Jo-
vanovic, D.; King, T.; Reynolds, A.; and Tinelli, C. 2011.
CVC4. In Gopalakrishnan, G., and Qadeer, S., eds., CAV
2011, volume 6806 of Lecture Notes in Computer Science,
171–177. Springer.
Bayless, S.; Val, C. G.; Ball, T.; Hoos, H. H.; and Hu, A. J.
2013. Efficient modular SAT solving for IC3. In Formal
Methods in Computer-Aided Design (FMCAD), 2013, 149–
156. IEEE.
Bayless, S.; Bayless, N.; Hoos, H. H.; and Hu, A. J. 2015.
SAT modulo monotonic theories. In Bonet, B., and Koenig,
S., eds., Proceedings of the Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence, January 25-30, 2015, Austin,
Texas, USA, 3702–3709. AAAI Press.
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T. 2009.
Conflict-driven clause learning SAT solvers. Handbook of
Satisfiability, Frontiers in Artificial Intelligence and Appli-
cations 131–153.
Bjørner, N. 2012. Engineering theories with Z3. In Ko-
rovin, K.; Schulz, S.; and Ternovska, E., eds., IWIL 2012,
volume 22 of EPiC Series, 1–2. EasyChair.
de la Banda, M. J. G.; Marriott, K.; Rafeh, R.; and Wallace,
M. 2006. The modelling language Zinc. Principles and
Practice of Constraint Programming (CP 2006) 700–705.
De Moura, L., and Bjørner, N. 2008. Z3: An efficient
SMT solver. In Proceedings of the Theory and Prac-
tice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Sys-
tems, TACAS’08/ETAPS’08, 337–340. Berlin, Heidelberg:
Springer-Verlag.

Een, N., and Sörensson, N. 2005. MiniSat v1.13 - a SAT
solver with conflict-clause minimization, system description
for the SAT competition.
Fagin, R. 1974. Generalized first-order spectra and
polynomial-time recognizable sets. Complexity of compu-
tation, SIAM-AMC proceedings 7:43–73.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.;
Schaub, T.; and Thiele, S. 2008. A User’s Guide to gringo,
clasp, clingo, and iclingo. http://potassco.sourceforge.net/.
Gebser, M.; Janhunen, T.; Kaminski, R.; Schaub, T.; and
Tasharrofi, S. 2015. Writing declarative specifications
for clauses. In 3rd International Workshop on Grounding,
Transforming, and Modularizing Theories with Variables.
http://research.ics.aalto.fi/software/asp/satgrnd/.
Gebser, M.; Janhunen, T.; and Rintanen, J. 2014a. Answer
set programming as SAT modulo acyclicity. In Schaub, T.;
Friedrich, G.; and O’Sullivan, B., eds., ECAI 2014, volume
263 of Frontiers in Artificial Intelligence and Applications,
351–356. IOS Press.
Gebser, M.; Janhunen, T.; and Rintanen, J. 2014b. ASP
encodings of acyclicity properties. In Baral, C.; Giacomo,
G. D.; and Eiter, T., eds., KR 2014. AAAI Press.
Gebser, M.; Janhunen, T.; and Rintanen, J. 2014c. SAT
modulo graphs: Acyclicity. In Fermé, E., and Leite, J., eds.,
JELIA 2014, volume 8761 of Lecture Notes in Computer
Science, 137–151. Springer.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2012. Conflict-
driven answer set solving: From theory to practice. Artificial
Intelligence 187-188:52–89.
Kolokolova, A.; Liu, Y.; Mitchell, D.; and Ternovska, E.
2010. On the complexity of model expansion. In Proc.,
17th Int’l Conf. on Logic for Programming, Artificial Intelli-
gence and Reasoning (LPAR-17), 447–458. Springer. LNCS
6397.
Liang, T.; Reynolds, A.; Tinelli, C.; Barrett, C.; and Deters,
M. 2014. A DPLL(T) theory solver for a theory of strings
and regular expressions. In Biere, A., and Bloem, R., eds.,
CAV 2014, volume 8559 of Lecture Notes in Computer Sci-
ence, 646–662. Springer.
Mehlhorn, K., and Näher, S. 1992. Algorithm design
and software libraries: Recent developments in the LEDA
project. In In Proceedings of IFIP: 12th World Computer
Congress, 493–505. Elsevier.
Mitchell, D. G., and Ternovska, E. 2005. A framework
for representing and solving NP search problems. In Proc.
AAAI’05, 430–435.
Nieuwenhuis, R.; Oliveras, A.; and Tinelli, C. 2004. Ab-
stract DPLL and abstract DPLL modulo theories. In Baader,
F., and Voronkov, A., eds., Proceedings of 11th International
Conferemce on Logic for Programming, Artificial Intelli-
gence, and Reasoning (LPAR’04), Lecture Notes in Com-
puter Science (LNCS), 36–50. Springer.
Wittocx, J.; Marién, M.; and Denecker, M. 2008. The IDP
system: A model expansion system for an extension of clas-
sical logic. In Proceedings of the 2nd Workshop on Logic
and Search, 153–165.

984

