
Affinity Preserving Quantization for Hashing:
A Vector Quantization Approach to Learning Compact Binary Codes

Zhe Wang, Ling-Yu Duan, Tiejun Huang, Wen Gao
Institute of Digital Media, Peking University

No.5 Yiheyuan Road Haidian District, Beijing, P.R.China 100871
{zhew,lingyu,tjhuang,wgao}@pku.edu.cn

Abstract

Hashing techniques are powerful for approximate nearest
neighbour (ANN) search. Existing quantization methods in
hashing are all focused on scalar quantization (SQ) which
is inferior in utilizing the inherent data distribution. In this
paper, we propose a novel vector quantization (VQ) method
named affinity preserving quantization (APQ) to improve the
quantization quality of projection values, which has signif-
icantly boosted the performance of state-of-the-art hashing
techniques. In particular, our method incorporates the neigh-
bourhood structure in the pre- and post-projection data space
into vector quantization. APQ minimizes the quantization er-
rors of projection values as well as the loss of affinity prop-
erty of original space. An effective algorithm has been pro-
posed to solve the joint optimization problem in APQ, and
the extension to larger binary codes has been resolved by ap-
plying product quantization to APQ. Extensive experiments
have shown that APQ consistently outperforms the state-of-
the-art quantization methods, and has significantly improved
the performance of various hashing techniques.

Introduction

Approximate nearest neighbour (ANN) search is widely
used in machine learning, computer vision and information
retrieval. In the past years, there has been increasing inter-
est in learning binary codes to fulfill efficient and effective
ANN search by hashing techniques. Hashing aims to learn
compact binary representation for data which is supposed to
preserve the similarity structure in the original space (Weiss,
Torralba, and Fergus 2008). The compact representation is
efficient in reducing memory usage as well as improving re-
trieval speed, so that hashing is becoming one of the most
powerful techniques in dealing with ANN search in massive
data (Torralba, Fergus, and Weiss 2008).

Typically, hashing methods consist of two basic stages:
projection and quantization (Weiss, Torralba, and Fergus
2008). Hashing methods firstly transform data point v ∈ R

D

into a low dimensional vector x = [f1(v), ..., fd(v)] ∈ R
d

where real-valued functions {fi(.)}di=1 are usually called
projection functions, and then quantize the projection values
into binary codes. Many great research efforts have been de-
voted to the projection stage, with an aim to learn powerful
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projections via machine learning approaches, such as linear
learning (Andoni and Indyk 2006), spectral learning (Weiss,
Torralba, and Fergus 2008), kernal learning (Raginsky and
Lazebnik 2009), manifold learning (Irie et al. 2014), graph
learning (Liu et al. 2011) and others (He, Wen, and Sun
2013). Compared with the projection stage, how to make
high quality quantization has received less research efforts,
which, however, may significantly impact ANN search per-
formance (Kong and Li 2012). Most hashing works adopt a
single bit quantization (SBQ) (Kong and Li 2012) method
to quantize projection values. SBQ simply applies thresh-
olds to quantize each projection element x(i) = fi(v) into a
single bit 0 or 1.

Recent works have reported the impact of quantization
on the hashing performance. As single bit quantization
(SBQ) may incur serious quantization distortion, the hashing
performance would degenerate much (Kong and Li 2012;
Kong, Li, and Guo 2012). To address the quantization dis-
tortion in SBQ, several promising multiple bit quantization
(MBQ) methods have been proposed such as double bit
quantization (DBQ) (Kong and Li 2012), manhattan quan-
tization (MQ) (Kong, Li, and Guo 2012), adaptive quantiza-
tion (AQ) (Xiong et al. 2014), hamming compatible quanti-
zation (HCQ) (Wang et al. 2015), etc. Different from SBQ,
MBQ methods assign multiple bits to each projection ele-
ment, which helps to reduce the information loss in quan-
tization stage. Experiment results have shown that MBQ
methods greatly improve the performance of various hash-
ing methods (Kong and Li 2012; Kong, Li, and Guo 2012;
Wang et al. 2015). High quality quantization is crucial in
improving hashing performance.

In this work, we study how to further improve the per-
formance of quantization stage in hashing from the vector
quantization (VQ) (Allen and Gray 2012) point of view. All
the previous SBQ and MBQ methods fall into the category
of scalar quantization (SQ) (Allen and Gray 2012), in which
each projection dimension (or element) is quantized sepa-
rately. However, a projection value is actually a vector pre-
sentation, which renders SQ approaches inferior in utilizing
the inherent vector data distribution. By contrast, VQ excels
in adapting a quantizer to the true data space in terms of real
vectors. Figure 1 shows an example of different scalar and
vector quantization methods. In this example, data points
are projected into a 2D space at the projection stage. Scalar
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quantization approaches (SBQ or MBQ) quantize each ele-
ment of projection values by using a couple of thresholds to
divide each projection dimension into several regions, which
works like two groups of horizontal and vertical cutting lines
to partition the 2D space. No matter how to adjust the setting
of thresholds, any scalar quantizer always result in rectan-
gular quantization cells (Figure 1(a) and 1(b)). In contrast,
a vector quantizer is free from geometrical restrictions and
may have arbitrary quantization cell shapes as indicated in
the examples of Figures 1(c) and 1(d). VQ is much more
flexible in space partition than SQ. In addition, both the SBQ
and MBQ methods have a limited distance range in terms of
similarity measurement. After encoding data points into bi-
nary codes, they compute the distance (Hamming distance
or Manhattan distance) between binary codes to approxi-
mate the similarity between the original data points. Both
the ranges of Hamming distance and Manhattan distance are
limited. For example, the Hamming distance over 128-bits
codes is only up to 128, while the actual distance between
any two points is a real value.

Unlike the SBQ or MBQ methods, the proposed VQ tech-
nique, in the context of hashing, deals with each projection
vector as an elementary unit. The practice is to partition the
vector space into Voronoi cells based on the data distribution
and quantize the vector space into finite codewords (Jegou,
Douze, and Schmid 2011). The distance range in VQ can be
extended to any real-value codeword distance (see section
3 for details). More importantly, we propose a novel vector
quantization approach named affinity preserving quantiza-
tion (APQ) which minimizes the quantization errors of pro-
jection values as well as the loss of affinity property of orig-
inal data points. The proposed APQ is meant to explicitly
preserve the affinity in the original data space through reduc-
ing the distance bias between pre- and post-projection val-
ues from quantization. As shown in Fig.1, the neighborhood
structure in original space may be already partially damaged
at the projection stage (seeing those dots in red or pink col-
ors), and thus the projection values cannot exactly tell the
neighborhood structure in the original space. Hence, the pro-
posed APQ utilizes the affinity in the original space to refine
the VQ quantizer, which tends to quantize those close data
points into similar codes (Fig 1(c) vs Fig 1(d)). We summa-
rize the main contributions of this paper as follows:

• We have proposed to incorporate vector quantization into
hashing to address the issues of non-adaptive projection
space partition and limited distance range of the previous
SBQ and MBD methods (scalar quantization), which sig-
nificantly impact the performance of state-of-the-art hash-
ing techniques. To the best of our knowledge, this is the
first work on revealing the positive effects of vector quan-
tization on hashing techniques.

• Furthermore, we proposed a novel affinity preserving
quantization approach to strengthen the maintenance of
neighborhood structure over the course of hashing, in
terms of similarity distance of close points in the original
space, which can greatly enhance the quantization quality.

• Extensive experiments over three large-scale benchmarks
have shown that the proposed APQ approach has consis-
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Figure 1: Examples of scalar quantization methods such
as single bit quantization (SBQ), multiple bit quantization
(MBQ), and vector quantization methods such as baseline
VQ and the proposed APQ. Data points are transformed into
a 2D space at the projection stage. The dots in red (or pink)
color denote the near neighbors in the original space.

tently outperformed state-of-the-art SBQ and MBQ meth-
ods, and significantly improved the elementary quantiza-
tion stage of hashing techniques.

Related Work

In this section, we discuss the existing quantization works
in the context of hashing. Let v ∈ R

D denote a data point.
Hashing methods first project v into a low dimensional vec-
tor x ∈ R

d (d < D), and then quantize the projection vector
x into binary codes. Single bit quantization (Kong and Li
2012) applies a threshold to quantize each element of pro-
jection vectors into a single bit. Specifically, the i-th projec-
tion element x(i) (1 ≤ i ≤ d) is encoded as 1 if x(i) > θ.
Otherwise, 0. This strategy incurs lots of quantization distor-
tions, which results in less discriminative codes (Kong and
Li 2012; Kong, Li, and Guo 2012).

To alleviate the quantization distortion issue of SBQ, re-
searchers have proposed promising multiple bits quantiza-
tion (MBQ) methods (Kong and Li 2012; Kong, Li, and Guo
2012). MBQ methods quantize each element of a projection
value into multiple bits to reduce the information loss dur-
ing the quantization stage. In general, we may categorize bits
assignment schemes into uniform quantization (Kong and Li
2012) and non-uniform quantization (Moran, Lavrenko, and
Osborne 2013b). Uniform quantization quantizes all the ele-
ments of a projection vector at a fixed number of bits, while
non-uniform quantization may allocate variable number of
bits to different elements.

Most MBQ methods fall into the category of uniform
quantization, such as double bit quantization (DBQ) (Kong
and Li 2012), manhattan quantization (MQ) (Kong, Li,
and Guo 2012) and Hamming compatible quantization
(HCQ) (Wang et al. 2015). DBQ (Kong and Li 2012) di-
vides each projection dimension into three regions and then
uses a 2-bit code to represent each element. MQ (Kong,
Li, and Guo 2012) uses natural binary code (NBC) and
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adopt Manhattan distance to compute the distance between
the NBC codes. Neighbourhood preserving quantization
(NPQ) (Moran, Lavrenko, and Osborne 2013a) works in a
similar way as MQ, which uses F-measure criterion to learn
thresholds under Manhattan distance measurement. Ham-
ming compatible quantization (HCQ) (Wang et al. 2015)
utilizes a distance error function to preserve the capability
of similarity metric between Euclidean space and Hamming
space. Other uniform quantization methods include hierar-
chical quantization (HQ) (Liu et al. 2011) and Quadra em-
bedding quantization (EQ) (Lee, Heo, and Yoon 2012).

The above uniform quantization strategies do not al-
low for the assignment of different bits across elements.
Non-uniform quantization addresses this limitation. Typ-
ical non-uniform works include variable bit quantization
(VBQ) (Moran, Lavrenko, and Osborne 2013b) and adap-
tive quantization (AQ) (Xiong et al. 2014). VBQ dynami-
cally allocates the number of bits across different elements
of a projection vector based on a combination of F-measure
score (Moran, Lavrenko, and Osborne 2013b). AQ adap-
tively assigns varying numbers of bits to each projection di-
mension based on their informative content as well.

In summary, MBQ methods have significantly improved
SBQ. In addition, the adaptive bits allocation mechanism
across different elements of a projection vector may benefit
the quantization. However, all these methods work on scalar
quantization. In this paper, our focus is on vector quantiza-
tion, which elegantly combines the advantages of multiple
bits quantization and the joint optimization of multiple di-
mensions of projection vectors.

Affinity Preserving Quantization

Vector quantization is a classical signal quantization tech-
nique (Allen and Gray 2012). Formally, a vector quantizer is
defined as a function

q : Rd → {c0, c1, ..., cN−1} (1)

that maps d-dimension vectors in the vector space R
d into a

finite set of vectors C = {ci : i = 0, 1, ..., N − 1, ci ∈ R
d}.

Each vector ci is called a codeword, and the set of all the
codewords C forms a codebook, which is derived by of-
fline training. Associated with each codeword ci, its nearest
neighbor region Ri called Voronoi cell is defined by

Ri = {x ∈ R
d : ∀j �=i‖x− ci‖ < ‖x− cj‖}. (2)

The Voronoi cells partition the entire space R
d such that:

(i �= j) ⇒ Ri ∩Rj = ∅ and

N−1⋃

i=0

Ri = R
d. (3)

Given an input vector, the codeword located in the same
Voronoi cell as the input vector is chosen, and the input vec-
tor is encoded as the index of the codeword in codebook.

Different from conventional multiple bits quantization
methods, a vector quantization approach employs the in-
dices of codewords to encode data points. Given two binary
codes b1 and b2, the distance is represented by the distance
of the two codewords cb1 and cb2 . The distance space of

N = 2b codewords yields in total N2 = 22b situations.
Clearly, a VQ based coding strategy is much more effective
than SBQ and DBQ methods in representing the similarity
of data points. Moreover, a lookup strategy may make the
distance computation very efficient. We precompute the dis-
tance between any two codewords and save the results in a
N ×N lookup table offline. Then, we can directly read the
distance by two indices from the lookup table online.

Formulation

Let V = {vi}li=1 denote the sample set and X = {xi}li=1
be the projection vectors, where xi corresponds to the pro-
jection vector of vi (1 ≤ i ≤ n). For an input vector xi, the
smaller the quantization error between xi and q(xi), the bet-
ter the quantization value q(xi) is to preserve the informa-
tion of xi. VQ methods typically work out an optimal quan-
tization by minimizing the mean squared error (MSE) (Je-
gou, Douze, and Schmid 2011) between input vectors and
quantization values as:

argmin
C

l∑

i=1

‖xi − q(xi)‖2/l (4)

As introduced before, at the projection stage, the neigh-
borhood structure between data points have been damaged
more or less. The projection vectors can’t exactly reflect the
distance between the original data points. The objective in
(4) is to reduce the quantization errors of projection vectors,
while ignoring the capability of maximally preserving the
neighborhood structure in original space.

For any two data point vi and vj , VQ approximates their
distance by using the codeword distance:

d(vi,vj) � d(q(xi), q(xj)) = d(ci(xi), ci(xj)) (5)

where i(x) denotes the index of the Voronoi cell that con-
tains x. To preserve the affinity property in original space,
we want to minimize the bias of the distance approximation
to maintain the affinity of the original data points. Hence, we
define the distance bias between all sample point pairs:

l∑

i=1

l∑

j=1

(d̂(vi,vj)− d(ci(xi), ci(xj)))
2. (6)

Here, d̂(.) is the scaled distance between two data points
where d̂(vi,vj) = ‖vi−vj‖/σ, d(.) denotes the Euclidean
distance where d(x,y) = ‖x − y‖2. For simplicity, let
wij = ‖vi − vj‖/σ. By incorporating the distance bias in
Equation (6) and quantization errors in Equation (4), the pro-
posed affinity preserving vector quantization thereby formu-
lates the objective function

argmin
C

∑

i

‖xi−q(xi)‖2+λ
∑

i,j

(wij−‖ci(xi)−ci(xj)‖2)2.

(7)

Optimization

The optimization problem in Equation (7) is computational
difficult (NP-hard). To quickly resolve a local optimum, we
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Algorithm 1 The algorithm to optimize Equation (7).

Input: the samples V = {vi}li=1, the projection vectors
X = {xi}li=1, the bit number b.

Output: the codebook C = {ci}N−1
i=0 , N = 2b − 1.

Initialize the codeword ci via kmeans clustering.
while not convergence do

Step 1: fix codebook C, update q(xi) and Ri.
Step 2: fix q(xi) and Ri, separately update each ct in
(10) by using quasi-Newton method.

end while

adopt iterative optimization technique. In a similar way as k-
means (MacQueen 1967) clustering algorithm, the proposed
algorithm involves an assignment step and an update step
in each iteration. At the assignment step, we fix codebook
C and update quantization values q(xi). At the update step,
we fix quantization values q(xi) and update codebook C.
The details are given below.

Assignment step: By fixing C , we optimize q(xi). We
quantize each xi into its nearest centroid

q(xi) = {cj : ‖cj − xi‖ < ‖cj′ − xi‖, j′ �= j} (8)

After that, we update Voronoi cell Ri as

Ri = {xi : q(xi) = ci}, i = 1, 2, ..., N. (9)

Update step: By fixing q(xi), we optimize C. Different
from K-means, we have to incorporate the pairwise affinity
in (6) into the objective function in (7).

We sequentially minimize the objective by updating each
codeword ct with others ci (i �= t) fixed. To update ct, we
optimize the following function with y = ct

argmin
y

∑

xi∈Rt

‖y − xi‖2 + 2λ
∑

xi∈Rt

∑

xj /∈Rt

(wij − ‖y − ci(xj)
‖2)2.

(10)
As this function is an unary polynomial about y, it can be
solved by quasi-Newton method (Shanno 1970).

We use the K-means clustering algorithm (MacQueen
1967) to initialize the codebooks. Our algorithm converges
in 50-100 iterations and we empirically set the iteration
number t = 200 to ensure good convergence (see figure 1).
For each iteration, it takes O(ldN) to assign q(xi) and
O(ld + dN2) to update C. The overall time complexity is
O(tdN(l +N)). Algorithm 1 shows the pseudo-code.

Generalization to Product Space.

To produce b bits codes, a VQ quantizer may involve 2b

codewords. For a large code (say 128 bits or more), the
codebook size would be unaffordable. Below we discuss the
generalization of APQ in the product space (Jegou, Douze,
and Schmid 2011). Specifically, we split the input vector x
into m disjoint sub-vectors x = [x1,x2, ...,xm]. Each sub-
codebook Ci is independently trained in the i-th sub-space.
Given an input vector x, the quantizer can be mapped to the
product space as:

q(x) = [q1(x1), q2(x2), ..., qm(xm)] (11)
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(b) Training time

Figure 2: (a) The convergence curve at different iteration
numbers. (b) The training time over different datasets.

where qi(.) denotes the quantizer in the i-th subspace. The
distance between two data points x and y is approximated
by the distances between the codewords in sub-codebooks

d(x, y) ≈
m∑

i=1

(qi(xi)− qi(yi))2 (12)

In this way, the entire space R
d is therefore decomposed as

the Cartesian product of sub-codebooks

C = C1 × C2 × ...× Cm. (13)

To produce b bits codes, we only need to generate m sub-
codebooks with 2b/m codewords, with in total m2b/m code-
words. The codebook size becomes more affordable. In ad-
dition, if we set m = d, one codebook is assigned to each
projection dimension, in which, our method degenerates to
a scalar quantization method.

The APQ generalization to product space can be summa-
rized as follows. We firstly decompose the space R

d into
m sub-spaces Rd/m. At the offline training stage, we apply
the APQ algorithm to learn a sub-codebook Ci for the i-th
sub-space(1 ≤ i ≤ m), each sub-codebook containing 2b/m

codewords. At the online stage, given a vector x ∈ R
d, we

first divide x into m sub-vectors. For sub-vector xi, we find
its nearest codeword from sub-codebook Ci and use the in-
dex of the nearest codeword to encode xi. These m indices
are concatenated into a binary code to encode vector x.

Experiment

Extensive experiments are carried out over three widely
used large scale benchmarks NUS-WIDE (Chua et al.
2009), GIST1M (Jegou, Douze, and Schmid 2011) and Im-
ageNet1M (Deng et al. 2009). NUS-WIDE dataset contains
269,648 images. Each image is represented by a 634-D fea-
ture. GIST1M contains 1 million 960-D GIST (Aude and
Torralba 2001) features. ImageNet1M contains 1 million im-
ages which is a subset of the ImageNet database (Deng et al.
2009). We use the 2048-D fisher vector (Florent, Sanchez,
and Mensink 2010) to present each image to evaluate the
performance over high dimensionality space. The CIFAR-
10 (Krizhevsky 2009) dataset contains 60,000 images of size
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Table 1: Comparison with state-of-the-art single bit quantization and multiple bit quantization methods over dataset NUS-
WIDE (Chua et al. 2009) at code size 64 bits and 128 bits.

#bits 64 128
ITQ LSH PCAH SH SIKH ITQ LSH PCAH SH SIKH

SBQ 0.2415 0.1531 0.1032 0.1090 0.1370 0.3112 0.2201 0.1009 0.1432 0.1912
HQ 0.2681 0.1459 0.1452 0.1689 0.1441 0.3615 0.2453 0.2551 0.2115 0.2217

DBQ 0.2932 0.1510 0.2160 0.1505 0.0912 0.3871 0.2743 0.2390 0.1953 0.1876
MQ 0.3812 0.1901 0.2430 0.3297 0.1570 0.4574 0.3123 0.2709 0.3989 0.2970

HCQ 0.3327 0.1756 0.2235 0.2895 0.1442 0.4216 0.2917 0.2655 0.3618 0.2557
NPQ 0.4012 0.1988 0.3635 0.3219 0.1599 0.4613 0.3356 0.2755 0.3841 0.2513
AQ 0.3476 0.1951 0.3260 0.2814 0.1625 0.5063 0.3082 0.4210 0.4484 0.2630

APQ*(PQ) 0.4259 0.2657 0.4019 0.3945 0.1600 0.5189 0.4013 0.4516 0.4895 0.2754
APQ 0.4825 0.3016 0.5013 0.4519 0.1856 0.6013 0.4589 0.5655 0.5574 0.3078

Table 2: Comparison with state-of-the-art single bit quantization and multiple bit quantization methods over dataset
GIST1M (Jegou, Douze, and Schmid 2011) at code size 64 bits and 128 bits.

#bits 64 128
ITQ LSH PCAH SH SIKH ITQ LSH PCAH SH SIKH

SBQ 0.2815 0.2443 0.1103 0.1636 0.1874 0.3244 0.2856 0.1270 0.2101 0.2385
HQ 0.2157 0.2418 0.1885 0.1456 0.2012 0.3852 0.2857 0.2013 0.2435 0.2213

DBQ 0.3223 0.2354 0.2409 0.1722 0.1834 0.4032 0.2907 0.2405 0.2341 0.2430
MQ 0.3435 0.2670 0.2230 0.2690 0.2261 0.4865 0.2900 0.2476 0.3517 0.2654

HCQ 0.3215 0.2661 0.2013 0.2597 0.2150 0.4326 0.2819 0.2367 0.3471 0.2701
NPQ 0.3316 0.2716 0.2256 0.2798 0.2351 0.4731 0.3026 0.2517 0.3468 0.2851
AQ 0.3964 0.2447 0.3498 0.3292 0.2319 0.5133 0.3265 0.3701 0.3800 0.2503

APQ*(PQ) 0.4018 0.3256 0.3915 0.3156 0.2516 0.5826 0.3519 0.4215 0.4016 0.3174
APQ 0.4645 0.3754 0.4812 0.3757 0.2899 0.6571 0.3887 0.5078 0.4323 0.3532

32x32 and has been categorized into 10 classes. The La-
belMe22K dataset (Torralba, Fergus, and Weiss 2008) con-
tains 22,019 images. As setup in (Kong and Li 2012), (Kong,
Li, and Guo 2012) and (Moran, Lavrenko, and Osborne
2013a), we represent each image with a 512 dimensional
gray-scale GIST descriptor (Aude and Torralba 2001).

We follow the evaluation protocols in recent papers (Kong
and Li 2012; Kong, Li, and Guo 2012; Xiong et al. 2014;
Wang et al. 2015) and adopt the Euclidean distance based
neighbors in the original space as the ground truth. For each
dataset, we randomly select 1000 data points as queries and
leave the rest as the database. The top 50/100 nearest data
points in terms of Euclidean distance of a query are selected
as the ground truth. We use mean Average Precision (mAP)
to evaluate the search accuracy at different code sizes. We
report the averaged results of 5 runs.

Baseline

We study the impact of quantization in five representative
hashing methods, in which the projection stage is main-
tained, and different quantization methods are injected. The
projections include spectral hashing (SH) (Weiss, Torralba,
and Fergus 2008), local sensitive hashing (LSH) (Andoni
and Indyk 2006), shift invariant kernels hashing (SIKH) (Ra-
ginsky and Lazebnik 2009), principal component analysis
hashing (PCAH) (Wang et al. 2006) and iterative quantiza-
tion (ITQ) (Gong and Lazebnik 2011).

Based on different projections, we compare the proposed

VQ methods (including baseline VQ and APQ) with seven
state-of-the-art quantization methods (including SBQ and a
couple of MBQ methods):

• SBQ: single bit quantization.

• HQ: hierarchical quantization (Liu et al. 2011).

• DBQ: double bit quantization (Kong and Li 2012).

• MQ: Manhattan quantization (Kong, Li, and Guo 2012).

• NPQ: neighborhood preserving quantization (Moran,
Lavrenko, and Osborne 2013a).

• HCQ: Hamming compatible quantization (Wang et al.
2015).

• AQ: adaptive quantization (Xiong et al. 2014).

Setting and Configuration

We discuss the empirical settings and parameter impact in
this subsection. Figure 2a illustrates the convergence pro-
cess of training APQ codebooks. In practice, the algorithm
can quickly converge in 50-100 iterations and we empiri-
cally set the maximum iteration number t = 200 to ensure
good convergency. Figure 2b shows the training time cost
over dataset NUS-WIDE (Chua et al. 2009), GIST1M (Je-
gou, Douze, and Schmid 2011) and ImageNet1M (Deng et
al. 2009). It takes about 16.2 minutes, 19.3 minutes, 24.5
minutes and 31.7 minutes to train the codebook for learning
codes at 32, 64, 128, and 256 bits over dataset ImageNet1M.
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Figure 3: The results of mAP on ImageNet1M, CIFAR and LABELME at code size of 16 bits, 32 bits, 64 bits and 128 bits.

We apply product quantization, and then train 28 = 256
codewords for each sub-codebook. The running time cost is
tested on a workstation with an Intel(R) Core(TM) i5 3470
CPU and 32G memory.

Results on NUS-WIDE and GIST1M

Table 1 and table 2 list the performance comparison by com-
bining different quantization methods and typical projection
methods used in representative hashing methods over dataset
NUS-WIDE (Chua et al. 2009) and GIST1M (Jegou, Douze,
and Schmid 2011), respectively.

We present two sets of VQ quantization results. The first
set is to evaluate the impact of baseline vector quantiza-
tion on hashing performance, which just minimizes the mean
square error (MSE) in Equation 4. For simplicity, we name
this baseline set as APQ*. Note that APQ* applies product
quantization to reduce the codebook size. The second one
sets the complete version of the proposed APQ including
preserving the affinity of original data points. The results
show that APQ* has already achieve promising results and
outperforms advanced MBQ methods in most cases. APQ*
only works a bit worse than AQ (Xiong et al. 2014) on SIKH
projection at code size 64 bits and MQ (Kong, Li, and Guo
2012) on SIKH projection at code size 128 bits over dataset
NUS-WIDE (Chua et al. 2009). These promising results
have demonstrated the superiority of vector quantization in
improving hashing performance. Beyond the baseline vector
quantization, the APQ led to the best hashing performance
and consistently outperformed others. The positive results
can be partially attributed to the use of affinity preservation
in original data points.

APQ consistently outperforms the state-of-the-art multi-
ple bit quantization methods. Let’s compare the results over
dataset NUS-WIDE (Chua et al. 2009). AQ (Xiong et al.
2014) and NPQ (Moran, Lavrenko, and Osborne 2013a) are
the most competitive amongst the baseline methods. How-
ever, beyond the AQ performance, APQ further achieves
significant mAP gains of +12.2% and +10.9% on average
at code size 64 bits and 128 bits, respectively. Compared
to NPQ, APQ achieves even more significant mAP gains of
+9.56% and +15.66% on average at 64 bits and 128 bits,
respectively. Referring to Table 2, over dataset GIST1M (Je-
gou, Douze, and Schmid 2011), APQ have achieved great

performance improvements as well.

Results on ImageNet1M, CIFAR and LABELME

We combine the proposed APQ with PCA projection, and
then compare it with state-of-the-art binary coding methods
including ITQ (Gong and Lazebnik 2011), LSH (Andoni
and Indyk 2006), PCAH (Wang et al. 2006), SH (Weiss,
Torralba, and Fergus 2008), SIKH (Raginsky and Lazeb-
nik 2009), OPQ (Ge et al. 2013), CKM (Norouzi and Fleet
2013), etc. Note that PCA is the most common projection,
which is adopted by many hashing method such as SH,
PCAH, ITQ, etc. Rather than focusing on advanced projec-
tion, we simply adopt PCA projection and study the impact
of proper quantization. In addition, the performance com-
parison has been extended to the latest DGH (Liu et al.
2014) and KMH (He, Wen, and Sun 2013) methods over
ImageNet1M.

Figure 3 shows the results over three datasets Ima-
geNet1M, CIFAR and LABELME. PCA+APQ consistently
outperforms others. For example, compared to the competi-
tive OPQ, PCA+APQ achieves mAP gains of +1.0%, +1.5%,
+4.0% and +8.2% at code size 16 bits, 32 bits, 64 bits and
128 bits over dataset ImageNet1M, respectively. Consider-
able improvements are yielded over CIFAR and LABELME
as well. Figure 4 provides comparison examples. Previous
hashing methods such SH and LSH focus more on projection
than quantization, whereas, directly applying a quantization
method such OPQ and CKM would yield suboptimal binary
codes. The reported promising performance is attributed to
the combination of PCA projection and APQ quantization.

Conclusion

Incorporating vector quantization into hashing can address
the issues of non-adaptive projection space partition and lim-
ited distance range of scalar quantization methods. We have
proposed a novel affinity preserving vector quantization ap-
proach (APQ) to strengthen the maintenance of neighbor-
hood structure in original space over the course of hashing.
Extensive experiments have shown that the proposed APQ
approach has significantly improved the quantization stage
of hashing techniques.
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Figure 4: Image examples of the top 3 retrieved results of eight state-of-the-arts binary coding methods on ImageNet1M using
32 bits. Red rectangle denotes false positive. Best viewed in color.
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