Computing Possible and Necessary Equilibrium Actions
(and Bipartisan Set Winners)

Markus Brill, Rupert Freeman and Vincent Conitzer
Department of Computer Science
Duke University
Durham, NC 27708, USA
{brill, rupert, conitzer} @cs.duke.edu

Abstract

In many multiagent environments, a designer has some, but
limited control over the game being played. In this paper, we
formalize this by considering incompletely specified games,
in which some entries of the payoff matrices can be chosen
from a specified set. We show that it is NP-hard for the
designer to make these choices optimally, even in zero-sum
games. In fact, it is already intractable to decide whether a
given action is (potentially or necessarily) played in equi-
librium. We also consider incompletely specified symmetric
games in which all completions are required to be symmet-
ric. Here, hardness holds even in weak tournament games
(symmetric zero-sum games whose entries are all −1, 0, or 1)
and in tournament games (symmetric zero-sum games whose
non-diagonal entries are all −1 or 1). The latter result settles
the complexity of the possible and necessary winner prob-
lems for a social-choice-theoretic solution concept known as
the bipartisan set. We finally give a mixed-integer linear pro-
gramming formulation for weak tournament games and eval-
uate it experimentally.

1 Introduction

Game theory provides the natural toolkit for reasoning about
systems of multiple self-interested agents. In some cases, the
game is exogenously determined and all that is left to do
is to figure out how to play it. For example, if we are try-
ing to solve heads-up limit Texas hold’em poker (as was re-
cently effectively done by Bowling et al., 2015), there is no
question about what the game is. Out in the world, however,
the rules of the game are generally not set in stone. Often,
there is an agent, to whom we will refer as the designer or
principal, that has some control over the game played. Con-
sider, for example, applications of game theory to security
domains (Pita et al. 2009; Tsai et al. 2009; An et al. 2012;
Yin et al. 2012). In the long run, the game could be changed,
by adding or subtracting security resources (Bhattacharya,
Conitzer, and Munagala 2011) or reorganizing the targets
being defended (roads, flights, etc.).

Mechanism design constitutes the extreme case of this,
where the designer typically has complete freedom in choos-
ing the game to be played by the agents (but still faces a
challenging problem due to the agents’ private information).

However, out in the world, we generally also do not find
this other extreme. Usually, some existing systems are in
place and place constraints on what the designer can do.
This is true to some extent even in the contexts where mech-
anism design is most fruitfully applied. For example, one
can imagine that it would be difficult and costly for a major
search engine to entirely redesign its existing auction mech-
anism for allocating advertisement space, because of exist-
ing users’ expectations, interfacing software, etc. But this
does not mean that aspects of the game played by the adver-
sisers cannot be tweaked in the designer’s favor.

In this paper, we introduce a general framework for ad-
dressing intermediate cases, where the designer has some
but not full control over the game. We focus on incompletely
specified games, where some entries of the game matrix con-
tain sets of payoffs, from among which the designer must
choose. The designer’s aim is to choose so that the result-
ing equilibrium of the game is desirable to her. This pro-
blem is conceptually related to k-implementation (Monderer
and Tennenholtz 2004) and the closely related internal im-
plementation (Anderson, Shoham, and Altman 2010), where
one of the parties is also able to modify an existing game
to achieve better equilibria for herself. However, in those
papers the game is modified by committing to payments,
whereas we focus on choosing from a fixed set of payoffs
in an entry.

We focus on two-player zero-sum games, both symmetric
and not (necessarily) symmetric, and show NP-hardness in
both cases. (Due to a technical reason explained later, hard-
ness for the symmetric case does not imply hardness for the
not-necessarily-symmetric case.) The hardness result for the
symmetric case holds even for weak tournament games,
in which the payoffs are all −1, 0, or 1, and for tournament
games, in which the off-diagonal payoffs are all −1 or 1.

These results have direct implications for related prob-
lem in computational social choice, another important re-
search area in multiagent systems. In social choice (specif-
cally, voting), we take as input a vector of rankings of
the alternatives (e.g., a ≻ c ≻ b) and as output return
some subset of the alternatives. Some social choice func-
tions are based on the pairwise majority graph which has a
directed edge from one alternative to another if a majority
of voters prefers the former. One attractive concept is that
of the essential set (Laffond, Laslier, and Le Breton 1993a;
Dutta and Laslier 1999), which can be thought of as based on the following weak tournament game. Two abstract players simultaneously pick an alternative, and if one player’s chosen alternative has an edge to the other’s, the former wins. Then, the essential set (ES) consists of all alternatives that are played with positive probability in some equilibrium. In the absence of majority ties, this game is a tournament game and its essential set is referred to as the bipartisan set (BP). An important computational problem in social choice is the possible (necessary) winner problem (Conitzer and Sandholm 2002; Konczak and Lang 2005; Lang et al. 2012; Xia and Conitzer 2011; Aziz et al. 2012): given only partial information about the voters’ preferences—for example, because we have yet to elicit the preferences of some of the voters—is a given alternative potentially (necessarily) one of the chosen ones? It can thus be seen that our hardness results for incompletely specified (weak) tournament games directly imply hardness for the possible/necessary winner problems for ES and BP.

We conclude the paper by formulating and evaluating the efficacy of a mixed-integer linear programming formulation for the possible equilibrium action problem in weak tournament games. Due to the space constraint, most (details of) proofs have been omitted and can be found in the full version of this paper.

2 Examples

The following is an incompletely specified two-player symmetric zero-sum game with actions a, b, c, d.

\[
\begin{array}{cccc}
 & a & b & c & d \\
 a & 0 & 1 & 0 & \{-1, 0, 1\} \\
b & -1 & 0 & 1 & 0 \\
c & 0 & -1 & 0 & 1 \\
d & \{-1, 0, 1\} & 0 & -1 & 0 \\
\end{array}
\]

Here, each entry specifies the payoff to the row player (since the game is zero-sum, the column player’s payoff is implicit), and the set notation indicates that the payoff in an entry is not yet fully specified. E.g., $\{-1, 0, 1\}$ indicates that the designer may choose either $-1, 0, or 1$ for this entry. In the case of symmetric games, we require that the designer keep the game symmetric, so that if she sets $u_r(d, a) = 1$ then she must also set $u_r(a, d) = -1$. Thus, our example game has three possible completions. The goal for the designer, then, is to choose a completion in such a way that the equilibrium of the resulting game is desirable to her. For example, the designer may aim to have only actions a and c played with positive probability in equilibrium. Can she set the payoffs so that this happens? The answer is yes, because the completion with $u_r(a, d) = 1$ has this property. Indeed, for any $p \geq \frac{1}{2}$, the mixed strategy $pa + (1-p)c$ is an equilibrium strategy for this completion (and no other equilibrium strategies exist). On the other hand, the completion with $u_r(a, d) = -1$ does have Nash equilibria in which b and d are played with positive probability (for example, both players mixing uniformly is an equilibrium of this game).

Next, consider the following incompletely specified asymmetric zero-sum game:

\[
\begin{array}{cc}
 t & \ell \\
 b & \{-1, 1\} & 0 \\
\end{array}
\]

Suppose the designer’s goal is to avoid row t being played in equilibrium. One might think that the best way to achieve this is to make row b (the only other row) look as good as possible, and thus set $u_r(b, \ell) = 1$. This results in a fully mixed equilibrium where t is played with probability $\frac{1}{3}$ (and ℓ with $\frac{2}{3}$). On the other hand, setting $u_r(b, \ell) = -1$ results in ℓ being a strictly dominant strategy for the column player, and thus the row player would actually play b with probability 1.

3 Preliminaries

In this section, we formally introduce the concepts and computational problems studied in the paper. For a natural number n, let $[n]$ denote the set $\{1, \ldots, n\}$.

3.1 Games

A matrix $M \in \mathbb{Q}^{m \times n}$ defines a two-player zero-sum game (or matrix game) as follows. Let the rows of M be indexed by $I = [m]$ and the columns of M be indexed by $J = [n]$, so that $M = (m(i, j))_{i \in I, j \in J}$. Player 1, the row player, has action set I and player 2, the column player, has action set J. If the row player plays action $i \in I$ and the column player plays action $j \in J$, the payoff to the row player is given by $m(i, j)$ and the payoff to the column player is given by $-m(i, j)$. A (mixed) strategy of the row (resp., column) player is a probability distribution over I (resp., J). Payoffs are extended to mixed strategy profiles in the usual way.

A matrix game $M = (m(i, j))_{i \in I, j \in J}$ is symmetric if $I = J$ and $m(i, j) = -m(j, i)$ for all $(i, j) \in I \times J$. A weak tournament game is a symmetric matrix game in which all payoffs are from the set $\{-1, 0, 1\}$. Weak tournament games naturally correspond to directed graphs $W = (A, \rightarrow)$ as follows: vertices correspond to actions and there is a directed edge from action a to action b (denoted $a \rightarrow b$) if and only if the payoff to the row player in action profile (a, b) is 1. A tournament game is a weak tournament game with the additional property that the payoff is 0 only if both players choose the same action. The corresponding graph thus has a directed edge for every pair of (distinct) vertices.

3.2 Incomplete Games

An incompletely specified matrix game (short: incomplete matrix game) is given by a matrix $M \in (2^I)^{m \times n}$. That is, every entry of the matrix $M = (m(i, j))_{i \in I, j \in J}$ is a subset $m(i, j) \subseteq \mathbb{Q}$. If $m(i, j)$ consists of a single element, we say that the payoff for action profile (i, j) is specified, and write $m(i, j) = m$ instead of the more cumbersome $m(i, j) = \{m\}$. For an incomplete matrix game, the set of completions is given by the set of all matrix games that arise.
from selecting a number from the corresponding set for every action profile for which the payoff is unspecified.

An incomplete symmetric game is an incomplete matrix game with \(m(j, i) = \{ -m : m \in m(i, j) \} \) for all \(i \in I \) and \(j \in J \). The set of symmetric completions of an incomplete symmetric game is given by the set of all completions that are symmetric. When considering incomplete symmetric games, we will restrict attention to symmetric completions, which is the reason hardness results do not transfer from the symmetric case to the general case. An incomplete weak tournament game is an incomplete symmetric game for which (1) every unspecified payoff has the form \(m(i, j) = \{ -1, 0, 1 \} \) with \(i \neq j \), and (2) every symmetric completion is a weak tournament game. An incomplete tournament game is an incomplete symmetric game for which (1) every unspecified payoff has the form \(m(i, j) = \{ -1, 1 \} \) with \(i \neq j \), and (2) every symmetric completion is a tournament game. Every incomplete (weak) tournament game corresponds to a directed graph in which the relation for certain pairs \((i, j)\) of distinct vertices is unspecified. Whereas every completion of an incomplete tournament game satisfies either \(m(i, j) = 1 \) or \(m(i, j) = -1 \) for any such pair, a completion of an incomplete weak tournament game also allows “ties,” i.e., \(m(i, j) = 0 \).

3.3 Equilibrium Concepts

The standard solution concept for normal-form games is Nash equilibrium. A strategy profile \((\sigma, \tau)\) is a Nash equilibrium of a matrix game if the strategies \(\sigma\) and \(\tau\) are best responses to each other, i.e., \(m(\sigma, \tau) \geq m(\sigma, \tau') \geq m(\tau, \tau') \) for all \(i \in I \) and \(j \in J \). The payoff to the row player is identical in all Nash equilibria, and is known as the value of the game.

We are interested in the question whether an action is played with positive probability in at least one Nash equilibrium. For improved readability, the following definitions are only formulated for the row player; definitions for the column player are analogous. The support \(\text{supp}(\sigma) \) of a strategy \(\sigma \) is the set of actions that are played with positive probability in \(\sigma \). An action \(i \in I \) is called essential if there exists a Nash equilibrium \((\sigma, t)\) with \(i \in \text{supp}(\sigma) \). By \(\text{ES}_{\text{row}}(M) \) we denote the set of all actions \(i \in I \) that are essential.

Definition 1. The essential set \(\text{ES}(M) \) of a matrix game \(M \) contains all actions that are essential, i.e., \(\text{ES}(M) = \text{ES}_{\text{row}}(M) \cup \text{ES}_{\text{column}}(M) \).

There is a useful connection between the essential set and quasi-strict (Nash) equilibria. Quasi-strictness is a refinement of Nash equilibrium that requires that every best response is played with positive probability (Harsanyi 1973). Formally, a Nash equilibrium \((\sigma, t)\) of a matrix game \(M \) is quasi-strict if \(m(\sigma, j) > m(\sigma, \tau) > m(i, \tau) \) for all \(i \in I \setminus \text{supp}(\sigma) \) and \(j \in J \setminus \text{supp}(\tau) \). Since the set of Nash equilibria of a matrix game \(M \) is convex, there always exists a Nash equilibrium \((\sigma, \tau)\) with \(\text{supp}(\sigma) \cup \text{supp}(\tau) = \text{ES}(M) \). Moreover, it has been shown that all quasi-strict equilibria of a matrix game have the same support (Brandt and Fischer 2008b). Thus, an action is contained in the essential set of a matrix game if and only if it is played with positive probability in some quasi-strict Nash equilibrium. Brandt and Fischer (2008b) have shown that quasi-strict equilibria, and thus the essential set, can be computed in polynomial time.

3.4 Computational Problems

We are interested in the computational complexity of the following decision problems.

- **Possible Equilibrium Action:** Given an incomplete matrix game \(M \) and an action \(a \), is there a completion \(M' \) of \(M \) such that \(a \in \text{ES}(M') \)?

- **Necessary Equilibrium Action:** Given an incomplete matrix game \(M \) and an action \(a \), is it the case that \(a \in \text{ES}(M') \) for all completions \(M' \) of \(M \)?

One may wonder why these are the right problems to solve. Most generally, the designer could have a utility for each possible outcome (i.e., action profile) of the game. The next proposition shows that hardness of the possible equilibrium action problem immediately implies hardness of the problem of maximizing the designer’s utility.

Proposition 1. Suppose the possible equilibrium action problem is NP-hard. Then, if the designer’s payoffs are nonnegative, no positive approximation guarantee for the designer’s utility (in the optimistic model where the best equilibrium for the designer is chosen) can be given in polynomial time unless \(P = NP \).

Proof. Suppose, for the sake of contradiction, that there is a polynomial time algorithm with a positive approximation guarantee for the problem of maximizing the designer’s optimistic utility. Then we can use this algorithm for determining whether there is a completion where a strategy receives positive probability in some equilibrium: simply give the designer utility 1 for all outcomes in which that strategy is played, and 0 everywhere else. The designer can get the strategy to be played with positive probability if and only if she can obtain positive utility from this game, and she can obtain positive utility from this game if and only if the approximation algorithm returns a positive utility.

A similar connection can be given between the necessary equilibrium action problem and the case where designer utilities are nonpositive and a pessimistic model is used (assigning a payoff of \(-1\) to the action in question and \(0\) otherwise).

In the context of weak tournament games, the essential set \(\text{ES} \) is often interpreted as a (social) choice function identifying desirable alternatives (Dutta and Laslier 1999). In the special case of tournament games, the essential set is referred to as the bipartisan set \(\text{BP} \) (Laffond, Laslier, and Le Breton 1993a). The possible and necessary equilibrium action problems defined above thus correspond to possible and necessary winner queries for the social choice functions \(\text{ES} \) (for weak tournament games) and \(\text{BP} \) (for tournament games). The computational complexity of possible and necessary winners has been studied for many common social choice functions (e.g., Xia and Conitzer 2011; Aziz et al. 2012). To the best of our knowledge, we are the first to provide complexity results for \(\text{ES} \) and \(\text{BP} \).
4 Zero-Sum Games

In this section, we show that computing possible and necessary equilibrium actions is intractable for (not-necessarily-symmetric) matrix games. In the proofs, we will make use of a class of games that we call *alternating games*. Intuitively, an alternating game is a generalized version of Rock-Paper-Scissors that additionally allows "tiebreaking payoffs" which are small payoffs in cases where both players play the same action. A formal definition and proofs of some required properties are given in the full version of this paper.

We first consider the *necessary* equilibrium action problem. Due to the space constraint, and for ease of readability, we only give an informal proof sketch here. Much of the work in the complete proof (to be found in the full version of this paper) is to correctly set values for constants so that the desired equilibrium properties hold.

Theorem 1. The necessary equilibrium action problem (in matrix games that are not necessarily symmetric) is coNP-complete.

Proof sketch. For NP-hardness, we give a reduction from *SetCover*. An instance of *SetCover* is given by a collection \(\{S_1, \ldots, S_n\} \) of subsets of a universe \(U \), and an integer \(k \); the question is whether we can cover \(U \) using only \(k \) of the subsets. We may assume that \(k \) is odd (it is always possible to add a singleton subset with an element not covered by anything else and increase \(k \) by 1). Define an incomplete matrix game \(M \) where the row player has \(3n - k + 1 \) actions, and the column player has \(2n - k + |U| \) actions. The row player’s actions are given by \(\{S_{i,j} : i \in [n], j \in [2]\} \cup \{x_i : i \in [n-k]\} \cup \{r_*\} \).

Let \(L \) denote the restriction of the game to the first \(2n - k \) columns and \(3n - k \) rows. We denote the column player’s actions in this part of the game by \(c_1, \ldots, c_{2n-k} \). We set \(m(S_{i,j}, c_i) = 0 \) and \(m(S_{i,j}, c_i) = \{-1, 1\} \) for all \(i \in [n] \)
and \(m(x_i, c_{n+i}) = -1 \) for all \(i \in [n-k] \). We fill in the remaining entries with \(H \) and \(-H \), where \(H \) is a large positive number, so that if we consider only one of each pair of rows \(\{S_{i,1}, S_{i,2}\} \), \(L \) acts as an alternating game. Setting \(m(S_{i,2}, c_i) = -1 \) will correspond to choosing \(S_i \) for the set cover, and setting \(m(S_{i,2}, c_i) = 1 \) will correspond to not choosing \(S_i \). Note that, considering only \(L \), the row player will put positive probability on exactly one of \(S_{i,1} \) and \(S_{i,2} \) (as well as all rows \(x_i \)) and, as long as it is sufficiently large, each row that is played with positive probability receives approximately \(\frac{1}{n} \) probability. \(S_{i,1} \) is played if \(S_i \) is chosen for the set cover, \(S_{i,2} \) is played otherwise. Also note that the value of \(L \) is close to zero, depending on the exact setting of the undetermined entries.

We have additional columns \(s_1, \ldots, s_{|U|} \) corresponding to elements of \(U \). For every set \(S_j \) containing \(s_i \), column \(s_i \) has a positive entry \(y \) in row \(S_j \) and a negative entry \(x \) in row \(S_{j,2} \). If \(s_i \) is not covered by any chosen set, then the equilibrium can not be contained in \(L \); if it were, then the column player could best respond by playing \(s_i \), where all entries (on rows played with positive probability by the row player) are either 0 or \(x < 0 \). However, if \(s_i \) is covered by some set, then we can make \(y \) large enough (relative to \(x \)) that the column player will not play \(s_i \). Thus, if every \(s_i \) is covered, the column player plays only columns from \(L \).

Finally, we have a single extra row labeled \(r_* \). This row has a small negative payoff \(-v \) for all columns in \(L \), and a large positive payoff \(G \) for all columns not in \(L \). As long as the equilibrium is contained in \(L \) (i.e., all elements are covered), it is not a best response for the row player to play \(r_* \). However, if the column player puts positive probability on some \(s_i \) (that is, \(s_i \) is uncovered), then \(G \) is large enough that the row player can best respond by playing \(r_* \) with positive probability.

By modifying the construction in the proof of Theorem 1, we also get a hardness result for the problem of deciding whether an action is a possible equilibrium action.

Theorem 2. The possible equilibrium action problem (in matrix games that are not necessarily symmetric) is NP-complete.

5 Weak Tournament Games

We now turn to weak tournament games and analyze the computational complexity of possible and necessary *ES* winners.

Theorem 3. The possible ES winner problem (in weak tournament games) is NP-complete.

Proof sketch. For NP-hardness, we provide a reduction from *SAT*. Let \(\varphi = C_1 \land \ldots \land C_m \) be a Boolean formula in conjunctive normal form over a finite set \(V = \{v_1, \ldots, v_n\} \) of variables. We define an incomplete weak
tournament\(^2\) \(W_\varphi = (A, \succ)\) as follows. The set \(A\) of vertices is given by \(A = \bigcup_{i=1}^n X_i \cup \{c_1, \ldots, c_m\} \cup \{d\}\), where \(X_i = \{x_1^i, \ldots, x_n^i\}\) for all \(i \in [n]\). Vertex \(c_j\) corresponds to clause \(C_j\) and the set \(X_i\) corresponds to variable \(v_i\).

Within each set \(X_i\), there is a cycle \(x_1^i \succ x_2^i \succ x_3^i \succ x_1^i\) and an unspecified edge between \(x_4^i\) and \(x_5^i\). If variable \(v_i\) occurs as a positive literal in clause \(C_j\), we have edges \(c_j \succ x_4^i\) and \(x_5^i \succ c_j\). If variable \(v_i\) occurs as a negative literal in clause \(C_j\), we have edges \(c_5 \succ x_4^i\) and \(x_5^i \succ c_2\). Moreover, there is an edge from \(c_3\) to \(d\) for every \(j \in [m]\). For all pairs of vertices for which neither an edge has been defined, nor an unspecified edge declared, we have a tie. See Figure 2 for an example.

We make two observations about \(W_\varphi\).

Observation 1. For every completion \(W\) of \(W_\varphi\), we have \(d \in ES(W)\) if and only if \(ES(W) \cap \{c_1, \ldots, c_m\} = \emptyset\).

Observation 2. For each \(i\), there is exactly one unspecified edge within (and thus exactly three possible completions of) the subtournament \(W_\varphi\mid X_i\). If we set a tie between \(x_4^i\) and \(x_5^i\), then all Nash equilibria \(p\) of the subtournament \(W_\varphi\mid X_i\) satisfy \(p(x_1^i) = p(x_2^i) = p(x_3^i) = p(x_5^i)\). If we set \(x_4^i \succ x_5^i\), then every quasi-strict equilibrium \(p\) of \(W_\varphi\mid X_i\) satisfies \(p(x_1^i) = p(x_2^i) = p(x_3^i) = 0\), \(p(x_4^i) > p(x_5^i)\) and \(p(x_3^i) > 0\), and \(p(x_1^i) + p(x_2^i) > p(x_5^i)\).

By symmetry, setting \(x_4^i \prec x_5^i\) results in quasi-strict equilibrium \(p\) with \(p(x_1^i) = p(x_2^i) = p(x_3^i) = 0\), \(p(x_3^i) > p(x_4^i)\) and \(p(x_1^i) + p(x_2^i) > p(x_5^i)\).

We can now show that \(\varphi\) is satisfiable if and only if there is a completion \(W\) of \(W_\varphi\) with \(d \in ES(W)\). For the direction from left to right, let \(\alpha\) be a satisfying assignment and consider the completion \(W\) of \(W_\varphi\) as follows: if \(v_i\) is set to “true” under \(\alpha\), add edge \(x_4^i \succ x_5^i\); otherwise, add edge \(x_4^i \prec x_5^i\). It can be shown that \(ES(W) = \bigcup_{i \in [n]} ES(W)\mid X_i \cup \{d\}\).

For the direction from right to left, let \(W\) be a completion of \(W_\varphi\) with \(d \in ES(W)\). Define the assignment \(\alpha\) by setting variable \(v_i\) to “true” if \(x_4^i \succ x_5^i\) and to “false” if \(x_4^i \prec x_5^i\). If there is a tie between \(x_4^i\) and \(x_5^i\), we set the truth value of \(v_i\) arbitrarily. Since \(d \in ES(W)\), we know by Observation 1 that \(c_j \not\in ES(W)\) for all \(j \in [m]\). It can now be shown that every \(c_j\) has an incoming edge from a vertex in \(ES(W)\), and that this vertex corresponds to a literal that appears in \(C_j\) and that is set to “true” under \(\alpha\).

We get hardness for the necessary winner problem by slightly modifying the construction used in the proof above.

Theorem 4. The necessary ES winner problem (in weak tournament games) is coNP-complete.

It can actually be shown that the problems considered in Theorems 3 and 4 remain intractable even in the case where unspecified payoffs can be chosen from the interval \([-1, 1]\).

\(^2\)We utilize the one-to-one correspondence between weak tournament games and directed graphs without cycles of length one or two (so-called weak tournaments). For a weak tournament \((A, \succ)\), we use the notation \(a \succ b\) to denote a directed edge from \(a\) to \(b\).

\(^3\)There are also cases in the literature where a computational problem remains hard when restricted to tournaments, but the hardness proof is much more complicated (Alon 2006; Charbit, Thomassé, and Yeo 2007; Conitzer 2006).

\(^4\)For example, Laffond, Laslier, and Le Breton (1993b) and Fisher and Ryan (1992) have shown that every tournament game \(T\) has a unique Nash equilibrium. This Nash equilibrium is quasi-strict and has support \(ES(T) = BP(T)\).
7 MIP for Weak Tournament Games

Of course, the fact that a problem is NP-hard does not make it go away; it is still desirable to find algorithms that scale reasonably well (or very well on natural instances). NP-hard problems in game theory often allow such algorithms. In particular, formulating the problem as a mixed-integer program (MIP) and calling a general-purpose solver often provides good results. In this section, we formulate the possible ES winner problem in weak tournament games as a MIP.

7.1 Mixed-Integer Programming Formulation

Let \(W = (w(i,j))_{i,j \in A} \) be an incomplete weak tournament game. For every entry \(w(i,j) \) of \(W \), we define two binary variables \(x_{ij}^{\text{pos}} \) and \(x_{ij}^{\text{neg}} \). Setting \(w(i,j) \) to \(w_{ij} \in \{-1,0,1\} \) corresponds to setting \(x_{ij}^{\text{pos}} \) and \(x_{ij}^{\text{neg}} \) in such a way that \((x_{ij}^{\text{pos}}, x_{ij}^{\text{neg}}) \neq (1,1) \) and \(x_{ij}^{\text{pos}} - x_{ij}^{\text{neg}} = w_{ij} \). For each action \(j \), there is a variable \(p_j \) corresponding to the probability that the column player assigns to \(j \). Finally, \(z_{ij} \) is a variable that, in every feasible solution, equals \(w_{ij}p_j \).

To determine whether an action \(k \in A \) is a possible ES winner of \(W \), we solve the following MIP. Every feasible solution of this MIP corresponds to a completion of \(W \) and a Nash equilibrium of this completion.

\[
\begin{align*}
\text{maximize} & \quad p_k \\
\text{subject to} & \quad x_{ij}^{\text{neg}} - x_{ij}^{\text{pos}} = 0, \forall i,j & \quad x_{ij}^{\text{pos}} = 1, \text{if } w(i,j) = 1 \\
& \quad x_{ij}^{\text{pos}} + x_{ij}^{\text{neg}} \leq 1, \forall i,j & \quad x_{ij}^{\text{neg}} = 1, \text{if } w(i,j) = -1 \\
& \quad x_{ij}^{\text{pos}} = x_{ij}^{\text{neg}} = 0, \text{if } w(i,j) = 0 & \quad x_{ij}^{\text{pos}}, x_{ij}^{\text{neg}} \in \{0,1\}, \forall i,j \\
& \quad z_{ij} \geq p_j - 2(1-x_{ij}^{\text{pos}}), \forall i,j & \quad \sum_{j \in A} z_{ij} \leq 0, \forall i \\
& \quad z_{ij} \geq -p_j - 2(1-x_{ij}^{\text{neg}}), \forall i,j & \quad \sum_{j \in A} p_j = 1 \\
& \quad z_{ij} \geq -2x_{ij}^{\text{pos}} - 2x_{ij}^{\text{neg}}, \forall i,j & \quad p_j \geq 0, \forall j
\end{align*}
\]

Here, indices \(i \) and \(j \) range over the set \(A \) of actions. Most interesting are the constraints on \(z_{ij} \); we note that exactly one of the three will be binding depending on the values of \(x_{ij}^{\text{pos}} \) and \(x_{ij}^{\text{neg}} \). The net effect of these constraints is to ensure that \(z_{ij} \geq w_{ij}p_j \). (Since we also have the constraint \(\sum_{j \in A} z_{ij} \leq 0 \) and because the value of every completion is zero, \(z_{ij} = w_{ij}p_j \) in every feasible solution.) All other constraints containing \(x_{ij}^{\text{pos}} \) or \(x_{ij}^{\text{neg}} \) are to impose symmetry and consistency on the entries. The remaining constraints make sure that \(p \) is a well-defined probability distribution and that no row yields positive payoff for player 1.

It is possible to adapt this MIP to compute possible and necessary BP winners in tournament games. All that is required is to replace inequality constraints of the form \(x_{ij}^{\text{pos}} + x_{ij}^{\text{neg}} \leq 1 \) by equalities, thus eliminating the possibility to set \(w_{ij} = 0 \). Since tournament games have a unique equilibrium, checking whether action \(k \) is a possible or necessary BP winner can be done by maximizing and minimizing the objective function \(p_k \), respectively. The reason that this approach does not extend to the computation of necessary winners in weak tournament games is that weak tournaments may have multiple equilibria, some of them not quasi-strict. Since our MIP optimizes over the set of all (not necessarily quasi-strict) equilibria, we may encounter cases where the MIP finds a completion with \(p_k = 0 \), but \(k \) is still a necessary winner because it is played with positive probability in every quasi-strict equilibrium.

7.2 Experimental Results

We tested our MIP for the possible ES winner problem in weak tournament games containing either \(\frac{n}{2} \) or \(n \) unspecified entries, where \(n = |A| \) is the number of actions available to each player. For each \(n \), we examined the average time required to solve 100 random instances\(^3\) of size \(n \), using CPLEX 12.6 to solve the MIP. Results are shown in Figure 3, with algorithms cut off once the average time to find a solution exceeds 10 seconds.

We compared the performance of our MIP with a simple brute force algorithm. The brute force algorithm performs a depth-first search over the space of all completions, terminating when it finds a certificate of a yes instance or after it has exhausted all completions. We observe that for even relatively small values of \(n \), the MIP begins to significantly outperform the brute-force algorithm.

8 Conclusion

Often, a designer has some, but limited, control over the game being played, and wants to exert this control to her advantage. In this paper, we studied how computationally hard it is for the designer to decide whether she can choose payoffs in an incompletely specified game to achieve some goal in equilibrium, and found that this is NP-hard even in quite restricted cases of two-player zero-sum games. Our framework and our results also apply in cases where there is no designer but we are just uncertain about the payoffs, either because further exploration is needed to determine what they are, or because they vary based on conditions (e.g., weather). In such settings one might simply be interested in potential and unavoidable equilibrium outcomes.

Future work may address the following questions. Are there classes of games for which these problems are efficiently solvable? Can we extend the MIP approach to broader classes of games? What results can we obtain for general-sum games? Note that just as hardness for symmetric zero-sum games does not imply hardness for zero-sum games.

\(^3\)Random instances were generated by randomly choosing each entry from \(\{-1,0,1\} \) and imposing symmetry, then randomly choosing the fixed number of entries to be unspecified.
games in general (because in the latter the game does not need to be kept symmetric), in fact hardness for zero-sum games does not imply hardness for general-sum games (because in the latter the game does not need to be kept zero-sum). However, this raises the question of which solution concept should be used—Nash equilibrium, correlated equilibrium, Stackelberg mixed strategies, etc. (All of these coincide in two-player zero-sum games.) All in all, we believe that models where a designer has limited, but not full, control over the game are a particularly natural domain of study for AI researchers and computer scientists in general, due to the problems’ inherent computational complexity and potential to address real-world settings.

Acknowledgements

We are thankful for support from NSF under awards IIS-1527434, IIS-0953756, CCF-1101659, and CCF-1337215, ARO under grants W911NF-12-1-0550 and W911NF-11-1-0332, ERC under StG 639945 (ACCORD), a Guggenheim Fellowship, and a Feodor Lynen research fellowship of the Alexander von Humboldt Foundation. This work was done in part while Conitzer was visiting the Simons Institute for the Theory of Computing.

References

