
An Analysis Method for the Impact of GenAI Code Suggestions on Software
Engineers’ Thought Processes

Takahiro Yonekawa1, Hiroko Yamano2, Ichiro Sakata2, 3

1Brain Signal, Inc., 27F, Shiroyama Trust Tower, 4-3-1 Toranomon, Minato-ku, Tokyo 105-6027, Japan
2Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

3Graduate School of Engineering, The University of Tokyo, Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
yonekawa@bsgnl.com, yamano@ifi.u-tokyo.ac.jp, isakata@ipr-ctr.t.u-tokyo.ac.jp

Abstract

Interactive generative AI can be used in software program-
ming to generate sufficient quality of code. Software devel-
opers can utilize the output code of generative AI as well as
website resources from search engine results. In this research,
we present a framework for defining states of programming
activity and for capturing the actions of developers in a time
series. We also describe a scheme for analyzing the thought
process of software developers by using a graph structure
to describe state transitions. By applying these means, we
showed that it is feasible to analyze the effects of changes
in the development environment on programming activities.

Introduction
Productivity improvement measures utilizing generative AI
are being introduced in various operations. As an exam-
ple, implementing an AI assistant to improve customer sup-
port productivity can lead to improved employee retention
and worker learning (Brynjolfsson, Li, and Raymond 2023).
Focusing on software development, a comparative experi-
ment challenged developers to implement small-scale con-
crete applications as quickly as possible using GitHub Copi-
lot. The results showed that the applications were completed
more than 1.5 times faster. Experimental evidence supports
the ability to generate code of sufficient quality quickly in
software development (Peng et al. 2023).

When encountering a problem that cannot be resolved by
a programming language textbook, one typically searches
for relevant resources based on search engine rankings
and reads their descriptions. Occasionally, example code is
copied and modified as a prototype for one’s own code. The
availability of generative AI, particularly ChatGPT (OpenAI
2023) as an external resource, has altered the process of pro-
gramming activities. Interactive generative AI tools respond
to prompts with corresponding output. During programming
activities, a capture program can record operations such as
pasting generated code into a code editor, such as Visual Stu-
dio Code, by acquiring active application windows and key-
board/mouse actions. This research presents a framework for
examining which parts of the programming process an inter-
active tool like ChatGPT can improve.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Graph structure of state transitions in program-
ming activity

Method
Table 1 shows the status of programming activities. The out-
put of the capture program can be collected, including the
instance ID of the target application window, activity sta-
tus, and text exchanged via clipboard, with timestamp. By
analyzing the pattern of state transitions, the developer’s
higher-level operational intentions during programming can
be determined. The software developer’s activities can be
obtained chronologically, including the prompt content, use
of obtained code, code functionality, and existence of subse-
quent prompts.

Figure 1 shows a schematic image representing the state
transitions of the programming process. Each node in this
graph structure is labeled by the state code in Table 1. The at-
tribute variables of each node include the instance ID of the
application window, the elapsed time spent at the node, and
the text body exchanged. The weight of the directed edge

AAAI Spring Symposium Series (SSS-24)

464



State code Action state State of thought Active window
CW Manually typing code Generates logic in code form directly from thoughts.

Code Editor

CM Manually editing code Modifies existing code based on new insights.
CD Manually deleting code

blocks
Deletes previously written code after review and consideration.

CI Inserting code blocks
from clipboard

Appends previously stored code in external memory to the cur-
rent codebase.

CR Replacing code blocks
with those from clipboard

Replaces existing code with previously stored code in external
memory.

SK Conducting a keyword
search

Thinks of keywords to generate a list of search results.
Search Engine

SS Selecting a search result Reviews search results and selects relevant information.
WC Copying code blocks

from a website
Identifies useful code snippets for external memory and subse-
quent use. Website

GN Submitting a new prompt
to GenAI

Crafts complex prompts combining natural language and code
for GenAI interaction.

GenAI DialogGS Submitting the subse-
quent prompt to GenAI

Creates prompts based on GenAI interaction history for further
knowledge and code.

GC Copying code blocks
from GenAI output

Selects relevant GenAI responses for code writing and prepa-
ration.

Table 1: State of developer behavior in programming activities

represents the probability of the state transition frequency.
This state transition pattern reflects the characteristics of the
software developer.

The node sizes and edge weights in Figure 1 show ex-
amples of screen transitions when the author coded a small-
scale web application with references to both ChatGPT and
the Google search engine. The edge weights indicate transi-
tion probabilities, and the node radii represent dwell times.

An example of the typical programming process starts
from entering a prompt using GenAI (GN), copying the re-
sulting code to the clipboard (GC), and pasting it into the ap-
plication code (CI). In this case, based on author’s trial, the
transition probability is estimated as .28 if the desired code
is found immediately, .34 if the prompt is rewritten several
times. If the prompt was rewritten, the transition probability
of interacting with GenAI by adding a subsequent prompt
(GS) is .66, and the transition probability of finding the de-
sired code and copying it to the clipboard (GC) is .19.

The framework we propose captures the thought pro-
cess of software developers for each purpose and situa-
tion of software development behavior, such as per devel-
oper, per target software category, per software development
phase, etc. By analyzing changes in the network structure
of thought, it will also be possible to investigate differences
between cases in which GenAI is introduced and cases in
which it is not.

Discussion
This research introduces a data collection framework de-
signed to allow GenAI to quantitatively assess shifts in soft-
ware development activities, with the goal of improving
working conditions for developers by addressing productiv-

ity and stress challenges. It discusses how GenAI can ex-
plore the relationship between coding and cognitive pro-
cesses, using both GenAI and traditional web resources.

At present, the network graph values are based on the pro-
gramming trial of the author using the developed framework.
The state of thought associated with each action state in Ta-
ble 1 reflects the developer’s intention at that moment based
on the observable operations. The validity of these thoughts
should be examined in detail from the collected subject data.

The research suggests that despite these challenges, the
framework could offer targeted recommendations for en-
hancing programming practices by analyzing the state tran-
sition network model during code development. This ap-
proach aims to continuously improve and provide program-
ming support in areas that require focused efforts. For in-
stance, it encourages more efficient and accurate program-
ming behavior. By tailoring action states to specific business
scenarios, GenAI’s application could have broad utility and
demonstrate its impact on software development. The mon-
itoring of changes in the state of thought during the pro-
gramming process, as observed by the proposed framework,
may contribute to the psychological stability or well-being
of programmers.

References
Brynjolfsson, E.; Li, D.; and Raymond, L. R. 2023. Gen-
erative AI at work. Technical report, National Bureau of
Economic Research.
OpenAI. 2023. GPT-4.
Peng, S.; Kalliamvakou, E.; Cihon, P.; and Demirer, M.
2023. The impact of ai on developer productivity: Evidence
from github copilot. arXiv preprint arXiv:2302.06590.

465


