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Abstract  

Large Language Models (LLMs) lack robust metacognitive 
learning abilities and depend on human-provided algorithms 
and prompts for learning and output generation. Metacogni-
tion involves processes that monitor and enhance cognition. 
Learning how to learn - metacognitive learning - is crucial for 
adapting and optimizing learning strategies over time. Alt-
hough LLMs possess limited metacognitive abilities, they 
cannot autonomously refine or optimize these strategies. Hu-
mans possess innate mechanisms for metacognitive learning 
that enable at least two unique abilities: discerning which 
metacognitive strategies are best and automatizing learning 
strategies. These processes have been effectively modeled in 
the ACT-R cognitive architecture, providing insights on a 
path toward greater learning autonomy in AI. Incorporating 
human-like metacognitive learning abilities into AI could po-
tentially lead to the development of more autonomous and 
versatile learning mechanisms, as well as improved problem-
solving capabilities and performance across diverse tasks. 

 Introduction 
Currently, Large Language Models (LLMs) do not possess 
a robust set of self-directing learning abilities, and rely on 
human-designed algorithms, training data, and prompts to 
learn and generate outputs. For an LLM to become adept at 
metacognitive learning would require significant advance-
ments in AI, including the development of AI systems capa-
ble of self-modification, self-assessment, and autonomous 
strategy development. 
 Metacognition is an array of cognitive processes that 
monitor and guide ordinary cognition in order to improve its 
functioning (Flavell 1979). For example, a student can rec-
ognize they learn better when they study in the morning in-
stead of the evening. Generally, we think of metacognition 
as conscious, deliberate efforts to control and enhance cog-
nitive processes, however, the practice of a metacognitive 
strategy can result in it becoming automatic (Conway-Smith, 
West, and Mylopoulos 2023). For example, a student's choice 
to work in the morning can become an automatic habit. 
____________________________________ 
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 An effective way to model metacognitive automization is 
through the proceduralization mechanism in ACT-R, which 
takes explicit strategies stored in declarative memory and 
compiles them into automatic productions in procedural 
memory, making them faster and unconscious (Anderson 
2013). Importantly, once compiled, the automatic produc-
tions (that do not consult declarative memory) compete with 
the original productions (that do consult declarative 
memory). This competition is significant as the productions 
must prove their utility across time and can be unlearned 
(via time-delayed learning algorithms). The proceduraliza-
tion mechanism tested in experiments focused on learning 
strategies and shows similar speed up curves to humans (An-
derson et al. 2019). However, we are unaware of any broader 
testing of this mechanism in situations where multiple strat-
egies compete and their effectiveness varies over time or 
conditions. In theory, this mechanism should prevent au-
tomization except in cases where it is reliably effective. 
 The process of proceduralization in ACT-R requires that 
strategies have been stored in declarative memory. This 
maps most directly to humans who have decided that a strat-
egy is useful, memorized it, and then practiced to make it 
automatic, which is an example of metacognition (i.e., cog-
nition designed to influence, control, or improve cognition).
 Here it is important to distinguish between learning to do 
a particular task better and learning how to learn a task bet-
ter. Learning how to learn is metacognitive learning. Meta-
cognitive learning produces knowledge about different 
types of learning strategies, and where they are best applied 
(Van Velzen 2015). While humans can ordinarily perform 
metacognitive learning, it takes practice to become skilled. 
An example is of a research scientist with expert knowledge 
of strategies for learning about different topics in their field. 

Metacognitive Learning in LLMs 
In the case of LLMs, prompt engineering can be considered 
a type of metacognition that is provided by humans. Prompts 
are explicit instructions that are intended to direct computa-
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tional processes during the completion of some task. In ad-
dition to providing the initial prompt, a human prompt engi-
neer monitors the LLM’s responses and adjust the prompts 
on an ongoing basis to improve the output. This is very 
much like a human engaged in metacognitive learning. They 
begin with a strategy and then monitor and adjust it as they 
move forward. In the example of the research scientist, when 
exploring a novel problem they may begin with one research 
method but alter it when monitoring identifies it as not the 
best choice. By generalizing what is learned and how, the 
scientist understands which research strategies elicit useful 
results for a specific class of problem. Similarly, a prompt 
engineer learns which prompting techniques elicit the most 
useful results for a given class of interaction with the LLM. 
 We argue that LLMs such as Chat GPT, which have been 
trained on extensive databases, have some limited metacog-
nitive abilities. Specifically, if an LLM has absorbed enough 
of the right content it is able to output metacognitive sug-
gestions as part of its answers. For example, when Chat GPT 
is asked for advice on writing a scientific abstract it re-
sponded (among other things):  
 

“Maintain a clear focus on your objective and what you 
want to communicate. This helps to organize your 
thoughts and present your findings coherently.” 
 

“Approach your writing with an organized plan. Decide 
on the structure of your abstract beforehand and allo-
cate your focus accordingly.”  
 
 

In this sense, LLMs motivate a question that has been ig-
nored in the ACT-R approach i.e., where do metacognitive 
strategies come from in the first place? In this example, one 
could argue that Chat GPT simply reproduced strategies that 
were in its learning set. Alternatively, one could argue that 
Chat GPT completely understands that metacognitive sug-
gestions should be part of the answer. Either way, it is able 
to supply some forms of metacognitive strategies. This is not 
entirely different from humans, who mainly receive meta-
cognitive strategies from other sources (e.g., teachers, 
books) and store them in declarative memory for later use. 
 However, beyond this, LLMs are limited in their ability 
to employ metacognition effectively. While a metacognitive 
strategy may be included in a prompt, this inclusion is not 
the same as actually applying the strategy. The prompt 
would allow the strategy to moderately influence the process 
but not to guide the process. Furthermore, LLMs cannot per-
form the two types of metacognitive learning that we de-
scribed above — automatization and learning which meta-
cognitive strategies are best. Both of these are important and 
related to each other. Metacognitive automatization com-
pares and seeks the best metacognitive strategy using rein-
forcement learning. This method could also be used to find 
the best metacognitive learning strategy, but it would re-
quire more overhead. Also, we should consider whether or 

not the automatization learning algorithm is open for modi-
fication through metacognitive practice. A simple example 
of this would be learning to occasionally check if an already 
automatized procedure is still the best, something that hu-
mans are capable of but often struggle with. This is common 
in Cognitive Behavioural Therapy, where therapists will en-
courage clients to periodically re-evaluate their coping strat-
egies to determine their current effectiveness (Beck 2020). 
 An important component of almost all cognitive architec-
tures (Laird, Lebiere, and Rosenbloom 2017) is the separation 
of associative learning in declarative memory and reinforce-
ment learning in procedural memory. The most direct way 
to implement this type of system would be to treat the LLM 
as declarative memory and implement prompt engineering 
in procedural memory. Procedural memory (in most archi-
tectures) represents the task using graph structures. Hence, 
some method to convert language outputs to graph-based 
outputs would be needed. To some degree, LLMs are already 
capable of this, and are able to interpret graph-based code as 
well. However, unlike LLMs which operate from a bottom-
up approach, cognitive architectures, like humans, can exert 
strong top-down controls, effectively mimicking an expert 
system. This is also reflected in learning as procedural 
memory rewards are largely based on achieving task goals. 
 We argue that equipping LLMs with human-like meta-
cognitive capabilities would require a distinct procedural 
module embodying the characteristics we've outlined. Such 
a module would allow for the ongoing refinement of internal 
strategies for prompt optimization, promoting autonomous 
learning and the creation of more effective prompts. This 
could be used to augment human-provided prompts or ena-
ble self-prompting, allowing the LLM to better act as an in-
dependent agent. Metacognition is particularly important for 
these agents, as it facilitates the self-monitoring and self-
correction necessary for addressing safety and ethical issues. 
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