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Abstract

In this paper, we explore how humans and AIs trained to per-
form a virtual inverted pendulum (VIP) balancing task con-
verge and differ in their learning and performance strategies.
We create a visual analogue of disoriented IP balancing, as
may be experienced by pilots suffering from spatial disori-
entation, and train AI models on data from human subjects
performing a real-world disoriented balancing task. We then
place the trained AI models in a dyadic human-in-the-loop
(HITL) training setting. Episodes in which human subjects
disagreed with AI actions were logged and used to fine-tune
the AI model. Human subjects then performed the task while
being given guidance from pretrained and dyadically fine-
tuned versions of an AI model. We examine the effects of
HITL training on AI performance, AI guidance on human
performance, and the behavior patterns of human subjects and
AI models during task performance. We find that in many
cases, HITL training improves AI performance, AI guidance
improves human performance, and after dyadic training the
two converge on similar behavior patterns.

Introduction
In domains like piloting, spaceflight, and even driving, main-
taining spatial awareness and orientation through visual, so-
matosensory, and vestibular signals is critical for humans. AI
systems can use numerical signals to maintain vehicle posi-
tion in space, and could in principle track the human and
vehicle’s positioning in the relevant orientational plane(s),
detect if there is a risk of losing control (Daiker et al. 2018;
Zgonnikova, Zgonnikov, and Kanemoto 2016; Wang et al.
2022), and even alert the operator to make corrective ma-
neuvers. However, due to differences in training method and
data (e.g., through exposure to environmental physics or sen-
sorimotor data from humans in the task), AIs may learn to
perform the task in very different ways from humans due
to differing embodiment of the relationship between actions
and the problem space.

Fig. 1 shows a relevant example in our use case: a 30-sec.
sample of a human balancing a multi-axis rotation system
(MARS) device, with the angular position shown in black
and the subject’s joystick deflections shown in red, along
with the deflections predicted by a DDPG model (blue) and
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Figure 1: Actions in an IP balancing task (described below)
predicted by a reinforcement learning (RL) model (blue) and
a deep learning (DL) model trained over human data (green)
compared to an actual 30-sec. participant trial sample (par-
ticipant actions in red and angular position in black).

an LSTM trained over actual human motions from other
MARS trials (green). While both models learn to perform
the task, the model trained on human data embodies the
problem space similarly to a human, making it a superior
predictor of novel humans’ actions while solving the same
problem.

This has significant implications for human-AI collabo-
ration in disorienting scenarios. We present an experimen-
tal protocol that allows us to quantify such differences,
and a dyadic human-in-the-loop (HITL) training paradigm
through which we train AIs to better align their decisions
with humans, relative to AIs embodying their own ideal
characteristics (e.g. zero reaction-time delay, high stiffness),
while still maintaining proficiency.

Task Background
The multi-axis rotation system (MARS) paradigm is a docu-
mented, realistic simulation of vehicle control in helicopter
hovering and spaceflight (Panic et al. 2017; Vimal, DiZio,
and Lackner 2019), in which subjects self-balance while
seated in a device programmed with inverted pendulum (IP)
dynamics.

In the MARS Upright Roll paradigm, blindfolded subjects
use a joystick to balance themselves upright in a vertical roll
plane, where naturalistic gravitational reference cues (from
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Figure 2: MARS device in the supine roll condition.

Figure 3: Two consecutive frames of the VIP 50% coherent
RDK display.

otoliths) and angular rate cues (from semi-circular canals)
are available. The MARS Supine Roll self-balancing task
(Fig. 2) is a disorienting spaceflight analogue because it
denies subjects task-relevant gravitational position cues by
placing the body perpendicular to the gravitational vertical
where subjects are no longer tilting relative to it.

The visual inverted pendulum (VIP) is a high-throughput
alternative for studying manual object balancing. In the stan-
dard VIP paradigm, analogous to the MARS Upright Roll,
subjects balance a visually-simulated circular array of dots
(random dot kinematogram, RDK) which rolls in the plane
of the display screen with 100% coherence in every frame,
providing global configural positional information and low-
level motion cues. The disorienting visual analogue is the
VIP 50% coherent condition, where alternating halves of the
RDK dots displace coherently across two frames while the
other half jump randomly, eliminating configural displace-
ment cues relative to the upright direction of balance (DOB)
while providing low-level retinal motion cues (see Fig. 3).

Both MARS and VIP can be observed and actuated
by an AI and by a human using a joystick or keyboard.
Both paradigms can be configured in challenging but non-
disorienting modes providing standard sensory information
or difficult and disorienting modes providing degraded infor-
mation. The VIP and MARS tasks possess similar underly-
ing physical models of instability, governed by θ̈ = kP sinθ
(θ is degrees deviation from the DOB, pendulum constant
kP = 600◦/s2), with an RK4 integrator. In both standard
paradigms, human subjects initially show angular excur-
sions exceeding programmed “crash” boundaries (±60°)
which vanish with practice as the subject learns to maintain
angular position around the upright DOB at low velocity.
In the disorienting modes of both the MARS and VIP tasks,

performance deteriorates in parallel ways, with positionally-
drifting oscillations leading to frequent “crashes” and mini-
mal amounts and rates of learning.

Data and Initial Training
Data presented in Vimal et al. (2020) and Wang et al. (2022)
consists of 34 healthy adult subjects performing the MARS
Supine Roll (disorienting) task. Each subject experienced
two experimental sessions on consecutive days, each con-
sisting of 20 100-sec. trials where, while blindfolded, they
attempted to balance themselves with minimal oscillations.
The data contains angular positions and velocities, and joy-
stick deflections for each trial at a sampling rate of 50 Hz.
Vimal et al. (2020) clustered participant performance into
Good, Medium, and Bad groups based on proficiency char-
acteristics such as number of crashes and tendency to desta-
bilize and oscillate.

We used data from the Good group to train a long short-
term memory (LSTM) and data from the Bad group to train
a multi-layer perceptron (MLP) neural network model that
predicted future joystick actions (direction and magnitude
of joystick deflections) using sliding window approaches
where inputs consisted of past angular positions, velocities,
and deflections. The models exhibited performance in the
VIP task that closely approximated the performance of Good
and Bad humans, respectively. This resemblance was de-
termined according to 3 variables that were strongly corre-
lated with crash frequency in the human subjects (root mean
squared velocity, velocity stabilogram diffusion function dif-
fusion coefficient, and velocity total power). We also trained
a third model on data from human subjects of all proficien-
cies (the All Proficiency model).

Human-In-the-Loop (HITL) Training
Each AI model was then placed in co-performance with hu-
man subjects in an instance of the VIP task. This setup al-
lowed us to test both how an AI that was proficient at the task
would cue the subjects to make corrective deflections if the
subjects were in danger of crashing, and how a suboptimal
AI performer could be made to improve through learning
from interaction with a human.

Nine subjects were recruited. Each subject performed 3
30-second trials of the VIP at 50% coherence to establish
baseline solo performance. The joystick control mode avail-
able to subjects followed DiZio et al. (2023); the subject
supplied only direction information and the input to the sim-
ulated pendulum was always of full magnitude. Subjects en-
gaged in two additional sessions with AIs:

1) Dyadic human-in-the-loop (HITL) AI training: Sub-
jects performed the task again with VIP motion controlled
by each of the three AI models in turn, while human ac-
tions served as potential corrections to AI-driven balanc-
ing. Episodes (consisting of the input window and predicted
action) where the direction of AI-predicted deflection con-
flicted with the direction of human deflection were stored.
These disagreement samples were combined with the origi-
nal training data by flipping the direction of predicted deflec-
tions in the corresponding training samples. The AI model
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was then fine-tuned on the updated data. 2) AI guidance of
human performance: Control of the VIP was then swapped
again, with the human performing the VIP task while receiv-
ing visual cues according to the predictions of the Good AI.
Cues were rendered as red arrows in the top left/right of the
window for the frame in which the AI predicted the human
was in danger of crashing. Subjects performed 3 30-second
trials each with the AI as retrained after Part 1 and with the
original pretrained AI.

HITL training assesses change to AI performance af-
ter retraining it with human corrections. AI guidance as-
sesses human-AI co-performance with the pretrained and
dyadically fine-tuned Good AI model to see if human per-
formance improves with either version providing cues. Per-
formance metrics include the number of crashes, percentage
of destabilizing actions (actions that accelerate the IP away
from the DOB), average angular distance from the DOB, av-
erage velocity magnitude, standard deviation of angular po-
sition and velocity (indicating level of oscillation), and root
mean square velocity. Distance/theta is in degrees. Veloc-
ity metrics are in degrees/second. Lower values mean better
performance and more time spent around the DOB at lower
velocity.

Results
Fig. 4 shows aggregate results from both experiments. Fig. 4
(right) shows results averaged over all nine human partici-
pants.

HITL training Preliminary results show that the Good
AI displays minimal improvement after HITL—and even
sometimes degradation—in important metrics like number
of crashes and destabilizing deflections. The Bad AI shows
little if any change across the board (<10% difference in all
metrics whose values declined). The All proficiency model,
which was trained on data from humans of multiple skill lev-
els, shows substantial performance improvements on multi-
ple metrics, especially those reflecting oscillation. The All
proficiency model baseline metric values are also lower, in-
dicating a more proficient starting point (i.e., this model
never crashed when performing the task alone, but HITL
training helped it maintain lower velocity).

AI guidance When placed in co-performance with human
subjects to provide guidance, the pretrained Good AI model
helped participants reduce destabilizing actions, crashes,
and velocity/oscillation. After fine-tuning with HITL, the
updated model helped further reduce most of these metrics,
and aligned average human performance very closely with
the solo performance of the Good model. However, the level
of human improvement with the fine-tuned model over the
pretrained model was narrower than the improvement over
baseline using the pretrained model.

AI vs. Human Behavior Patterns Figure 5a shows VIP
angular velocity vs. angular position for two representa-
tive participants in the preliminary trials. Red dots represent
destabilizing deflections while blue dots represent “anticipa-
tory” deflections (where VIP is tilted away from the balance
point, and subject action and VIP velocity go in opposite

directions—usually done to slow the VIP down when veloc-
ity is perceived as being too high). We can see that the par-
ticipants display a common pattern of behavior where they
oscillate around a center. The level of participant improve-
ment between the first and the last trial also appears to be
qualitatively reflected in the co-performance scenario with
the AI before and after HITL. For example, in Fig. 5a sub-
ject 007’s increased destabilizing deflections are reflected
in behavior of their assistant during HITL training assistant
their HITL trained with, but assistance still keeps them from
crashing. Subject 011 is initially unable to maintain control
with AI assistance, but after HITL training, the AI assistant
provides cues that keeps them closely balanced around the
center. Figure 5b displays similar velocity-position scatter
plots for AI agents alone, namely the good and bad pilots
and an MLP-based assistant. For each model, we display the
version of the AI pretrained on the original MARS dataset,
the dyadic HITL training with each participant, and the final
performance after updating the AI model with the data from
the HITL trials. For the AI models, we see similar phase os-
cillations in the velocity-position scatter plots, particularly
in the how the behavior of the bad and good pilot AIs during
HITL training with subjects 007 and 011 reflect those sub-
jects’ solo performance behaviors in the first and last trials,
respectively.

Conclusion
If an AI is already capable of maintaining balance itself, why
not have the AI override pilot inputs and take control of a
vehicle directly if it detects an imminent loss of control? In
a real-life piloting scenario, there may be external factors
that still require human value judgments, such as engage-
ment with other vehicles. This necessitates that a human re-
mains in control, but also that the human be assured that the
signals received from the AI assistant are informed by their
own modes of balance control, to better inform just-in-time
decision making.

One compelling way of ensuring this is to have the AI
learn to do the task not just proficiently, but in the manner
of a proficient human. Our results indicate the potential for
dyadic HITL training and AI provided guidance to respec-
tively improve AI and human performance in disoriented
balancing, provided the underlying model is already profi-
cient in the task (compare improvements shown by the Good
model after HITL to the Bad model), and has been exposed
to a wide variety of human behaviors, even suboptimal ones.
In this, the All Proficiency model and highly-performing RL
models are objects of ongoing study.

A future study can also investigate transfer to more com-
plicated conditions, like orientation in multiple roll planes
or flight simulators. There also remains the question of how
to deliver an AI assistant’s cues to a human pilot. Possibil-
ities include aurally rendered tones or visual indicators on
the screen to indicate the direction and magnitude of the cor-
rective action, or linguistic instructions (for instance, Man-
nan and Krishnaswamy (2022) present evidence toward the
utility of language understanding in task performance). Pre-
cisely when and how to deliver corrective information is an-
other avenue of future study.
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Figure 4: Aggregate results of HITL Training (left) and AI Guidance (right).

(a) Angular velocity vs. angular position for sample participants’ first and last trials, and while receiving assistance from an AI before and
after the AI was fine-tuned with HITL training.

(b) Angular velocity vs. angular position for each model before, during, and after HITL trials with representative participants.

Figure 5: Velocity-position scatter plots. Red dots represent destabilizing deflections while blue dots represent “anticipatory”
deflections.
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