
Knowledge Graph Completion
with Adaptive Sparse Transfer Matrix

Guoliang Ji, Kang Liu, Shizhu He, Jun Zhao
National Laboratory of Pattern Recognition (NLPR)

Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
{guoliang.ji, kliu, shizhu.he, jzhao}@nlpr.ia.ac.cn

Abstract

We model knowledge graphs for their completion by encod-
ing each entity and relation into a numerical space. All pre-
vious work including Trans(E, H, R, and D) ignore the het-
erogeneity (some relations link many entity pairs and oth-
ers do not) and the imbalance (the number of head entities
and that of tail entities in a relation could be different) of
knowledge graphs. In this paper, we propose a novel approach
TranSparse to deal with the two issues. In TranSparse, trans-
fer matrices are replaced by adaptive sparse matrices, whose
sparse degrees are determined by the number of entities (or
entity pairs) linked by relations. In experiments, we design
structured and unstructured sparse patterns for transfer ma-
trices and analyze their advantages and disadvantages. We
evaluate our approach on triplet classification and link pre-
diction tasks. Experimental results show that TranSparse out-
performs Trans(E, H, R, and D) significantly, and achieves
state-of-the-art performance.

Introduction

Knowledge Graphs are directed graphs composed of entities
as nodes and relations as edges. They store factual informa-
tion in the form of triplet (head, relation, tail) (abbreviated
as (h, r, t)), where head and tail are entities and relation rep-
resents the relationship from head to tail. Although the cur-
rent knowledge graphs consist of large amounts of triplets,
they are far from completeness, which is a pivotal param-
eter that determines the availability of a knowledge graph.
This paper aims to provide an efficient, scalable approach to
model knowledge graphs for their completion.

Recently, the volumes of existing knowledge graphs grow
fast, which results in that the traditional logic-based ap-
proaches are intractable. To this end, embedding based ap-
proaches that encode each object in knowledge graphs into
a continuous vector space show strong feasibility and ro-
bustness. Thus, this kind of approach has been attracting
widespread attention. In general, existing embedding based
approaches could be roughly divided into two groups, one is
tensor factorization (Nickel, Tresp, and Kriegel 2011; 2012;
Nickel and Tresp 2013a; 2013b; Nickel et al., 2015), the
other is neural network models (Bordes et al., 2011; 2012;
2014; Socher et al., 2013; Wang et al., 2014; Lin et al.,

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2015; Ji et al., 2015; Guo et al., 2015). Tensor factorization
approaches regard a knowledge graph as a three-way adja-
cency tensor, such as RESCAL. It factorizes the adjacency
tensor into a core tensor and a factor matrix. Each entry in
the factorization result would be regarded as a measure to
indicate whether a corresponding triplet exists or not. Neu-
ral network approaches often define a score function with
parameters and a margin-based training objective to punish
negative triplets, such as Trans(E, H, R, and D).

Although these methods have strong ability to model
knowledge graphs, it remains challenging for the reason that
the objects (entities and relations) in a knowledge graph are
heterogeneous and unbalanced. Specifically, (1) some re-
lations link many entity pairs (called complex relations) and
others do not (called simple relations); (2) some relations
link many head (tail) entities and fewer tail (head) entities,
such as the relation gender which can link many person
names at head and only link male, female at tail. Figure 1
shows the statistics of the subgraph FB15k. From Figure 1,
we can see that: (1) the complexities of different relations
vary widely; and (2) unbalanced relations occupy a large
proportion in a knowledge graph. All previous work includ-
ing Trans(E, H, R, and D) do not consider the two issues,
and they model each relation in the same way. Heterogeneity
may lead to overfitting on simple relations or underfitting on
complex relations. Meanwhile, imbalance of the two sides
(head and tail) indicates that it is unreasonable to treat them
(the two sides) equally.

Therefore, we argue that the relations with different com-
plexities need different expressive models to learn, and the
two sides should be modeled separately. In this paper, we
use sparse matrices (another selection may be low-rank ma-
trix, we will explain why we do not choose it later) to
model the relations. To overcome the heterogeneity, we pro-
pose a model TranSparse(share), in which the sparse de-
grees of transfer matrices are determined by the number of
entity pairs linked by relations and the two sides of rela-
tions share the same transfer matrices. More specifically, the
transfer matrices of complex relations would be less sparse
than that of simple relations. Furthermore, to deal with the
problem of imbalance of relations, we make a modifica-
tion on TranSparse(share) and propose the second model
TranSparse(separate), in which each relation has two sep-
arate sparse transfer matrices, one for head and the other for

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

985

� ��� ���� ����
�

����

����

����

����

�����

�����

�����

�����
	
�
�
�
�
������������

�
����
�����
�

��
�
�

��

��

��
���
��
��
��

(a) Heterogeneity

� ���� ���� ���� ���� ����
�

���

����

����

����

����

����

����

����

����

����
��������
����	
���

����
��
��

���
�����
�

��
�
�

��

���
��
��

��
���

�

�

�

��������

(b) Imbalance

Figure 1: Relation statistics of FB15k which contains 1,345
relations. (a) shows the heterogeneity of FB15k. In (b), each
circle represents a relation. Area of the circle is proportional
to the number of entity pairs linked by relations in train data.

tail. The sparse degrees are determined by the number of
head (tail) entities linked by relations. In experiments, our
approach is effective and outperforms all baseline models.

Our contributions are: (1) We propose a novel approach
that considers the heterogeneity and the imbalance, which
are not used in previous models, to embed knowledge graphs
for their completion; (2) Our approach is efficient and has
fewer parameters, which makes it easy to extend to large
scale knowledge graphs; (3) We provide two sparse patterns
for transfer matrices and analyze their advantages and disad-
vantages; and (4) In triplet classification and link prediction
tasks, our approach achieves state-of-the-art performance.

Related Work

Before proceeding, we define our mathematical notations.
We denote a triplet by (h, r, t) and their column vectors by
bold lower case letters h, r, t; matrices by bold upper case
letters, such as M. Score function is represented by fr(h, t).

Translation-based Models

TransE (Bordes et al., 2013) regards the relation r as transla-
tion from h to t for a golden triplet (h, r, t). Hence, (h+ r)
is close to (t) and the score function is fr(h, t) = ‖h+ r−
t‖2�1/2 . It is effective, but only suitable for 1-to-1 relations,
there remain flaws for 1-to-N, N-to-1 and N-to-N relations.

TransH (Wang et al., 2014) regards relation as a trans-
lating operation on a relation-specific hyperplane, which is
characterized by a norm vector wr and a translation vector
dr. The embeddings h and t are projected to the hyperplane
of relation r to obtain projected vectors h⊥ = h−w�r hwr

and t⊥ = t − w�r twr. The socre function is fr(h, t) =
‖h⊥ + r− t⊥‖2�1/2 .

TransR/CTransR (Lin et al., 2015) models entity and re-
lation in different vector spaces. It sets a transfer matrix
Mr for each relation r to map entity embedding to rela-
tion vector space. Its score function is fr(h, t) = ‖Mrh +
r − Mrt‖2�1/2 . In TransR/CTransR, simple relations may
be overfitting or complex relation may be underfitting be-
cause every relation (no matter complex or simple) has the
same number of parameters to learn.

TransD (Ji et al., 2015) considers the multiple types of
entities and relations simultaneously, and replaces transfer
matrix by the product of two projection vectors of an entity-
relation pair. TransD obtains state-of-the-art performance on
triplet classification and link prediction tasks.

KG2E (He et al., 2015) uses Gaussian embedding to
model the data uncertainty. It has the best performs on 1-
to-N and N-to-1 relations at present.

Other Methods

Structured Embedding (SE). SE (Bordes et al., 2011) sets
two separate matrices Mrh and Mrt for each relation to
project head and tail entities, respectively. Its score function
is fr(h, t) = ‖Mrhh−Mrtt‖1.
Semantic Matching Energy (SME). (Bordes et al., 2012;
2014) encodes each entity and relation into a vector. Its score
function is a neural network that captures correlations be-
tween entities and relations via linear algebra operations. Pa-
rameters of the neural network are shared by all relations.
Latent Factor Model (LFM). LFM (Jenatton et al., 2012;
Sutskever, Tenenbaum, and Salakhutdinov, 2009) encodes
each entity as a vector and sets a matrix Mr for each rela-
tion. It defines the score function as fr(h, t) = h�Mrt.
Single Layer Model (SLM). The model constructs a non-
linear neural network to represent the score function. It is
designed as a baseline of NTN model (Socher et al., 2013).
Neural Tensor Network (NTN). NTN (Socher et al., 2013)
extends SLM model by considering the second-order corre-
lations into nonlinear neural networks.

In experiments, we compare our approach with the above
models. We also report the RESCAL system’s performance
presented in Wang et al. (2014) and Lin et al. (2015).

Our Model

All the approaches presented in Related Work do not con-
sider the heterogeneity and the imbalance, which are crucial
difficulties of knowledge graphs embedding. Here, we pro-
pose a new approach TranSparse that uses adaptive sparse
matrices to model different types of relations.

Sparse Matrix

Sparse matrices refer to the matrices in which most entries
are zeros. The fraction of zero elements over the total num-
ber of elements in a matrix is called sparse degree (denoted
by θ). We use M(θ) to denote a matrix M with sparse degree
θ. Sparse matrix is by nature more easily compressed and
thus requires less storage. Furthermore, only the nonzero el-
ements involve calculation, which can reduce the compu-
tational cost drastically. Figure 2 shows two typical sparse
matrices: structured and unstructured (Saad 2003). In Figure
2, nonzero entries in structured pattern locate on the diago-
nal band, while for unstructured pattern, they locate with an
uniform random distribution. There is an important distinc-
tion between the two patterns: the structured pattern is con-
ductive to matrix-by-vector products, but the unstructured
pattern is not (Saad 2003). Therefore, structured pattern can
make our model scale up to large knowledge graphs more
easily. However, unstructured pattern is more generally used

986

(a) Structured (b) Unstructured

Figure 2: Sparse Patterns: (a) Structured. (b) Unstructured.
Black squares represent the nonzero elements. The two
sparse matrices have the same number of nonzero entries.

in other literatures, i.e., Candès et al. (2011). And it often
brings better experimental results than structured pattern1.
We will use the two sparse patterns in our experiments and
compare their performances in several datasets.

Sparse Matrix vs Low-Rank Matrix

Based on our motivations, we need to use matrices with
higher and lower degrees of freedom to learn complex and
simple relations, respectively. The degrees of freedom of a
weight matrix refers to the number of variates which are in-
dependence. For a weight matrix M, the low-rank and spar-
sity both can reduce the degrees of freedom beacuse they are
both constrains enforced on M. Specifically, low-rank en-
forces some variables to satisfy specific constraints so that
the variables in M can’t be assigned freely. Thus, the de-
grees of freedom is reduced. For sparse matrices, we let
some elements are zeros and don’t change their values dur-
ing training, and the other entries are freedom variates which
can be learned by training. Thus, the degrees of freedom is
the number of variates learned by training. But the sparse
matrix is more suitable for our tasks for the two reasons.

• Sparse matrix is more flexible than low-rank matrix. We
assume M ∈ R

m×n, then rank(M) ≤ min(m,n). If we
use low-rank to control the degrees of freedom, we can
only obtain min(m,n) low-rank matrices for relations be-
cause the rank can determine the degrees of freedom of
a matrix2. However, if we use the sparsity to control the
degrees of freedom, we can obtain m× n sparse matrices
because M contains m×n elements. Thus, for the dataset
which has many relations, such as FB15k (contains 1,345
relations), sparsity is more flexible than low-rank.

• Sparse matrix is more efficient than low-rank matrix. In
sparse matrix, only the nonzero entries involve calcula-
tion, which reduces the computational cost significantly.
But, the low-rank matrix doesn’t have the advantage.
Therefore, with sparse matrix, our model can extend to
large-scale knowledge graphs more easily.

1The structured sparse pattern only provides fixed and local lin-
ear combinations. However, the unstructured sparse pattern pro-
vides flexible and long-range linear combinations. Therefore, the
later may learn better representations for KGs.

2A m×n rank-k matrix has k(m+n)−k2 degrees of freedom.
The proof can be found in Kennedy and Examination II (2013).

TranSparse

In previous work, no matter simple or complex, each rela-
tion has a transfer matrix which has the same number of
parameters. As described in Introduction, complex relations
link more head or tail entities, and they are more meaning-
ful than simple relations. Therefore, complex relations need
more parameters to learn fully and simple relations need
fewer parameters to learn properly, which can stop the model
from underfitting or overfitting. As the transfer matrices in
our model are all sparse matrices, we call it TranSparse. We
argue that the complexity of a relation is proportional to the
number of triplets (or entities) linked by it because the more
data linked by the relation, the more knowledge it contains.

TranSparse(share) In TranSparse(share), we set a sparse
transfer matrix Mr(θr) and a translation vector r for each
relation r. Nr represents the number of entity pairs linked
by relation r and Nr∗ denotes the maximum number of them
(relation r∗ links the most entity pairs). We set a minimum
sparse degree θmin(0 ≤ θmin ≤ 1)3 for the matrix Mr∗ .
Then the sparse degrees of transfer matrices are defined as

θr = 1− (1− θmin)Nr/Nr∗ . (1)

With the sparse transfer matrices, the projected vectors can
be obtained by

hp = Mr(θr)h, tp = Mr(θr)t. (2)

where Mr(θr) ∈ R
m×n, h, t ∈ R

n and hp, tp ∈ R
m.

TranSparse(separate) Here, we set two separate sparse
matrices Mh

r (θ
h
r) and Mt

r(θ
t
r) for each relation, where the

subscript r is the index of relations; h, t means which entity
(head or tail) the matrix is used for. N l

r (l = h, t) denotes
the number of entities linked by relation r at location l and
N l∗

r∗ denotes the maximum number of them (relation r∗ links
the most entities at location l∗). We set a minimum sparse
degree θmin(0 ≤ θmin ≤ 1) for the matrix Ml∗

r∗ . Then the
sparse degrees of transfer matrices are

θlr = 1− (1− θmin)N
l
r/N

l∗
r∗ (l = h, t). (3)

The projected vectors of entities are defined as follows:

hp = Mh
r (θ

h
r)h, tp = Mt

r(θ
t
r)t. (4)

where Mh
r (θ

h
r),M

t
r(θ

t
r) ∈ R

m×n.
Both in TranSparse(share, separate), the score function is

fr(h, t) = ‖hp + r− tp‖2�1/2 . (5)

where r ∈ R
m. The score is expected to be lower for a

golden triplet and higher for an incorrect triplet.

Training Objective

We denote the i-th triplet by (hi, ri, ti)(i = 1, 2, . . .). Each
triplet has a label yi to indicate the triplet is positive (yi = 1)
or negative (yi = 0). Then the positive and negative sets
are denoted by Δ = {(hi, ri, ti) | yi = 1} and Δ′ =
{(hi, ri, ti) | yi = 0}, respectively. An important trouble is
that knowledge graphs only encode positive training triplets,

3θmin is a hyper-parameter.

987

they do not contain negative examples. Therefore, we con-
struct Δ′ as follows: Δ′ = {(h′i, ri, ti) | h′i �= hi ∧ yi =
1} ∪ {(hi, ri, t

′
i) | t′i �= ti ∧ yi = 1}. We also use the two

strategies “unif” and “bern” described in (Wang et al., 2014)
to replace the head or tail entity.

We use (h, r, t) to represent a positive triplet. We select
one negative triplet for each positive triplet and denote it by
(h′, r, t′) (replace head or tail). Then we define the follow-
ing margin-based ranking loss as the objective for training:

L =
∑

(h,r,t)∈Δ

∑

(h′,r,t′)∈Δ′
[γ + fr(h, t)− fr(h

′, t′)]+ (6)

where [x]+ � max(0, x), and γ is the margin separating
positive triplets and negative triplets. In practice, we enforce
the following constrains: ‖h‖2 ≤ 1, ‖r‖2 ≤ 1, ‖t‖2 ≤
1, ‖hp‖2 ≤ 1, ‖tp‖2 ≤ 1.

Algorithm Implementation

In order to speed up the convergence and avoid overfitting,
we initiate entity and relation embeddings with the results of
TransE. Thus, we should let the transfer matrices be square
(the number of rows and that of columns are the same) and
initiate them with identity matrices. Please note that, these
are not necessary (one can use random initialization and let
transfer matrices not be square).

For a transfer matrix M(θ) ∈ R
n×n, it has nz = �θ ×

n × n	(�x	 returns the maximum integer no more than x)
nonzero elements. As we initialize the transfer matrix with
identity matrix (the diagonal are nonzero), the number of
other nonzero entries is nz′ = nz − n, and when nz ≤ n,
we set nz′ = 0 (the transfer matrix is an identity matrix).

When we construct structured pattern for the transfer ma-
trix M(θ), we let the nz′ nonzero entries locate on the two
sides of diagonal and be symmetry along the diagonal (see
structured pattern shown in Figure 2). If the number nz′
can’t satisfy this requirements, we select another integer,
which is near to nz′, to replace it. In some cases, this strat-
egy may change the number of nonzero entries a little, but it
doesn’t affect our experiments significantly. When we con-
struct unstructured pattern, we only scatter the nz′ nonzero
elements in M(θ) randomly (but not on the diagonal).

Before training, we first set the hyper-parameter θmin

and compute sparse degrees for all transfer matrices. Then
we construct sparse transfer matrices with structured and
unstructured patterns for our models. We only update the
nonzero entries during training. The details of optimization
procedure of TranSparse is described in Algorithm 1.

Comparisons of complexity

Table 1 lists the complexities of several neural network mod-
els described in Related Work. The average sparse degree θ̂
is near to 1 in practice. Therefore, the complexity (both on
the number of parameters and the times of multiplication
operations) of TranSparse is similar to TransH and TransD,
which shows the high efficiency of our approach.

Algorithm 1 Learning TranSparse(separate).
Require:

Training sets Δ and Δ′, entity set E and relation set R, mar-
gin γ, embeddings dim n, θmin and learning rate α. Two set lists
LISThead = [Sh,1, · · · , Sh,r, · · · , Sh,|R|] and LISTtail =

[St,1, · · · , St,r, · · · , St,|R|], where Sa,b (a = h, t and b is the index of
relations) is a set of index pairs (row, column) which indicate the locations of
nonzero entries in transfer matrix Ma

b . The two set lists are used to find nonzero
entries in transfer matrix during training.

Ensure:

Entity and relation embeddings. All sparse transfer matrices.
1: initialize Running TransE, and initializing each entity e ∈ E and relation r ∈ R

with the results of TransE. Let each transfer matrix be an identity matrix.
2: loop

3: Δbatch ← sample (Δ, b) //sample a minibatch of size b

4: Tbatch ← ∅ // initialize the set of pairs of triplets
5: for (h, r, t) ∈ Δbatch do

6: (h′, r, t′)← sample (Δ′
(h,r,t)) //sample a corrupted triplet

7: Tbatch ← Tbatch ∪ {(h, r, t), (h′, r, t′)}
8: end for

9: Update embeddings and nonzero entries in transfer matrices w.r.t.
∑

((h,r,t),(h′,r,t′))∈Tbatch

∇[γ + fr(h, t)− fr(h
′, t′)]+

10: for � ∈ entities or relations in Tbatch do

11: if ‖�‖2 > 1 then

12: �← �/‖�‖2 //constrains:‖h‖2 ≤ 1, ‖r‖2 ≤ 1, ‖t‖2 ≤ 1

13: end if

14: end for

15: Each triplet has three projected vectors (hp, tp,h
′
p or t′p). We denote the

projected vectors of the i-th triplet in Tbatch by �ip,1, �
i
p,2 and �ip,3. Then

we define L =
∑b

i=1

∑3
j=1 max{‖�ip,j‖2 − 1, 0}.

16: while L > 0 do

17: Update embeddings and nonzero entries in transfer matrices w.r.t. ∇L.
//coinstrains: ‖hp‖2 ≤ 1, ‖tp‖2 ≤ 1.

18: end while

19: end loop

Experiments and Analysis

In this section, we choose triplet classification and link pre-
diction tasks to evaluate our approach.

Datasets

We do triplet classification and link prediction tasks on
WordNet (Miller 1995) and Freebase (Bollacker et al.,
2008). WordNet is a large lexical knowledge graph. Entities
in WordNet are synonyms which express distinct concepts.
Relations in WordNet are conceptual-semantic and lexical
relations. In this paper, we use two subsets of WordNet:
WN11 (Socher et al., 2013) and WN18 (Bordes et al., 2014).
Freebase is a large collaborative knowledge base which con-
sists of large amounts of facts. We also use two subsets of
Freebase: FB15k (Bordes et al., 2014) and FB13 (Socher et
al., 2013). Table 2 lists the statistics of the four datasets.

Triplet Classification

Triplet classification aims to judge whether a given triplet
(h, r, t) is correct or not, which is a binary classification task.
In this paper ,we use three datasets WN11, FB13 and FB15k
to evaluate our models. The test sets of WN11 and FB13
provided by (Socher et al., 2013) contain positive and neg-
ative triplets. As to FB15k, its test set only contains correct

988

Model #Parameters # Operations (Time complexity)

SLM (Socher et al. 2013) O(Nem + Nr(2k + 2nk))(m = n) O((2mk + k)Nt)

NTN (Socher et al. 2013) O(Nem + Nr(n
2s + 2ns + 2s))(m = n) O(((m2 + m)s + 2mk + k)Nt)

TransE (Bordes et al. 2013) O(Nem + Nrn)(m = n) O(Nt)

TransH (Wang et al. 2014) O(Nem + 2Nrn)(m = n) O(2mNt)

TransR (Lin et al. 2015) O(Nem + Nr(m + 1)n) O(2mnNt)

CTransR (Lin et al. 2015) O(Nem + Nr(m + d)n) O(2mnNt)

TransD (Ji et al. 2015) O(2Nem + 2Nrn) O(2nNt)

TranSparse(share) (this paper) O(Nem + Nr(1− θ̂)(m + 1)n)(0
 θ̂ ≤ 1) O(2(1− θ̂)mnNt)(0
 θ̂ ≤ 1)

TranSparse(separate) (this paper) O(Nem + 2Nr(1− θ̂)(m + 1)n)(0
 θ̂ ≤ 1) O(2(1− θ̂)mnNt)(0
 θ̂ ≤ 1)

Table 1: Complexities (the number of parameters and the times of multiplication operations in an epoch) of several embedding
models. Ne and Nr represent the number of entities and relations, respectively. Nt represents the number of triplets in a
knowledge graph. m is the dimension of entity embedding space and n is the dimension of relation embedding space. d denotes
the number of clusters of a relation. k is the number of hidden nodes of a neural network and s is the number of slice of a tensor.
θ̂(0
 θ̂ ≤ 1) denotes the average sparse degree of all transfer matrices.

Dataset #Rel #Ent #Train #Valid #Test

WN11 11 38,696 112,581 2,609 10,544
WN18 18 40,493 141,442 5,000 5,000
FB13 13 75,043 316,232 5908 23,733
FB15k 1,345 14,951 483,142 50,000 59,071

Table 2: Datasets used in our experiments.

triplets. We construct negative triplets for FB15k following
the same setting used for FB13 (Socher et al., 2013).

For triplet classification, we set a threshold δr for each
relation r. δr is obtained by maximizing the classification
accuracies on the valid set. For a given triplet (h, r, t), if
its score is lower than δr, it will be classified as positive,
otherwise negative.

In this experiments, we select the margin γ among {1, 1.5,
2, 4, 10}, the learning rate λ for SGD (Duchi, Hazan, and
Singer 2011) among {0.1, 0.01, 0.001}, the minimum sparse
degree θmin among {0.0, 0.1, 0.3, 0.7, 0.9}, the dimension
of vectors n amon g {20, 50, 80, 100}, and the mini-batch
size B among {100, 200, 1000, 4800}. The best configura-
tion obtained by valid set are: γ = 4, λ = 0.001, θmin =
0.7, n = 20, B = 1000 and taking L1 as dissimilarity on
WN11; γ = 1, λ = 0.001, θmin = 0.9, n = 100, B = 200
and taking L2 as dissimilarity on FB13; γ = 1.5, λ =
0.001, θmin = 0.0, n = 100, B = 4800 and taking L1 as
dissimilarity on FB15k.

Comparisions We compare our approach with the mod-
els described in Related Work. As we construct negative
triplets for FB15k by ourselves, we revaluate the dataset in-
stead of reporting the results of (Wang et al., 2014; Lin et al.,
2015) directly. Table 3 shows the evaluation results of triplet
classification. On WN11, TranSparse obtains the accuracy
of 86.8%, which outperforms all the baseline models. On
FB13, all the accuracies of our method are higher than that
of Trans(E, H, and R) significantly, and they are near to the
best accuracy of 89.1% of TransD. On FB15k, our approach
also achieves state-of-the-art result by 88.5%.

4We report the average results of 5 times for “US” to ensure the
results are more believable.

Data sets WN11 FB13 FB15k

SE 53.0 75.2 -
SME(bilinear) 70.0 63.7 -

SLM 69.9 85.3 -
LFM 73.8 84.3 -
NTN 70.4 87.1 68.2

TransE(unif / bern) 75.9 / 75.9 70.9 / 81.5 77.3 / 79.8
TransH(unif / bern) 77.7 / 78.8 76.5 / 83.3 74.2 / 79.9
TransR(unif / bern) 85.5 / 85.9 74.7 / 82.5 81.1 / 82.1

CTransR(bern) 85.7 - 84.3
TransD(unif / bern) 85.6 / 86.4 85.9 / 89.1 86.4 / 88.0

TranSparse(share, S, unif / bern) 86.2 / 86.3 85.5 / 87.8 85.7 / 87.9
TranSparse(share, US, unif / bern) 86.3 / 86.3 85.3 / 87.7 86.2 / 88.1
TranSparse(separate, S, unif / bern) 86.2 / 86.4 86.7 / 88.2 87.1 / 88.3

TranSparse(separate, US, unif / bern) 86.8 / 86.8 86.5 / 87.5 87.4 / 88.5

Table 3: Experimental results of Triplet Classification(%).
“S” and “US” represent the structured and unstructured
sparse patterns, respectively4.

Analysis (1) In Table 3, TranSparse(share) obtains bet-
ter performance than Trans(E, H, R) and is near to TransD,
which indicates that the heterogeneity is important in our
tasks. In Figure 3, TranSparse improves the performance
of TransR both on simple and complex relations. For the
reason, we assume that TranSparse has fewer parameters
for simple relations and more parameters for complex rela-
tions than TransR. Therefore, TranSparse deals with the data
heterogeneity better; (2) TranSparse(separate) obtains better
performance than TranSparse(share), which illustrates that
the imbalance is also a crucial issue and our method can
reduce its negative impacts; (3) Unstructured pattern often
works slightly better than structured patter. It may be that
unstructured pattern is closer to the optimum sparse pattern.

Link Prediction

Link prediction is to predict the missing h or t for a golden
triplet (h, r, t). In this task, we remove the head or tail en-
tity and then replace it with all the entities in dictionary in
turn for each triplet in test set. We first compute scores of

989

Data sets WN18 FB15K

Metric
Mean Rank Hits@10 Mean Rank Hits@10

Raw Filt Raw Filt Raw Filt Raw Filt

RESCAL (Nickle, Tresp, and Kriegel 2011) 1,180 1,163 37.2 52.8 828 683 28.4 44.1
SE (Bordes et al. 2011) 1,011 985 68.5 80.5 273 162 28.8 39.8

SME (linear / bilinear) (Bordes et al.2012) 545 / 526 533 / 509 65.1 / 54.7 74.1 / 61.3 274 / 284 154 / 158 30.7 / 31.3 40.8 / 41.3
LFM (Jenatton et al. 2012) 469 456 71.4 81.6 283 164 26.0 33.1
TransE (Bordes et al. 2013) 263 251 75.4 89.2 243 125 34.9 47.1

TransH (unif / bern) (Wang et al. 2014) 318 / 401 303 / 388 75.4 / 73.0 86.7 / 82.3 211 / 212 84 / 87 42.5 / 45.7 58.5 / 64.4
TransR (unif / bern) (Lin et al. 2015) 232 / 238 219 / 225 78.3 / 79.8 91.7 / 92.0 226 / 198 78 / 77 43.8 / 48.2 65.5 / 68.7

CTransR (unif / bern) (Lin et al. 2015) 243 / 231 230 / 218 78.9 / 79.4 92.3 / 92.3 233 / 199 82 / 75 44.0 / 48.4 66.3 / 70.2
TransD (unif / bern) (Ji et al. 2015) 242 / 224 229 / 212 79.2 / 79.6 92.5 / 92.2 211 / 194 67 / 91 49.4 / 53.4 74.2 / 77.3
TranSparse (share, S, unif / bern) 248 / 237 236 / 224 79.7 / 80.4 93.5 / 93.6 226 / 194 95 / 88 48.8 / 53.4 73.4 / 77.7

TranSparse (share, US, unif / bern) 242 / 233 229 / 221 79.8 / 80.5 93.7 / 93.9 231 / 191 101 / 86 48.9 / 53.5 73.5 / 78.3
TranSparse (separate, S, unif / bern) 235 / 224 223 / 221 79.0 / 79.8 92.3 / 92.8 211 / 187 63 / 82 50.1 / 53.3 77.9 / 79.5

TranSparse (separate, US, unif / bern) 233 / 223 221 / 211 79.6 / 80.1 93.4 / 93.2 216 / 190 66 / 82 50.3 / 53.7 78.4 / 79.9

Table 4: Experimental results of link prediction. “S” and “US” represent structured and unstructured pattern, respectively (%).

Tasks Prediction Head (Hits@10) Prediction Tail (Hits@10)

Relation Category 1-to-1 1-to-N N-to-1 N-to-N 1-to-1 1-to-N N-to-1 N-to-N

SE (Bordes et al. 2011) 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3
SME (linear / Bilinear) (Bordes et al.2012) 35.1 / 30.9 53.7 / 69.6 19.0 / 19.9 40.3 32.7 / 38.6 / 28.2 14.9 / 13.1 61.6 / 76.0 43.3 / 41.8

TransE (Bordes et al. 2013) 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0
TransH (unif / bern) (Wang et al. 2014) 66.7 / 66.8 81.7 / 87.6 30.2 / 28.7 57.4 / 64.5 63.7 / 65.5 30.1 / 39.8 83.2 / 83.3 60.8 / 67.2
TransR (unif / bern) (Lin et al. 2015) 76.9 / 78.8 77.9 / 89.2 38.1 / 34.1 66.9 / 69.2 76.2 / 79.2 38.4 / 37.4 76.2 / 90.4 69.1 / 72.1

CTransR (unif / bern) (Lin et al. 2015) 78.6 / 81.5 77.8 / 89.0 36.4 / 34.7 68.0 / 71.2 77.4 / 80.8 37.8 / 38.6 78.0 / 90.1 70.3 / 73.8
TransD (unif / bern) (Ji et al. 2015) 80.7 / 86.1 85.8 / 95.5 47.1/ 39.8 75.6 / 78.5 80.0 / 85.4 54.5/ 50.6 80.7 / 94.4 77.9 / 81.2

TranSparse(share, S, unif / bern) 83.2 / 87.5 86.4 / 95.9 50.3 / 44.1 73.9 / 78.7 84.8 / 87.6 57.7 / 55.6 83.3 / 93.9 75.3 / 80.6
TranSparse(share, US, unif / bern) 83.4 / 87.1 86.7 / 95.8 49.8 / 44.2 73.4 / 79.1 84.8 / 87.2 57.3 / 55.5 78.2 / 94.1 76.4 / 81.7
TranSparse(separate, S, unif / bern) 82.3 / 86.8 85.2 / 95.5 51.3 / 44.3 79.6 / 80.9 82.3 / 86.6 59.8 / 56.6 84.9 / 94.4 82.1 / 83.3

TranSparse(separate, US, unif / bern) 83.2 / 87.1 85.2 / 95.8 51.8 / 44.4 80.3 / 81.2 82.6 / 87.5 60.0 / 57.0 85.5 / 94.5 82.5 / 83.7

Table 5: Experimental results of FB15k by mapping properties of relations (%).

0 100 200 300 400 500 600 700 800 900 1000

0.65
0.7

0.75
0.8

0.85
0.9

0.95

relation index in test set (sorted by the number of entity paris linked by them)tri
pl

et
 c

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

(%
) Second order fitting curves of accuracy

TransR
TranSparse(separate)
TranSparse(share)

Figure 3: Second order fitting curves of accuracy of several
embedding models on FB15k. There are 961 relations in test
set. The horizontal axis represents relation index sorted by
the number of entity pairs they link in train set, and the ver-
tical axis represents the triplet classification accuracy.

those corrupted triplets and then rank them by ascending or-
der; then the rank of the correct entity is finally stored. The
task emphasizes the rank of the correct entity instead of only
finding the best one entity. We report two measures as our
evaluation metrics: the average rank of all correct entities
(Mean Rank) and the proportion of correct entities ranked
in top 10 (Hits@10). We call the evaluation setting “Raw”.
Noting the fact that a corrupted triplet may also exist in the
knowledge graph, the corrupted triplet should be regarded

as a correct triplet (Bordes et al., 2013). Hence, we remove
the corrupted triplets included in train, valid and test sets be-
fore ranking. We call this evaluation setting ”Filter”. In this
paper, we will report evaluation results of the two settings.

In this task, we use two datasets: WN18 and FB15k. We
select the margin γ among {1, 2, 3.5, 4}, the learning rate λ
for SGD among {0.1, 0.01, 0.001}, the minimum sparse de-
gree θmin among {0.0, 0.3, 0.5, 0.8}, the dimension of vec-
tors n among {20, 50, 80, 100}, and the mini-batch size B
among {100, 200, 1400, 4800}. On WN18, the best config-
uration obtained by valid set are: γ = 3.5, θmin = 0.0, λ =
0.01, n = 50, B = 1400 and taking L1 as dissimilarity.

Comparisions Experimental results on both WN18 and
FB15k are shown in Tabel 4. On WN18, our approach im-
proves the accuracy of Hits@10 on ”Filter” significantly.
On FB15k, TranSparse achieves the accuracy of 79.9% on
Hits@10, which outperforms all the baseline methods. For
the comparison of Hits@10 of different kinds of relations,
Table 5 shows the detailed results by mapping properties
of relations on FB15k. In Table 5, TranSparse outperforms
Trans(E, H ,R, and D) on all kinds of relations.

Analysis (1) In Table 4, TranSparse(share) outperforms
Trans(E, H, R) and is near to TransD, which shows that our
approach deals with the data heterogeneity well; (2) In Ta-

990

ble 4, TranSparse(separate) obtains better perfermance than
TranSparse(share) in most cases. And in Table 5, for the
typical unbalanced relations (1-to-N, N-to-1 and N-to-N),
TranSparse(separate) outperforms TranSparse(share) a rela-
tively large margin on most prediction accuracies. Hence,
we can conclude that TranSparse(separate) can overcome
the heterogeneity and imbalance of data simultaneously;
and (3)Unstructured pattern also get better performance than
structured pattern.

Conclusions and Future Work

We introduced a model named TranSparse that embed
knowledge graphs into continues vector space with adaptive
sparse transfer matrices for their completion. It considers the
heterogeneity and imbalance of data. In addition, we provide
two sparse patterns for transfer matrices and analyze their
advantages and disadvantages. Extensive experiments show
that TranSparse outperforms all baseline models on triplet
classification and link prediction tasks. We will explore the
best sparse patterns for transfer matrices in the future.

Acknowledgements

The work was supported by the Natural Science Founda-
tion of China (No. 61533018), the National Basic Research
Program of China (No. 2014CB340503) and the National
Natural Science Foundation of China (No. 61272332). And
this research work was also supported by Google through
focused research awards program.

References

Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; and Taylor,
J. 2008. Freebase: a collaboratively created graph database
for structuring human knowledge. In Proceedings of the
2008 ACM SIGMOD international conference on Manage-
ment of data, 1247–1250. ACM.
Bordes, A.; Weston, J.; Collobert, R.; and Bengio, Y. 2011.
Learning structured embeddings of knowledge bases. In
Conference on Artificial Intelligence, number EPFL-CONF-
192344.
Bordes, A.; Glorot, X.; Weston, J.; and Bengio, Y. 2012.
Joint learning of words and meaning representations for
open-text semantic parsing. In International Conference on
Artificial Intelligence and Statistics, 127–135.
Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for modeling
multi-relational data. In Advances in Neural Information
Processing Systems, 2787–2795.
Bordes, A.; Glorot, X.; Weston, J.; and Bengio, Y. 2014. A
semantic matching energy function for learning with multi-
relational data. Machine Learning 94(2):233–259.
Candès, E. J.; Li, X.; Ma, Y.; and Wright, J. 2011. Robust
principal component analysis? Journal of the ACM (JACM)
58(3):11.
Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgra-
dient methods for online learning and stochastic optimiza-
tion. The Journal of Machine Learning Research 12:2121–
2159.

Guo, S.; Wang, Q.; Wang, B.; Wang, L.; and Guo, L. 2015.
Semantically smooth knowledge graph embedding. In Pro-
ceedings of ACL, 84–94.
He, S.; Liu, K.; Ji, G.; and Zhao, J. 2015. Learning to
represent knowledge graphs with gaussian embedding. In
Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management. ACM, 2015,
623–632.
Jenatton, R.; Roux, N. L.; Bordes, A.; and Obozinski, G. R.
2012. A latent factor model for highly multi-relational
data. In Advances in Neural Information Processing Sys-
tems, 3167–3175.
Ji, G.; He, S.; Xu, L.; Liu, K.; and Zhao, J. 2015. Knowledge
graph embedding via dynamic mapping matrix. In Proceed-
ings of ACL, 687–696.
Kennedy, R., and Examination II, W. P. 2013. Low-rank
matrix completion. unpublished (” http://www. seas. upenn.
edu/kenry/”).
Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; and Zhu, X. 2015. Learn-
ing entity and relation embeddings for knowledge graph
completion. In Proceedings of AAAI, 2181–2187.
Miller, G. A. 1995. Wordnet: a lexical database for english.
Communications of the ACM 38(11):39–41.
Nickel, M., and Tresp, V. 2013a. An analysis of tensor
models for learning on structured data. In Machine Learning
and Knowledge Discovery in Databases. Springer. 272–287.
Nickel, M., and Tresp, V. 2013b. Tensor factorization for
multi-relational learning. In Machine Learning and Knowl-
edge Discovery in Databases. Springer. 617–621.
Nickel, M.; Murphy, K.; Tresp, V.; and Gabrilovich, E.
2015. A review of relational machine learning for knowl-
edge graphs. In Proceedings of the IEEE.
Nickel, M.; Tresp, V.; and Kriegel, H.-P. 2011. A three-
way model for collective learning on multi-relational data.
In Proceedings of the 28th international conference on ma-
chine learning (ICML-11), 809–816.
Nickel, M.; Tresp, V.; and Kriegel, H.-P. 2012. Factorizing
yago: scalable machine learning for linked data. In Pro-
ceedings of the 21st international conference on World Wide
Web, 271–280. ACM.
Saad, Y. 2003. Iterative methods for sparse linear systems.
Siam.
Socher, R.; Chen, D.; Manning, C. D.; and Ng, A. 2013.
Reasoning with neural tensor networks for knowledge base
completion. In Advances in Neural Information Processing
Systems, 926–934.
Sutskever, I.; Tenenbaum, J. B.; and Salakhutdinov, R. R.
2009. Modelling relational data using bayesian clustered
tensor factorization. In Advances in neural information pro-
cessing systems, 1821–1828.
Wang, Z.; Zhang, J.; Feng, J.; and Chen, Z. 2014. Knowl-
edge graph embedding by translating on hyperplanes. In
Proceedings of the Twenty-Eighth AAAI Conference on Ar-
tificial Intelligence, 1112–1119. Citeseer.

991

