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Abstract

We investigate the problem of learning description logic (DL)
ontologies in Angluin et al.’s framework of exact learning via
queries posed to an oracle. We consider membership queries
of the form “is a tuple �a of individuals a certain answer to
a data retrieval query q in a given ABox and the unknown
target ontology?” and completeness queries of the form “does
a hypothesis ontology entail the unknown target ontology?”.
Given a DL L and a data retrieval query language Q, we study
polynomial learnability of ontologies in L using data retrieval
queries in Q and provide an almost complete classification
for DLs that are fragments of EL with role inclusions and of
DL-Lite and for data retrieval queries that range from atomic
queries and EL/ELI-instance queries to conjunctive queries.
Some results are proved by non-trivial reductions to learning
from subsumption examples.

Introduction

Building an ontology is prone to errors, time consuming, and
costly. The research community has addressed this problem in
many different ways, for example, by supplying tool support
for editing ontologies (Musen 2013; Bechhofer et al. 2001;
Day-Richter et al. 2007), developing reasoning support for
debugging ontologies (Wang et al. 2005; Schlobach et al.
2007), supporting modular ontology design (Stuckenschmidt,
Parent, and Spaccapietra 2009), and by investigating auto-
mated ontology generation from data or text (Cimiano, Hotho,
and Staab 2005; Buitelaar, Cimiano, and Magnini 2005;
Lehmann and Völker 2014; Borchmann and Distel 2011;
Ma and Distel 2013). One major problem when building an
ontology is the fact that domain experts are rarely ontology
engineering experts and that, conversely, ontology engineers
are typically not familiar with the domain of the ontology.
An ontology building project therefore often relies on the
successful communication between an ontology engineer
(familiar with the semantics of ontology languages) and a
domain expert (familiar with the domain of interest). In this
paper, we consider a simple model of this communication
process and analyse, within this model, the computational
complexity of reaching a correct and complete domain ontol-
ogy. We assume that
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• the domain expert knows the domain ontology and its vo-
cabulary without being able to formalize or communicate
this ontology;

• the domain expert is able to communicate the vocabulary
of the ontology and shares it with the ontology engineer.
Thus, the domain expert and ontology engineer have a com-
mon understanding of the vocabulary of the ontology. The
ontology engineer knows nothing else about the domain.

• the ontology engineer can pose queries to the domain ex-
pert which the domain expert answers truthfully. Assuming
that the domain expert can interpret data in her area of ex-
pertise, the main queries posed by the ontology engineer
are based on data retrieval examples:

– assume a data instance A and a data retrieval query q(�x)
are given. Is the tuple �a of individuals a certain answer
to query q(�x) in A and the ontology O?

In addition, we require a way for the ontology engineer to
find out whether she has reconstructed the target ontology
already and, if this is not the case, to request an example
illustrating the incompleteness of the reconstruction. We
abstract from defining a communication protocol for this,
but assume for simplicity that the following query can be
posed by the ontology engineer:

– Is this ontology H complete? If not, return a data in-
stance A, a query q(�x), and a tuple �a such that �a is a
certain answer to q(�x) in A and the ontology O and is
not a certain answer to q(�x) in A and the ontology H.

Given this model, our question is whether the ontology engi-
neer can learn the target ontology O and which computational
resources are required for this depending on the ontology lan-
guage in which the ontology O and the hypothesis ontology
H are formulated. Our model obviously abstracts from a
number of fundamental problems in building ontologies and
communicating about them. In particular, it makes the as-
sumption that the domain expert knows the domain ontology
and its vocabulary (without being able to formalize it) de-
spite the fact that finding an appropriate vocabulary for a
domain of interest is a major problem in ontology design
(Lehmann and Völker 2014). We make this assumption here
in order to isolate the problem of communication about the
logical relationships between known vocabulary items and
its dependence on the ontology language within which the
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relationships can be formulated.
The model described above is an instance of Angluin et

al.’s framework of exact learning via queries to an oracle (An-
gluin 1987). The queries using data retrieval examples can
be regarded as membership queries posed by a learner to an
oracle and the completeness query based on a hypothesis H
can be regarded as an equivalence query by the learner to the
oracle. Formulated in Angluin’s terms we are thus interested
in whether there exists a deterministic learning algorithm
that poses membership and equivalence queries of the above
form to an oracle and that polynomially learns an arbitrary
ontology over a given ontology language.

As usual in the exact learning literature, we consider two
distinct notions of polynomial learnability: polynomial time
learnability and polynomial query learnability. If one can
learn TBoxes1 in a given DL L with a deterministic algo-
rithm using polynomially many polynomial size queries, then
we say that TBoxes in L are polynomial query learnable. If
one can learn TBoxes in L with a deterministic algorithm
in polynomial time, then we say that TBoxes in L are poly-
nomial time learnable. Precise definitions are given below.
Clearly, polynomial time learnability implies polynomial
query learnability. The converse does not hold for arbitrary
learning problems. Intuitively, when studying polynomial
time learnability one takes into account potentially costly
transformations of counterexamples to equivalence queries
provided by the oracle that the learning algorithm is required
to do when it analyses the counterexamples. In contrast, when
studying polynomial query learnability one abstracts from
such intermediate computations and focuses on the learn-
ing protocol itself. It turns out that for the DLs considered
in this paper in many cases there is no difference between
polynomial time and polynomial query learnability; the only
exception, however, is rather interesting and will be discussed
in detail below.

We investigate polynomial learnability for seven DLs and
four query languages: the DLs are EL and its fragments ELlhs

and ELrhs in which complex concepts are allowed only on
the left-hand and, respectively, right-hand side of concept
inclusions. We also consider their extensions ELH, ELHlhs,
and ELHrhs with role inclusions. In addition, we consider the
DL-Lite dialect DL-Lite∃H which is defined as the extension
of ELHrhs with inverse roles. We thus consider significant
fragments of the OWL2 EL and OWL2 QL profiles of the web
ontology language OWL. The introduction of the fragments
ELlhs and ELrhs is motivated by the fact that EL TBoxes
typically cannot be polynomially learned (see below). In
data retrieval examples we consider the following standard
query languages: atomic queries (AQs), EL-instance queries
(EL-IQs), ELI-instance queries (ELI-IQs), and conjunctive
queries (CQs).

Our results regarding polynomial query learnability of
TBoxes are presented in Table 1. In the table, EL(H) ranges
over EL and ELH and (–) denotes that the query language is
not expressive enough to determine a unique (up to logical
equivalence) TBox in the corresponding DL using data re-
trieval examples. Thus, in those cases no learning algorithm

1In the DL context we identify ontologies with TBoxes.

exists, whereas in all other cases one can easily construct a
learning algorithm that makes exponentially many queries.
Note that the table shows that for the EL-dialects polynomial
query learnability does not depend on whether role inclusions
are present (though some proofs are considerably harder with
role inclusions). A particularly interesting result is that ELrhs

TBoxes are polynomially query learnable using IQs in data
retrieval examples but not using CQs. Thus, a more expres-
sive language for communication does not always lead to
more efficient communication.

The bottom row shows polynomial query learnability re-
sults for the case in which concept subsumptions rather than
data retrieval examples are used in the communication be-
tween the learner and the oracle. Except for polynomial query
learnability of ELHlhs (which we prove in this paper), the
results for subsumption are from (Konev et al. 2014).2 Our
polynomial query learnability results for data retrieval ex-
amples are by reductions to learnability using concept sub-
sumptions. Our focus on data retrieval examples rather than
subsumptions is motivated by the observation that domain
experts are often more familiar with querying data in their
domain than with the logical notion of subsumption between
complex concepts.

We now discuss our results for polynomial time learnability.
As mentioned above, all non polynomial query learnability
results transfer to non polynomial time learnability results.
Moreover, in both the subsumption and the data retrieval
frameworks our proofs of positive polynomial query learn-
ability results for ELlhs, ELHlhs, ELrhs, and ELHrhs actually
prove polynomial time learnability. In fact, the only case in
which we have not been able to extend a polynomial query
learnability result to a polynomial time learnability result is
for DL-Lite∃H TBoxes: it remains open whether DL-Lite∃H
TBoxes can be learned in polynomial time using subsumption
or ELI-IQs in data retrieval queries. The reason is interest-
ing: checking whether an ELI-IQ is entailed by a DL-Lite∃H
TBox and ABox is NP-complete in combined complexity
(Kikot, Kontchakov, and Zakharyaschev 2011) and such en-
tailment checks are required in our polynomial query learning
algorithm to transform counterexamples provided by the ora-
cle. It remains open whether our learning algorithm can be
modified in such a way that no such entailment checks are
required. In contrast to DL-Lite∃H, in ELHrhs the correspond-
ing entailment problem is in PTime in combined complexity
(Bienvenu et al. 2013), and so a polynomial time learning
algorithm can use entailment checks.

Finally, we note that the two open problems in Table 1 for

2The authors of (Konev et al. 2014) consider polynomial time
learnability only. As polynomial time learnability implies polyno-
mial query learnability, the corresponding results in Table 1 follow.
Note that the learning algorithm for DL-Lite∃H TBoxes given in
(Konev et al. 2014) only shows polynomial query learnability of
DL-Lite∃H TBoxes using subsumption queries but does not show
polynomial time learnability of DL-Lite∃H TBoxes using subsump-
tion queries (it is wrongly assumed that checking T |= C � D is
in PTime for DL-Lite∃H TBoxes T and concept inclusions C � D).
In fact, polynomial time learnability of DL-Lite∃H TBoxes using
subsumption queries is an open problem (see below). All other
polynomial time learnability results in (Konev et al. 2014) hold.
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Table 1: Positive (�) and negative (�) results regarding poly-
nomial query learnability.

Framework EL(H)lhs EL(H)rhs EL(H) DL-Lite∃H

D
at

a AQs � – – –
EL-IQs � � � –
ELI-IQs � � ? �
CQs � � � ?

Subsump. � � � �

polynomial query learnability are open for polynomial time
learnability as well.

Throughout this paper we focus on polynomial query learn-
ability and only provide a brief discussion of our polyno-
mial time learnability results. A more detailed discussion of
polynomial time learnability as well as other proof details
are provided in an appendix of this paper, available from
http://cgi.csc.liv.ac.uk/∼frank/publ/publ.html

Related Work Apart from Angluin’s classical learning
algorithm for propositional Horn, we highlight investigations
of exact learnability of fragments of FO Horn (Reddy and
Tadepalli 1999; Arias and Khardon 2002; Arias, Khardon,
and Maloberti 2007; Selman and Fern 2011) and, more re-
cently, schema mappings (ten Cate, Dalmau, and Kolaitis
2012). ELHlhs can be seen as a fragment of FO Horn
which, in contrast to many existing approaches, allows re-
cursion and does not impose bounds on the number of vari-
ables per clause. In DL, exact learning has been studied for
the description logic CLASSIC in (Frazier and Pitt 1996;
Cohen and Hirsh 1994) where it is shown that CLASSIC
concept expressions (but not TBoxes) can be learned in poly-
nomial time. In this case, membership queries ask whether
the target concept subsumes a given concept. Related work
on machine learning in DL also include learning DL concept
expressions using refinement operators (Lehmann and Hitzler
2010) and completing knowledge bases using formal concept
analysis (Baader et al. 2007).

All exact learning frameworks for logical theories consid-
ered so far are based on interpretations (Angluin, Frazier,
and Pitt 1992; ten Cate, Dalmau, and Kolaitis 2012; Klar-
man and Britz 2015) or entailments (Frazier and Pitt 1993;
Reddy and Tadepalli 1998; Arias and Khardon 2002). In this
paper we introduce a new class of examples based on certain
answers to data retrieval queries.

Preliminaries

Let NC and NR be countably infinite sets of concept and
role names, respectively. We begin by introducing members
of the EL family of DLs (Baader, Brandt, and Lutz 2005).
An EL concept expression is formed according to the rule
C,D := A | � | C � D | ∃r.C, where A ranges over
NC and r ranges over NR. An EL concept inclusion (CI)
takes the form C � D, where C and D are EL concept
expressions. An EL TBox T is a finite set of EL CIs. An EL
role inclusion (RI) takes the form r � s, where r, s ∈ NR and
an EL RBox R is a finite set of EL role inclusions. The union

of an EL TBox and an EL RBox is called a ELH TBox. We
also consider the fragments ELlhs and ELrhs of EL in which
concepts on the right-hand side and, respectively, left-hand
side of CIs must be concept names. Thus, ∃r.A � B is an
ELlhs CI but not an ELrhs CI and A � ∃r.B is an ELrhs CI
but not an ELlhs CI. By ELHlhs and ELHrhs we denote the
extension of these fragments with EL RIs.

A role is a role name or an inverse role r− with r ∈ NR.
The language DL-Lite∃H is obtained from ELHrhs by admit-
ting both role names and inverse roles in concept expressions
and in role inclusions and by admitting, in addition to concept
names, basic concepts ∃r.�, with r a role, on the left-hand
side of CIs. Call an EL concept expression using inverse roles
an ELI concept expression. Then DL-Lite∃H coincides with
the extension of the language DL-LiteR (without disjointness
constraints) introduced in (Calvanese et al. 2007) with arbi-
trary ELI concept expressions on the right-hand side of CIs.
The signature ΣT of a TBox T is the set of concept and role
names that occur in T .

In description logic, data are stored in ABoxes. Let NI be
a countably infinite set of individual names. An ABox A is a
finite non-empty set containing assertions A(a) and r(a, b),
where a, b are individuals in NI, A is a concept name and r is
a role. Ind(A) denotes the set of individuals that occur in A.
A is a singleton ABox if it contains only one ABox assertion.

We consider the main query languages for retrieving data
from ABoxes using DL TBoxes. An atomic query (AQ) q
takes the form A(a) or r(a, b), where A ∈ NC, r ∈ NR,
and a, b ∈ NI. An EL-instance query (EL-IQ) q takes the
form C(a) or r(a, b), where C is an EL concept expression,
r ∈ NR and a, b ∈ NI. ELI-instance queries (ELI-IQs) are
defined in the same way by replacing EL concept expressions
with ELI concept expressions. Finally, a conjunctive query
(CQ) q is a first-order sentence ∃�xϕ(�a, �x), where ϕ is a con-
junction of atoms of the form r(t1, t2) or A(t), where t1, t1, t
can be individual names from �a or individual variables from
�x. We often slightly abuse notation and denote by AQ the set
of AQs and similarly for EL-IQs, ELI-IQs and CQs.

The size of a concept expression C (TBox T , ABox A,
query q), denoted by |C| (and, respectively, |T |, |A|, and |q|)
is the length of the word that represents it.

The semantics of DLs is defined as usual (Baader et al.
2003). For an interpretation I, we write I |= α to state
that a CI, RI, ABox assertion, or query α is true in I. An
interpretation I is a model of a knowledge base (KB) (T ,A)
if I |= α for all α ∈ T ∪A. We set (T ,A) |= α and say that
α is entailed by (T ,A) if I |= α for all models I of (T ,A).

A learning framework F is a triple (X,L, μ), where X is
a set of examples (also called domain or instance space), L is
a set of learning concepts, and μ is a mapping from L to 2X .
Given a DL L, the subsumption learning framework FS(L),
studied in (Konev et al. 2014), is defined as (X,L, μ), where
L is the set of all TBoxes that are formulated in L; X is the
set of concept and role inclusions α that can occur in TBoxes
of L; and μ(T ) is defined as {α ∈ X | T |= α}, for every
T ∈ L. It should be clear that μ(T ) = μ(T ′) iff the TBoxes
T and T ′ entail the same set of inclusions, that is, they are
logically equivalent.

For a DL L and query language Q, we study the data re-
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trieval learning framework FD(L,Q) defined as (X,L, μ),
where L is again the set of all TBoxes that are formulated in
L; X is the set of data retrieval examples of the form (A, q),
where A is an ABox and q ∈ Q; and μ(T ) = {(A, q) ∈
X | (T ,A) |= q}. We only consider data retrieval frame-
works FD(L,Q) in which μ(T ) = μ(T ′) iff the TBoxes
T and T ′ are logically equivalent. Note that this is not the
case for the pairs (L,AQ) with L from ELrhs(H), EL(H),
DL-Lite∃H, and for the pair (DL-Lite∃H, EL-IQ) (see Table 1).
For example, for the EL TBoxes T1 = {A � ∃r.�} and
T2 = {A � ∃r.∃r.�} we have (T1,A) |= q iff (T2,A) |= q
for every ABox A and AQ q. Thus, T1 and T2 cannot be
distinguished using data retrieval examples based on AQs
and so EL TBoxes cannot be learned using such examples.

We now give a formal definition of polynomial query learn-
ability within a learning framework. Given a learning frame-
work F = (X,L, μ), we are interested in the exact identifica-
tion of a target learning concept l ∈ L by posing queries to
oracles. Let MEMl,X be the oracle that takes as input some
x ∈ X and returns ‘yes’ if x ∈ μ(l) and ‘no’ otherwise.
We say that x is a positive example for l if x ∈ μ(l) and a
negative example for l if x �∈ μ(l). Then a membership query
is a call to the oracle MEMl,X . Similarly, for every l ∈ L, we
denote by EQl,X the oracle that takes as input a hypothesis
learning concept h ∈ L and returns ‘yes’, if μ(h) = μ(l),
or a counterexample x ∈ μ(h) ⊕ μ(l) otherwise, where ⊕
denotes the symmetric set difference. An equivalence query
is a call to the oracle EQl,X .

We say that a learning framework (X,L, μ) is exact learn-
able if there is an algorithm A such that for any target l ∈ L
the algorithm A always halts and outputs l′ ∈ L such that
μ(l) = μ(l′) using membership and equivalence queries an-
swered by the oracles MEMl,X and EQl,X , respectively. at
any stage in a run A learning framework (X,L, μ) is poly-
nomial query exact learnable if it is exact learnable by an
algorithm A such that at every step the sum of the sizes of the
inputs to membership and equivalence queries made by A up
to that step is bounded by a polynomial p(|l|, |x|), where l is
the target and x ∈ X is the largest counterexample seen so
far (Arias 2004).

An important class of learning algorithms—in particular,
all algorithms presented in (Konev et al. 2014; Frazier and
Pitt 1993; Reddy and Tadepalli 1998) fit in this class—is the
algorithm in which the hypothesis h of any equivalence query
is of polynomial size in l and such that μ(h) ⊆ μ(l). Then
counterexamples returned by the EQl,X oracles are always
positive. We say that such algorithms use positive bounded
equivalence queries. The learning algorithms studied in this
paper are positive and, therefore, the equivalence queries
posed to the domain expert are in fact completeness queries
that ask whether the hypothesis entails the target TBox.

Polynomial Query Learnability

In this section we prove the positive results presented in Table
1 for the data retrieval setting by reduction to the subsumption
setting. We employ the following result based on (Konev et
al. 2014), except for FS(ELHlhs) which is proved in the
appendix by extending the proof for FS(ELlhs) in (Konev et

A

r,s

A
A

...

A
s

A
r

s

...

A
s

A
r

r

s
A

...

A
s

A
r

s

...

A
s

A
r

r

r

Figure 1: An ABox A = {r(a, a), s(a, a), A(a)} and its
unravelling up to level n.

al. 2014).

Theorem 1 The subsumption learning frameworks
FS(ELlhs), FS(ELHlhs), FS(ELrhs), FS(ELHrhs) and
FS(DL-Lite∃H) are polynomial query exact learnable with
membership and positive bounded equivalence queries.

We begin by illustrating the idea of the reduction for ELlhs

and AQs. To learn a TBox from data retrieval examples we
run a learning from subsumptions algorithm as a ‘black box’.
Every time the learning from subsumptions algorithm makes
a membership or an equivalence query we rewrite the query
into the data setting and pass it on to the data retrieval oracle.
The oracle’s answer, rewritten back to the subsumption set-
ting, is given to the learning from subsumptions algorithm.
When the learning from subsumptions algorithm terminates
we return the learnt TBox. This reduction is made possible by
the close relationship between data retrieval and subsumption
examples. For every TBox T and inclusions C � B, one can
interpret a concept expression C as a labelled tree and encode
this tree as an ABox AC with root ρC such that T |= C � B
iff (T ,AC) |= B(ρC).

Then, membership queries in the subsumption setting can
be answered with the help of a data retrieval oracle due to
the relation between subsumptions and AQs described above.
An inclusion C � B is a (positive) subsumption example
for some target TBox T if, and only if, (AC , B(ρC)) is a
(positive) data retrieval example for the same target T . To
handle equivalence queries, we need to be able to rewrite
data retrieval counterexamples returned by the data retrieval
oracle into the subsumption setting. For every TBox T and
data retrieval query (A, B(a)) one can construct a concept
expression CA such that (T ,A) |= B(a) iff T |= CA � B.
Such a concept expression CA can be obtained by unrav-
elling A into a tree-shaped ABox and representing it as a
concept expression. This unravelling, however, can increase
the ABox size exponentially. Thus, to obtain a polynomial
query bound on the the learning process, CA � D cannot be
simply returned as an answer to a subsumption equivalence
query.

For example, for a target TBox T = {∃rn.A �
B} and a hypothesis H = ∅ the data retrieval query
(A, B(a)), where A = {r(a, a), s(a, a), A(a)}, is a pos-
itive counterexample. The tree-shaped unravelling of A
up to level n is a full binary tree of depth n, as shown
in Fig. 1. On the other hand, the non-equivalence of T
and H can already be witnessed by (A′, B(a)), where
A′ = {r(a, a), A(a)}. The unravelling of A′ up to level
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n produces a linear size ABox {r(a, a2), r(a2, a3), . . . ,
r(an−1, an), A(a), A(a2), . . . , A(an)}, corresponding to
the left-most path in Fig. 1, which, in turn, is linear-size
w.r.t. the target inclusion ∃rn.A � B. Notice that A′ is ob-
tained from A by removing the s(a, a) edge and checking,
using membership queries, whether (T ,A′) |= q still holds.
In other words, one might need to ask further membership
queries in order to rewrite answers to data retrieval equiv-
alence queries given by the data retrieval oracle into the
subsumption setting.

We address the need of rewriting counterexamples by in-
troducing an abstract notion of reduction between different
exact learning frameworks. To simplify, we assume that both
learning frameworks use the same set of learning concepts L
and only consider positive bounded equivalence queries. We
say that a learning framework F = (X,L, μ) positively poly-
nomial query reduces to F′ = (X ′,L, μ′) if, for any l, h ∈ L,
μ(h) ⊆ μ(l) if, and only if, μ′(h) ⊆ μ′(l); and for some
polynomials p1(·), p2(·) and p3(·, ·) there exist a function
fMEM : X ′ → X , translating an F′ membership query to F,
and a partial function fEQ : L × L × X → X ′ defined for
every (l, h, x) such that |h| ≤ p1(|l|), translating an answer
to an F equivalence query to F′, such that:

• for all x′ ∈ X ′ we have x′ ∈ μ′(l) iff fMEM(x
′) ∈ μ(l);

• for all x ∈ X we have x ∈ μ(l) \ μ(h) iff fEQ(l, h, x) ∈
μ′(l) \ μ′(h);

• |fMEM(x
′)| ≤ p2(|x′|);

• the sum of sizes of inputs to queries used to compute
fEQ(l, h, x) is bounded by p3(|l|, |x|), |fEQ(l, h, x)| ≤
p3(|l|, |x|) and l can only be accessed by calls to the oracle
MEMl,X .

Note that even though fEQ takes h as input, the polynomial
query bound on computing fEQ(l, h, x) does not depend on
the size of h as fEQ is only defined for h polynomial in the
size of l.

Theorem 2 Let F = (X,L, μ) and F′ = (X ′,L, μ′) be
learning frameworks. If there exists a positive polynomial
query reduction from F to F′ and a polynomial query learning
algorithm for F′ that uses membership queries and positive
bounded equivalence queries then F is polynomial query
exact learnable.

We use Theorem 2 to prove polynomial query learnability
of FD(DL-Lite∃H, ELI-IQ) and FD(ELHlhs,AQ) by reduc-
tion to FS(DL-Lite∃H) and, respectively, FS(ELHlhs). The
remaining positive results in Table 1 are similar and given in
the appendix.

The function fMEM required in Theorem 2 is easily de-
fined by setting fMEM(r � s) := ({r(a, b)}, s(a, b)) (for
distinct a, b ∈ NI) and fMEM(C � D) := (AC , D(ρC)) since
(T , {r(a, b)}) |= s(a, b) iff T |= r � s and (T ,AC) |=
D(ρC) iff T |= C � D.

Conversely, given a positive counterexample (A, r(a, b))
(that is, (T ,A) |= r(a, b) and (H,A) �|= r(a, b) for target
TBox T and hypothesis H) there always exists s(a, b) ∈ A
such that ({s(a, b)}, r(a, b)) is a positive counterexample as
well. Thus, we define fEQ(T ,H, (A, r(a, b))) := s � r. In

Algorithm 1 Reducing a positive counterexample
1: function REDUCECOUNTEREXAMPLE( A, C(a) )
2: Find a role saturated and parent/child merged C(a)
3: if C = C0 � ... � Cn then
4: Find Ci, 0 ≤ i ≤ n, such that (H,A) �|= Ci(a)
5: C := Ci

6: if C = ∃r.C ′ and there is s(a, b) ∈ A such that
7: (T , {s(a, b)}) |= r(a, b) and (T ,A) |= C ′(b) then
8: REDUCECOUNTEREXAMPLE( A, C ′(b) )
9: else

10: Find a singleton A′ ⊆ A such that
11: (T ,A′) |= C(a) but (H,A′) �|= C(a)
12: return (A′,C(a))

what follows we define the image of fEQ for counterexamples
of the form (A, C(a)).

Construction of fEQ for FD(DL-Lite∃H, ELI-IQ) Given
a target T and hypothesis H such that T |= H, Algorithm 1
transforms every positive counterexample (A, C(a)) into
a positive counterexample (A′, D(b)) where A′ ⊆ A is a
singleton ABox (i.e., of the form {A(a)} or {r(a, b)}). Using
the equivalences (T , {A(b)}) |= D(b) iff T |= A � D and
(T , {r(b, c)}) |= D(b) iff T |= ∃r.� � D, we then obtain
a positive subsumption counterexample which will be the
image of (T ,H, (A, C(a))) under fEQ.

Given a positive data retrieval counterexample (A, C(a)),
Algorithm 1 exhaustively applies the role saturation and
parent-child merging rules introduced in (Konev et al. 2014).
We say that an ELI-IQ C(a) is role saturated for (T ,A)
if (T ,A) �|= C ′(a) whenever C ′ is the result of replacing
an occurrence of a role r by some role s with T �|= r � s
and T |= s � r. To define parent/child merging, we identify
each ELI concept C with a finite tree TC whose nodes are
labeled with concept names and edges are labeled with roles.
For example, if C = ∃t.(A � ∃r.∃r−.∃r.B) � ∃s.� then
Fig. 2a illustrates TC . Now, we say that an ELI-IQ C(a) is
parent/child merged for T and A if for nodes n1, n2, n3 in
TC such that n2 is an r-successor of n1, n3 is an s-successor
of n2 and T |= r− ≡ s we have (T ,A) �|= C ′(a) if C ′ is the
concept that results from identifying n1 and n3. For instance,
the concept in Fig. 2c is the result of identifying the leaf
labeled with B in Fig. 2b with the parent of its parent. The
corresponding role saturation and parent-child merging rules
are formulated in the obvious way.

In Algorithm 1 the learner uses membership queries
in Lines 2, 7 and 10-11. We present a run for T =
{A � ∃s.B, s � r} and H = {s � r}. Assume the
oracle gives as counterexample (A, C(a)), where A =
{t(a, b), A(b), s(a, c)} and C(a) = ∃t.(A�∃r.∃r−.∃r.B)�
∃s.�(a) (Fig. 2a). Role saturation produces C(a) = ∃t.(A�
∃s.∃s−.∃s.B) � ∃s.�(a) (Fig. 2b). Then, applying par-
ent/child merging twice we obtain C(a) = ∃t.(A � ∃s.B) �
∃s.�(a) (Fig. 2c and 2d).

Since (H,A) �|= ∃t.(A � ∃s.B)(a), after Lines 3-5, Algo-
rithm 1 updates C by choosing the conjunct ∃t.(A � ∃s.B).
As C is of the form ∃t.C ′ and there is t(a, b) ∈ A such
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Figure 2: Concept C being role saturated and parent/child
merged.

that (T ,A) |= C ′(b), the algorithm recursively calls the
function “ReduceCounterExample” with A � ∃s.B(b). Now,
since (H,A) �|= ∃s.B(b), after Lines 3-5, C is updated
to ∃s.B. Finally, C is of the form ∃t.C ′ and there is no
t(b, c) ∈ A such that (T ,A) |= C ′(c). So the algorithm
proceeds to Lines 10-11, where it chooses A(b) ∈ A. Since
(T , {A(b)}) |= ∃s.B(b) and (H, {A(b)}) �|= ∃s.B(b) we
have that T |= A � ∃s.B and H �|= A � ∃s.B.

The following two lemmas state the main properties of
Algorithm 1. A detailed analysis is given in the appendix.
Lemma 3 Let (A, C(a)) be a positive counterexample. Then
the following holds:

1. if C is a basic concept then there is a singleton A′ ⊆ A
such that (T ,A′) |= C(a);

2. if C is of the form ∃r.C ′ and C is role saturated and par-
ent/child merged then either there is s(a, b) ∈ A (where
r, s are roles) such that (T , {s(a, b)}) |= r(a, b) and
(T ,A) |= C ′(b) or there is a singleton A′ ⊆ A such
that (T ,A′) |= C(a).

Lemma 4 For any DL-Lite∃H target T and any DL-Lite∃H
hypothesis H with size polynomial in |T |, given a positive
counterexample (A, C(a)), Algorithm 1 computes with poly-
nomially many polynomial size queries in |T |, |A| and |C|
a positive counterexample (A′, D(b)), where A′ ⊆ A is a
singleton ABox.

Proof. (Sketch) Let (A, C(a)) be the input of “Reduce-
CounterExample”. The computation of Line 2 requires
polynomially many polynomial size queries in |C| and |T |.
If C has more than one conjunct then it is updated in Lines
3-5, so C becomes either (1) a basic concept or (2) of the
form ∃r.C ′. By Lemma 3 in case (1) there is a singleton
A′ ⊆ A such that (T ,A′) |= C(a), computed by Lines
10-11 of Algorithm 1. In case (2) either there is a singleton
A′ ⊆ A such that (T ,A′) |= C(a), computed by Lines
10-11 of Algorithm 1, or we obtain a counterexample with a
refined C. Since the size of the refined counterexample is
strictly smaller after every recursive call of “ReduceCoun-
terExample”, the total number of calls is bounded by |C|. �

Using Theorem 1 and Theorem 2 we now obtain that
FD(DL-Lite∃H, ELI-IQ) is polynomial query exact learn-
able.

Construction of fEQ for FD(ELHlhs,AQ) We first trans-
form a positive counterexample of the form (A, A(a)) into a
positive counterexample of the form (A′, B(ρA′)) with A′ a
tree-shaped ABox rooted in ρA′ . We then define the image of

Algorithm 2 Minimizing an ABox A
1: function MINIMIZEABOX( A)
2: Concept saturate A with H
3: for every A ∈ NC ∩ ΣT and a ∈ Ind(A) such that
4: (T ,A) |= A(a) and (H,A) �|= A(a) do
5: Domain Minimize A with A(a)
6: Role Minimize A with A(a)

7: return (A)

(T ,H, (A, A(a))) under fEQ as CA′ � B, where CA′ is the
EL concept expression corresponding to A′. Our algorithm
is based on two operations: minimization, computed by Algo-
rithm 2, and cycle unfolding. Algorithm 2 minimizes a given
ABox with the following three rules:

(Concept saturate A with H) If A(a) /∈ A and (H,A) |=
A(a) then replace A by A ∪ {A(a)}, where A ∈ NC ∩ ΣT
and a ∈ Ind(A).

(Domain Minimize A with A(a)) If (A, A(a)) is a coun-
terexample and (T ,A−b) |= A(a) then replace A by A−b,
where A−b is the result of removing from A all ABox asser-
tions in which b occurs.

(Role Minimize A with A(a)) If (A, A(a)) is a coun-
terexample and (T ,A−r(b,c)) |= A(a) then replace A by
A−r(b,c), where A−r(b,c) is obtained by removing a role as-
sertion r(b, c) from A.

Lemma 5 For any ELHlhs target T and any ELHlhs hypoth-
esis H with size polynomial in |T |, given a positive counterex-
ample (A, A(a)), Algorithm 2 computes, with polynomially
many polynomial size queries in |A| and |T |, an ABox A′

such that |A′| ≤ |T | and there exists an AQ A′(a′) such that
(A′, A′(a′)) is a positive counterexample.

It remains to show that the ABox can be made tree-shaped.
We say that an ABox A has an (undirected) cycle if there
is a finite sequence a0 · r1 · a1 · ... · rk · ak such that (i)
a0 = ak and (ii) there are mutually distinct assertions of the
form ri+1(ai, ai+1) or ri+1(ai+1, ai) in A, for 0 ≤ i < k.
The unfolding of a cycle c = a0 · r1 · a1 · ... · rk · ak in
a given ABox A is obtained by replacing c by the cycle
c′ = a0 · r1 · a1 · ... · rk · ak−1 · rk · â0 · r1 · · · âk−1 · rk · a0,
where âi are fresh individual names, 0 ≤ i ≤ k − 1, in
such a way that (i) if r(ai, d) ∈ A, for an individual d not
in the cycle, then r(âi, d) ∈ A; and (ii) if A(ai) ∈ A then
A(âi) ∈ A.

We prove in the appendix that after every cycle unfold-
ing/minimisation step in Algorithm 3 the ABox A on the
one hand becomes strictly larger and on the other does not
exceed the size of the target TBox T . Thus Algorithm 3
terminates after a polynomial number of steps yielding a
tree-shaped (by Line 3) ABox A such that (A, B(ρA)) is a
positive counterexample.

Lemma 6 For any ELHlhs target T and any ELHlhs hypoth-
esis H with size polynomial in |T |, given a positive counterex-
ample (A, A(a)), Algorithm 3 computes, with polynomially
many polynomial size queries in |T | and |A|, a tree shaped
ABox A rooted in ρA and B ∈ NC such that (A, B(ρA)) is
a positive counterexample.
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Algorithm 3 Computing a tree shaped ABox
1: function FINDTREE( A)
2: MINIMIZEABOX( A)
3: while there is a cycle c in A do
4: Unfold a ∈ Ind(A) in cycle c
5: MINIMIZEABOX( A)
6: Find B ∈ NC ∩ ΣT such that for root ρA of A
7: (T ,A) |= B(ρA) but (H,A) �|= B(ρA)
8: return (A, B(ρA))

Using Theorem 1 and Theorem 2 we obtain that the learn-
ing framework FD(ELHlhs, AQ) is polynomial query exact
learnable.

Limits of Polynomial Query Learnability

We prove that ELrhs TBoxes are not polynomial query learn-
able using data retrieval examples with CQs. This is in con-
trast to polynomial query learnability of DL-Lite∃H and ELrhs

TBoxes using data retrieval examples with ELI-IQs and, re-
spectively, EL-IQs. Surprisingly, the negative result holds
already if queries of the form ∃x.A(x) are admitted in addi-
tion to EL-IQs.

To prove our result, we define a superpolynomial set S of
TBoxes and show that (i) any polynomial size membership
query can distinguish at most polynomially many TBoxes
from S; and (ii) there exist superpolynomially many polyno-
mial size data retrieval examples that the oracle can give as
counterexamples which distinguish at most one TBox from
S. To present the TBoxes in S, fix two role names r and s.
For any sequence σ = σ1σ2 . . . σn with σi ∈ {r, s}, the
expression ∃σ.C stands for ∃σ1.∃σ2 . . . ∃σn.C. Denote by
L the set of all sequences σ, of which there are N = 2n

many. For every such sequence σ, consider the ELrhs TBox
Tσ defined as

Tσ = {A � ∃σ.M} ∪ T0 with
T0 = {A � X0,M � ∃r.M � ∃s.M}∪

{Xi � ∃r.Xi+1 � ∃s.Xi+1 | 0 ≤ i < n}
Here the Xi are used to generate a binary tree of depth n from
the ABox {A(a)}. The inclusion A � ∃σ.M singles out one
path in this tree for each Tσ . Finally, whenever M holds, then
each Tσ generates an infinite binary tree with Ms. Denote by
Γn = {r, s, A,M,X0, . . . , Xn} the signature of the TBoxes
Tσ ∈ S. Notice that T0 is easy to learn. Moreover, if T0 is
known to the learner and only IQs are available in responses
to equivalences queries, then a single equivalence query can
force the oracle to reveal Tσ as A � ∃σ.M can be found
‘inside’ every counterexample. On the other hand, if CQs are
used then the oracle can provide counterexamples of the form
({A(a)}, ∃x.M(x)), without giving any useful information
about Tσ . Points (i) and (ii) above follow from Lemma 7 and,
respectively, Lemma 8, proved in the appendix.

Lemma 7 For any ABox A and CQ q over Γn either:
• for every Tσ ∈ S, (Tσ,A) |= q; or
• the number of Tσ ∈ S such that (Tσ,A) |= q does not

exceed |q|.

Lemma 8 For any n > 1 and any ELrhs TBox H over Γn

there are a singleton ABox A over Γn and a query q that is an
EL-IQ over Γn with |q| ≤ n+1 or of the form q = ∃x.M(x)
such that either:
• (H,A) |= q and (Tσ,A) |= q for at most one Tσ ∈ S; or
• (H,A) �|= q and for every Tσ ∈ S we have (Tσ,A) |= q.

Lemmas 7 and 8 together imply that ELrhs TBoxes are not
polynomial query learnable usings CQs in data retrieval ex-
amples. Moreover, it is sufficient to admit CQs of the form
∃x.M(x) in addition to EL-IQs.

The two lemmas above hold for ELHrhs, EL, and ELH
as well. This proves the non polynomial query learnability
results involving CQs in Table 1. The non polynomial query
learnability for FD(EL, EL-IQ) and FD(ELH, EL-IQ) are
proved in the appendix by a nontrivial extension of the non
polynomial query learnability result for EL TBoxes from
subsumptions in (Konev et al. 2014).

Polynomial Time Learnability
We briefly comment on our results for polynomial time
learnability. The learning algorithm for FS(ELHlhs) in the
appendix of this paper and the learning algorithms for
FS(ELlhs), FS(ELrhs) and FS(ELHrhs) given in (Konev et
al. 2014) are in fact polynomial time algorithms. Thus, we
obtain:
Theorem 9 The subsumption learning frameworks
FS(ELlhs), FS(ELHlhs), FS(ELrhs), and FS(ELHrhs) are
polynomial time exact learnable with membership and
positive bounded equivalence queries.
Then one can modify the notion of positive polynomial query
reducibility to an appropriate notion of positive polynomial
time reducibility and provide positive polynomial time reduc-
tions to prove that the results of Table 1 for ELlhs, ELHlhs,
ELrhs and ELHrhs hold for polynomial time learnability as
well.

Open Problems
A great number of challenging problems remain open.
Firstly, it would be of great in interest to find out whether
FS(DL-Lite∃H) and FD(DL-Lite∃H, ELI-IQ) are not only
polynomial query learnable but also polynomial time learn-
able. We conjecture that this is not the case (if P �=NP) but
did not yet find a way of proving this. Secondly, as stated in
Table 1, polynomial query learnability of FD(EL, ELI-IQ)

and FD(DL-Lite∃H,CQ) remain open problems. Polynomial
time learnability of those frameworks is open as well. In
both cases we conjecture non polynomial query (and, there-
fore, time) learnability but a significant modification of the
techniques introduced here will be required to prove this.
Finally, it would be of interest to apply modified versions
of the algorithms presented here to obtain worst-case expo-
nential but practical algorithms for frameworks that are not
polynomial query learnable. Examples one might consider
are the DLs EL and ELH with either subsumption queries
or data retrieval queries.
Acknowledgements Ozaki is supported by the Science with-
out Borders scholarship programme.
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