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Abstract

This paper proposes the method by physiological knowledge
to improve the estimation performance of the NREM3 sleep
based on the waist-attached accelerometer. Specifically, this
paper proposes the hybrid method that combines the method
based on body movement counts and the method based on
biological rhythms of sleep. Through the human subject ex-
periment, the following implications were revealed: (1) the
proposed method can outperform famous machine learning
models (Random Forest and LSTM) trained with automati-
cally generated features that do not sufficiently incorporate
domain knowledge; (2) when the input features are based on
domain knowledge, the estimator explicitly designed by hu-
mans can outperform the machine learning method; and (3)
combining the body movement counting method and the bi-
ological rhythm-based method can suppress the error of the
body movement counting method and reduce false positives.

Introduction
Sleep has an impact on the individual and social well-being
(Lowe, Safati, and Hall 2017). Extensive research reports
the harmful effects of sleep deprivation. For example, short
sleep duration was reported to correlate with adverse ef-
fects on individual physical health (Chami et al. 2020),
such as obesity, type II diabetes, cardiovascular disease,
and mortality, as well as individual mental health, such as
emotional balance, life satisfaction, and depression (Pilcher,
Ginter, and Sadowsky 1997). Such effects on individual as
well as social well-being have also been reported, affecting
increased government healthcare costs, population safety,
and social performance (Perez-Pozuelo et al. 2020). Despite
these facts, the average sleep duration worldwide tends to
be decreasing (Bonnet and Arand 1995). In particular, Japan
has the shortest sleep duration of all OECD member coun-
tries, one and a half hours less than the global average, and
it is estimated that many of its citizens are suffering from
sleep deprivation (Organization for Economic Cooperation
and Development 2021). Given such trends and their impact
on well-being, it is beneficial to monitor sleep conditions in
daily life to detect sleep problems at an early stage.
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The clinical method for measuring sleep quality (sleep
stages) is polysomnography (PSG) based on the Rechtschaf-
fen & Kales (R&K) method (Rechtschaffen and Kales
1968), but it requires manual scoring by the specialist and
is physically and mentally stressful because multiple elec-
trodes are attached to the head and face. In recent years, with
the development of AI and IT technologies, sleep stage esti-
mation methods employing sensors that are less burdensome
to measure in daily life, such as mattress sensors (Nakari
and Takadama 2023), radio signals(Zhao et al. 2017), and
accelerometers, have been attracting attention. In particular,
sleep measurement by accelerometers has been employed in
many studies for a long time because it does not require a
special environment (Boe et al. 2019; Sundararajan et al.
2021; Gu et al. 2014). However, most studies employing
accelerometers have focused on sleep onset estimation, and
machine learning methods that simply learn typical statis-
tics calculated from accelerometers have poor performance
(Sundararajan et al. 2021). This is because data obtained
from accelerometers have the following problems compared
to that from PSG tests: (1) because the information from the
accelerometer is only body movements, it is difficult to sep-
arate sleep stages from typical statistics; and (2) the amount
of data is not sufficient at the experimental stage, making it
difficult to learn an effective estimator.

To improve the accuracy of sleep stage estimation
based on accelerometers, this paper proposes the estima-
tion method based on physiological knowledge for the
NREM3 sleep. Specifically, this paper proposes the esti-
mation method for the NREM3 sleep that manually com-
bines decisions based on body movement counts and bio-
logical rhythms during NREM3 sleep. Furthermore, this pa-
per shows experimentally that the proposed method, which
incorporates physiological domain knowledge of sleep,
achieves higher performance than machine learning meth-
ods that learn automatically generated statistics.

Sleep Mechanism
Sleep Stage
Sleep stage is an indicator of the depth of human sleep
as defined by the R&K method (Rechtschaffen and Kales
1968). The sleep stages are, from shallowest to highest: the
WAKE, REM, Non-REM1 (NREM1), NREM2, NREM3,
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and NREM4. Following the American Academy of Sleep
Medicine (AASM) scoring manual (Berry et al. 2012), the
NREM3 and NREM4 sleep are combined into one stage
(the NREM3 sleep) in this paper. The R&K method acquires
three biological data during sleep, consisting of electroocu-
logram (EEG), electromyogram (EMG), and electrooculo-
gram (EOG) during sleep. The expert determines the sleep
stage at 30-second intervals from the data.

Ultradian Rhythm
Sleep is a temporal process with a sequence of sleep stages
and dependencies between sequential epochs (Phan et al.
2018). The ultradian rhythm is the sleep cycle of 60 to
120 minutes consisting of shallow sleep (NREM1, NREM2,
REM) and deep sleep (NREM3). A standard sleep time of
approximately 7 hours and 30 minutes is associated with 4-
5 sleep cycles. It is known that the sleep cycle tends to be
deeper just after bedtime than before waking. In general, this
rhythm changes according to the rhythm of daily life and
physical characteristics so that even the same person does
not maintain the same sleep state and rhythm. This fact in-
dicates that the identification of ultradian rhythms should be
conducted every night.

NREM3 Features
The NREM3 sleep is known as the deep sleep stage and ac-
counts for 15-25% of total sleep time. During this stage, the
brain produces delta waves, which are slow brain waves of
2 Hz or less, making it difficult to awaken. The heart rate
and respiratory rate decrease, and the brain and body are
in resting mode in the NREM3 sleep. The characteristics of
the NREM3 sleep employed in accelerometer-based estima-
tion are as follows: (i) large body movements are rarely ob-
served; (ii) the NREM3 sleep often appears according to the
ultradian rhythm cycle; and (iii) the periods are rarely too
short (less than 8 minutes) or too long (more than 40 min-
utes). This paper designs the estimation method based on the
domain knowledge of these sleep patterns.

Realted Works
Sleep stage estimation by AI has been studied to address the
problem of requiring an expert to score sleep stages from
data collected by the PSG test. Classical sleep stage estima-
tion was based on human knowledge of sleep physiology to
build features and estimation models (Virkkala et al. 2007).
In recent years, the methods that learn from automatically
generated features (Van Der Donckt et al. 2023) and deep
learning methods that do not require feature design (Eldele
et al. 2021; Perslev et al. 2019) have achieved high accuracy
without explicitly incorporating domain knowledge. This is
due to the availability of relatively large PSG datasets con-
taining hundreds of whole-night records and advances in
machine learning and deep learning techniques. However,
machine learning models trained with general time series
features for accelerometers have been reported to perform
poorly except for WAKE stage estimation. This paper inves-
tigates the effectiveness of a manual method that explicitly
incorporates domain knowledge.
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(a) Example of the body movement count.
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(b) Example of the estimation from the body movement count.

Figure 1: The overview of NREM3 estimation based on
body movement counts.

Proposeed Method
Bodymovement Count Based NREM3 Estimation
Figure 1 shows an overview of the NREM3 estimation based
on body movement counts. The NREM3 sleep is estimated
based on the physiological feature that body movements are
not observed for a certain period of time, which flow is sum-
marized as follows.
1. To focus only on the magnitude of the body motion, the

absolute translation value Vabs,i = |Vn,i−1| is calculated
for the norm vector Vn,i of the accelerometer of the epoch
i.

2. The value is set to 0 in order to ignore the effect of small
body motion. The mean value of all Vabs,i in step 1. from
i = 0 to n is denoted by mean and the standard deviation
by σ, as shown in equation(1).

V ′
abs,i =

{
0 if Vabs,i < mean− 0.8× σ

Vabs,i otherwise
(1)

3. The number of large body movements exceeding a cer-
tain threshold in the past 25-minute window is counted
for the value V ′

abs,i of step 2. e V ′
abs,i of V ′

abs,i. Figure 1a
shows an example of body movement count. Let mean′

and σ′ be the mean and standard deviation of V ′
abs,i, re-

spectively, then the body movement count Ncount,i is cal-
culated by Eq. (2).

Ncount,i+1 =


Ncount,i + 1 if V ′

abs,i−50:i >

mean′ + 4× σ′

0 otherwise
(2)

4. The epoch with a body movement counts Ncount,i of 0 in
step 3. is determined to be the NREM3 sleep. Figure 1b
shows an example of NREM3 estimated from the body
movement count feature.

Ultradian-Rhythm Based NREM3 Estimation
Figure 2 shows an overview of NREM3 estimation based
on ultradian rhythms (UR). The UR-based method identi-
fies the UR, which is the cycle of approximately 90-minute
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Figure 2: The overview of NREM3 estimation based on ultradian rhythm.

sleep stages, and determines the period when the estimated
UR curve falls as the NREM3 sleep. To reduce the effect of
large changes in posture on the identification of UR, the cor-
rection process is selected by comparing the case with and
without the correction process that aligns the average values
before and after the posture change. The estimation method
is summarized as follows.
1. After calculating the standard deviation in a 1-second

window for the normed values of acceleration, a moving
average is calculated in a 30-second window for further
smoothing.

2. The regression model f(t) of the trigonometric function
is fitted by the least-squares method to the norm values in
step 1. The regression model f(t) synthesizes frequency
waves as shown in Eq. (3), where al and bl are the coeffi-
cients of the cos/sin wave with period L, L is set to {90,
60} minutes, and C is the constant term in f(t). Note that
al, bl(l ∈ L), and C are optimized by the least-squares
method, where al and bl(l ∈ L) are two times the stan-
dard deviation of norm values and C is initialized to 1.

f(t) = Σl∈L{al cosmlt+ bl sinmlt}+ C

ml =
2π

l

(3)

3. When the z-axis value changes significantly, the norm
value also changes before and after the change, so the re-
gression model f(t) is fitted after correcting for this effect.
Specifically, for the values in step 1, the later values are
modified so that the average value of the 20 minutes be-
fore and after a large change in the z-axis value is equal
to the former value. The regression model f(t)

′
is the

same as in Eq. (3) as in step 2.
4. The function without (step 2) and with (step 3) modifica-

tion by z-axis change is selected if the number of periods
of NREM3 sleep is closer to the number of UR periods
assumed from the total sleep time. The total sleep time
T divided by the average UR period of 90 minutes is
compared to the number of NREM3 sleep periods esti-
mated without and with z-axis modification. The func-
tion fauto(t) is chosen in Eq. (4), where N and N ′ are

the number of NREM3 sleep periods estimated without
and with z-axis modification.

fauto(t) =

{
f(t) if |T/90−N | ≤ |T/90−N ′|
f(t)′ otherwise

(4)

5. The 30-secondly estimates output from the fauto(t) func-
tion are normalized by [0, 1] and are estimated to be
NREM3 when the value is less than 0.25.

Hybrid Method
The hybrid method integrates the body movement count-
based and the UR-based estimation methods for the NREM3
sleep. The method extends or eliminates NREM3 based
on the relationship between UR-based estimation and body
movement count estimation, which is summarized as fol-
lows.

1. If the estimation of the body movement count base over-
laps with the estimation of the UR base by more than 1/3,
the NREM3 sleep is expanded to include both the body
movement count base and the UR base. However, if the
expanded NREM3 is continuous for more than 40 min-
utes, the common part of the body movement count base
and the UR base are used as the NREM3 sleep.

2. If the body movement count-based estimation overlaps
with the UR-based estimation by less than 1/3, it is em-
ployed for the NREM3 sleep.

3. If the UR-based estimate of the body movement count-
based estimate does not overlap but there is a UR-based
estimate within 8 minutes of the body movement count-
based estimate, then the NREM3 sleep is used for the
body movement count-based estimate.

4. If the body-movement count-based and UR-based esti-
mates do not overlap and there is no UR-based estimate
within 8 minutes of the body-movement count-based es-
timate, the NREM3 sleep is removed.
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Dataset and Evaluation
Dataset
The dataset consists of 29 whole-night sensor data from
the 20s to 50s. In this paper, a coin-shaped sensor (BRAIN
SLEEP COIN, Brain Sleep Co. Ltd.) attached to a nightwear
around waist is employed as an acceleration sensor. The
coin-shaped sensor measured the norm data of acceleration
with a sampling rate of 10 Hz, z-axis data of acceleration
with a sampling rate of 1 Hz (1: face up, 0: sideways, -1:
face down), and temperature with a sampling rate of 1 Hz.
After sleep, the sleep stage, according to the R&K method,
is determined every 30 seconds from EEG, EOG, and EMG
and is employed as the target label. For this experiment,
the ethics community of Ota General Hospital approved this
study in agreement with Helsinki’s declaration.

Evalutation
All experiments employ the leave-one-out cross-validation,
where the model is trained on 28 nights of data and evalu-
ated on the other night. The evaluation indicators are accu-
racy, precision, recall, f1-measure, and specificity between
the correct sleep stage of the PSG test and the estimated
sleep stage.

Ex. 1: Is It Necessary To Incorporate Domain
Knowledge Into AI?

Experimental Setting
Experiment 1 compares the proposed system that incorpo-
rates sleep domain knowledge with machine learning meth-
ods that do not adequately account for sleep domain knowl-
edge. The proposed method is compared with the following
methods:

• RF with automatically generated features
Random Forest (RF) (Breiman 2001) is an ensemble
learning algorithm composed of decision trees as weak
classifiers. RF determines its output by majority voting
on multiple trees. The parameters of RF are set as fol-
lows: (i) the maximum depth of decision trees is 10; and
(ii) the number of decision trees is 100. The features to
be input to RF are computed using the automatic feature
generation and selection method (Nakari and Takadama
2023), which generates a large number of time series
features and selects valid features for the U-test. This
method is employed to compute the features that are valid
for estimating the NREM3 stages. To deal with class im-
balance, WAKE, REM, NREM12, and NREM3 are ad-
justed to have the same proportion of each.

• LSTM with automatically generated features
LSTM (Graves and Graves 2012) is the recurrent neural
network model that stores long-term dependencies. The
parameters of LSTM are as follows: (i) the batch size is
128; (ii) Adam (Kingma and Ba 2014) is employed as the
optimization method with the learning rate of 0.01; and
(iii) the number of epochs is 50. The input features are
the same as for RF.

Experimental Result
Figure 3 shows the boxplots for accuracy, precision, recall,
f1-measure, and specificity. Blue, orange, and gray represent
the results of RF, LSTM, and the proposed method, respec-
tively. The figure shows that the proposed method achieves
higher average values than the other ML methods for all in-
dicators. In particular, the result shows accuracy and speci-
ficity are less variation than the other two methods.

Figure 4a, 4b, and 4c show the results of sleep stages es-
timated by RF, LSTM, and proposed method, respectively,
for a certain night data. The blue lines are the correct sleep
stages of the PSG test in order of shallow sleep: WAKE,
REM, NREM1, NREM2, and NREM3. The orange lines are
the results of the NREM3 sleep estimated by each method;
when the line is on the NREM3, it is estimated to be the
NREM3 sleep, and when the line is below the NREM3, it is
not the NREM3 sleep. Figure 4a shows that the estimation
results by RF change in a few epochs, which is contrary to
the finding that sleep stages do not change frequently. Fig-
ure 4b shows that LSTM is able to estimate NREM3 con-
tinuously, but there are many areas where NREM3 is esti-
mated where NREM3 is not. Figure 4c shows that NREM3
is estimated continuously, and there are a few areas where
NREM3 is incorrectly estimated where it is not NREM3.

Ex. 2: Design Estimator by ML vs Human
Experimental Setting
Experiment 2 compares the performance of the proposed hy-
brid method with that of the ML model (RF) estimation of
NREM3 from two sets of features, body-movement count-
based and UR-based. The ML-based method learns the RF
using the counts in step 3 of the Bodymovement count based
NREM3 estimation and the outputs of the regression model
normalized in steps 2 and 3 of the UR based NREM3 esti-
mation section as features. The parameters of RF are set as
follows: (i) the maximum depth of decision trees is set to
3; and (ii) the number of decision trees is set to 100. The
proposed hybrid method is the same as Experiment 1.

Experimental Result
Figure 5 shows the results of estimating NREM3 from body
motion count-based and UR-based features using the ML
method and human-designed rules. The blue bars show the
results of estimating NREM3 with the ML method (RF),
and the orange bars show the results of estimating NREM3
with the proposed hybrid method. The results show that the
human-designed hybrid method performs better than the ML
method on all evaluation indicators.

Disccusion
Effectiveness of Estimation Based on Domain
Knowledge
Figure 3 shows that the proposed method designed based
on domain knowledge of sleep achieves better performance
than machine learning models (RF and LSTM) trained on
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Figure 3: The results of NREM3 estimation.

automatically generated time series features. The small vari-
ation in accuracy and specificity implies that the explicit in-
corporation of physiological knowledge suppressed obvious
errors. The same trend can be seen in the results of Figure 4a,
4b, and 4c. Even when designing the estimator, the results in
Figure 5 suggest that the proposed hybrid method, which ex-
plicitly incorporates knowledge of the physiology of sleep,
is effective. Therefore, these results suggest the importance
of incorporating domain knowledge into the design, rather
than simply applying machine learning to the task.

Ablation Study

To investigate the effectiveness of the proposed method,
the performance of the body movement count-based, the
UR-based, and the hybrid estimation methods are com-
pared. Figure 6 shows the result of each indicator for the
body movement count-based, UR-based, and hybrid meth-
ods. Blue bars indicate the results of the body movement
count-based estimation, orange bars indicate the results of
the UR-based estimation, and gray bars indicate the results
of the hybrid method estimation. The figure shows that the
body movement count-based and hybrid methods perform
better than the UR-based method on all evaluation indi-
cators. The hybrid method performs worse than the body
movement count-based method on Recall and F1-measure,
but better on Precision and Specificity. This is because the
hybrid method takes into account physiological rhythms in
the UR-based method in addition to the body-movement
count-based method, and thus eliminates the misclassifica-
tion of the body movement count-based method that does
not fit the rhythms. This suggests that the hybrid method can
reduce false positives by compensating for false positives in
the body movement count base.

Conclusion
This paper proposed the hybrid method combining the body
movement count-based estimation and the UR-based esti-
mation designed from the physiological characteristics of
sleep to estimate sleep stages from accelerometers attached
to the nightwear around waist in daily life, focusing on the
NREM3 sleep. Through experiments on human subjects, the
proposed method showed higher performance in all evalua-
tion indicators compared to machine learning methods with
automatic feature generation. The hybrid method incorpo-
rating physiological sleep knowledge into the count-based
and UR-based features of body movements outperformed
the ML method. These results indicate that incorporating
domain knowledge into feature design and estimation deci-
sions is effective in improving performance when the quan-
tity and quality of the dataset are relatively poor. A limitation
of this paper is that the experiments were conducted on the
limited dataset and tasks. It needs to be confirmed whether
similar trends can be obtained with a wider range of data sets
and tasks.
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