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Introduction

In 1675, Isaac Newton wrote in a letter to Robert Hooke:
“If T have seen further, it is by standing on the shoulders
of giants.” This remark elegantly captured the incremental
nature of human learning. We seem to extend and repur-
pose existing knowledge to create new and more powerful
ideas. Here, we refer to this ability as “bootstrap learning”,
and particularly focus on bootstrap learning inductive con-
cepts. It is helpful to think of bootstrap learning as a solu-
tion to how cognitively-bounded reasoners (Anderson 1990;
Griffiths, Lieder, and Goodman 2015) grasp complex envi-
ronmental dynamics that are far beyond their initial capac-
ity (Figure 1a). Human cognition is constrained by limited
time, memory, communication means, etc, but the underly-
ing learning and generalization problems posed by the en-
vironment can be unboundedly complex. Rather than the
typical machine learning approach to scaling, overwhelm-
ing every problem with a larger architecture, more data, and
more training cycles, bootstrap learning offers a way to max-
imize the reach and potential of a learner with a fixed search
and representational budget, by searching ‘locally’ and re-
cursively to extend their existing knowledge (Bramley et al.
2023).

Successful bootstrap learning is reliant on discovering the
right sub-concepts that “carve nature at its joints” (Plato
1952/370BC). This depends crucially on how and in what
order evidence is processed. We report an experiment that
demonstrates people construct drastically different causal
concepts and generalizations upon seeing the same set of
evidence presented in different orders (Zhao, Lucas, and
Bramley 2023). As illustrated in Figure 1b, participants ob-
served six examples of animated evidence generated by a
ground-truth rule R’ < stripe(A) x R — spot(A). In the con-
struct condition, people first saw evidence consistent with
R’ <« stripe(A) x R (trials 1-3), and then saw an addi-
tional batch of evidence introducing the spots (trials 4-6).
In the de-construct condition, people first saw trials 4-6, and
then an trials 1-3. The two groups thus had access to iden-
tical information, just in different batch orders. Most par-
ticipants in the construct condition could infer the multi-
captive sub-concept and subsequently discovered the ground
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Figure 1: a. Illustration of bootstrap learning: Learners
with limited computation construct more complex ideas by
reusing previous findings. b. Stimuli in Zhao, Lucas, and
Bramley (2023).

truth. People in the de-construct condition, however, strug-
gled to come up with a simple functional relationship that
best explains what they saw; they came up with complex
disjunctive rules, or simply reported “I don’t know!”. This
demonstrates that (1) human learning benefits from facili-
tatory curricula, where having the chance to create a valid
sub-concept is crucial for constructing more complex com-
pound concepts, and (2) human inductive inference is sus-
ceptible to learning traps where, once formed, inappropriate
sub-concepts are hard to shake and can impair subsequent
inductive learning.

Resource-rational Library Learning

How can we design artificial systems that build represen-
tations, and make generalizations, like those exhibited by
people? We argue that there are two key components: (1)
a structured representational substrate, and (2) an effective
cache-and-reuse mechanism.

Rich, structured representations, like symbolic programs,
encode human-like regularities in inference, and can achieve
human-like performance given human-level input data
(Lake, Salakhutdinov, and Tenenbaum 2015). In addition to
striking a balance between structured symbolic knowledge
and probabilistic inference, thanks to methods like proba-
bilistic context-free grammars, the space of possible pro-



grams generated by existing symbolic knowledge can be
open-ended, like how human concept spaces are (e.g., Good-
man et al. 2008). In particular, we draw inspirations from
Bayesian library learning, a class of methods aiming to learn
shareable and reusable sub-programs, or ‘libraries’, that fa-
cilitate fast and flexible learning (Dechter et al. 2013; Ellis
et al. 2021; Liang, Jordan, and Klein 2010). These meth-
ods relax the context-free assumption used in traditional
Bayesian symbolic models, and jointly infers both the poste-
rior over concept ‘programs’, and a latent library that defines
this posterior. This notion of concept libraries is attracting
increasing attention across cognitive science and generative
Al (Bowers et al. 2023; Tian et al. 2020; Wang et al. 2023;
Wong et al. 2022).

We argue that human-like library learning are constrained
by the amount of resources available to people (Ander-
son 1990). In our model, we introduced a dynamic con-
cept library to a classic Bayesian symbolic learning frame-
work, powered by an adaptor grammar representation, a
generalization of probabilistic context-free grammars (John-
son et al. 2007). Different from standard library learn-
ing approaches, this allows us to assume a shallow search
depth cap, mimicking cognitively-bounded learners. Dif-
ferent from naive Bayesian learners, this model can cache
learned programs into its library, and later reuse these pro-
grams to construct more complex programs. Therefore, this
model can construct deeply nested programs that go far be-
yond its search depth constraints, and will succeed in doing
so under facilitatory learning curricula. Our model predicts
not only when people succeed at learning complex concepts,
but also when people fail to do so. Quantitative fits with hu-
man behavioral data also showed that this rational library
learning model best matched participants generalizations.

Broader Implications

This resource-rational library learning framework offers a
computational account for why human learning is usually in-
cremental and path-dependent. Computational constraints of
human cognition determine that we can only process limited
information, draw limited number of samples, and search a
limited space at a time. However, bootstrap learning mech-
anisms enable us to reach beyond our grasp, and explore an
ever-richer space of possibilities via principled cache-and-
reuse. The process of caching the current conceptual con-
structs and later reusing them to form more advanced ideas
may also give rise to the hierarchical structure observed in
human conceptual systems.

The possibilities afforded by bootstrapping are not a ‘free
Iunch’. As illustrated by behavioral experiments, bounded
agents fall easily to learning traps (Rich and Gureckis 2018)
in inductive inference. The fact that people draw systemat-
ically different conclusions after seeing the same evidence
is worth being taken seriously if we want to design more
human-like learning systems. Synthesizing the kinds of sub-
concepts people create in the process of reaching a complex
learning target may be more important than matching final
learning performance, because our conceptual systems are
built from these interacting auxiliary concepts and their dy-
namics. Identifying how and where people diverge is also
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key for designing personalized learning algorithms like au-
tomatic teaching assistants and consultation agents, espe-
cially in face of increasing interest in aligning human and
artificial learning systems (Sucholutsky et al. 2023).

The fact that human learning benefits from simple to com-
plex curricula has inspired the training of many artificial
systems, from early work manipulating the system’s capac-
ity (Elman 1993), to carefully designed training curricula
for deep neural networks (Bengio et al. 2009) and neuro-
symbolic models (Mao et al. 2019). It is worth noting that
those models still require substantial training, while human
concept learning, as demonstrated in the experiments and
modeled by Zhao, Lucas, and Bramley (2023), can be driven
by a handful of observations. Structured representations are
still strong candidates for data-efficient, human-like learning
algorithms.

In sum, we propose bootstrap learning as a computational
account for why human learning is modular and incremental,
and identify key components of bootstrap learning that allow
artificial systems to learn more like people. We offer both
a computational modeling framework and behavioral evi-
dence that highlights the double-edged sword of bootstrap
learning, calling for the importance of taking resource con-
straints, diverse learning outcomes, and social aspects into
account in designing increasingly human-like artificial sys-
tems.
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