
Cultural Algorithm Guided Policy Gradient with Parameter Exploration

Mark Nuppnau1, Khalid Kattan2, R.G. Reynolds1

1Dept. of Computer Science Wayne State University
2Dept. of Computer Science University of Michigan - Dearborn

Abstract

This study explores the integration of cultural algorithms
(CA) with the Policy Gradients with Parameter-Based Ex-
ploration (PGPE) algorithm for the task of MNIST hand-
written digit classification within the EvoJAX framework.
The PGPE algorithm is enhanced by incorporating a be-
lief space, consisting on Domain, Situational, and History
knowledge sources (KS), to guide the search process and im-
prove convergence speed. The PGPE algorithm, implemented
within the EvoJAX framework, can efficiently find an opti-
mal parameter-space policy for the MNIST task. However, in-
creasing the complexity of the task and policy space, such as
the CheXpert dataset and DenseNet, requires a more sophisti-
cated approach to efficiently navigate the search space. We in-
troduce CA-PGPE, a novel approach that integrates CA with
PGPE to guide the search process and improve convergence
speed. Future work will focus on incorporating exploratory
knowledge sources and evaluate the enhanced CA-PGPE al-
gorithm on more complex datasets and model architectures,
such as CIFAR-10 and CheXpert with DenseNet.

Methodology

Data Preparation and Model Architecture
The CA-PGPE algorithm is evaluated on the MNIST dataset
(LeCun and Cortes 2010) and compared to the original
PGPE algorithm (Sehnke et al. 2008). The MNIST dataset
is a widely-used benchmark for hand-written digit classifica-
tion, consisting of 60,000 training images and 10,000 testing
images. Each image is a 28x28 gray-scale representation of
a hand-written digit from 0 to 9. The dataset is preprocessed
and normalized following standard practices.

The EvoJAX framework (Tang, Tian, and Ha 2022) pro-
vides an implementation of the PGPE algorithm for MNIST
classification. The EvoJAX implementation for MNIST
classification utilizes a convolutional neural network (CNN)
as the policy network. The CNN architecture consists of two
convolutional layers, each followed by a ReLU activation
function and max pooling. The first convolutional layer has
8 filters with a 5x5 kernel size and same padding, while
the second convolutional layer has 16 filters with the same
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kernel size and padding. After the convolutional layers, the
feature maps are flattened and passed through a dense layer
with 10 units, corresponding to the 10 digit classes. Finally, a
log-softmax activation function is applied to obtain the out-
put probabilities.

It is important to note that the MNIST dataset and the
EvoJAX implementation were already available and well-
established prior to this research. The focus of this work is
on integrating CA (Reynolds 2021) with the existing PGPE
algorithm within the EvoJAX framework to enhance the op-
timization process and improve classification performance.

PGPE Algorithm

Overview The PGPE algorithm is a gradient-based opti-
mization technique used primarily as a reinforcement learn-
ing technique for robotic control type problems which typ-
ically involve controlling the movements and actions of a
robot in a continuous space to perform tasks such as manipu-
lation or navigation. However, it can be repurposed for prob-
lems such as MNIST classification. This is accomplished by
setting the MNIST dataset as the task state that provides the
input images to the policy network, a CNN as the policy
state that represents the learnable parameters that define the
mapping from input images to output predictions, and the
predictions as the set of actions taken by the policy.

Unlike traditional policy gradient methods that typically
operate by exploring the action space, PGPE explores the pa-
rameter space of a policy network. Traditional approaches,
like REINFORCE, operate by using the parameters θ to
determine a probabilistic policy πθ(at|st) = p(at|st, θ),
which often results in high variance in the gradient estimates
due to the probabilistic nature of action selection at every
step. This conventional approach approximates the gradient
of the objective function as:

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=1

∇θp(a
i
t|sit, θ)r(hi) (1)

where ∇θJ(θ) is the gradient of the expected reward with
respect to the parameters, and r(hi) denotes the reward ob-
tained from history hi (Sehnke et al. 2008).

AAAI Spring Symposium Series (SSS-24)

380



To address the high variance issue inherent in traditional
methods, PGPE adopts a different approach by replacing the
probabilistic policy with a probability distribution over the
parameters themselves. Instead of sampling actions from a
policy parameterized by θ, PGPE samples θ from a distribu-
tion controlled by hyperparameters ρ, fundamentally alter-
ing the approach to policy exploration, represented as:

p(at|st, ρ) =
∫
Θ

p(θ|ρ)δFθ(st),at
dθ (2)

where ρ are the hyperparameters that define the distribution
over the parameters θ, Fθ(st) is the deterministic action cho-
sen by the model with parameters θ in state st, and δ repre-
sents the Dirac delta function, indicating that the action at is
precisely the one chosen by Fθ(st) (Sehnke et al. 2008).

By employing this parameter space exploration strategy,
PGPE effectively reduces the variance of the gradient esti-
mate by detaching the stochasticity from the action selection
process and embedding it into the parameter distribution.
This allows the parameters of the CNN used for tasks like
MNIST classification to be optimized more efficiently to-
wards better performance, as the exploration now occurs in
a continuous parameter space rather than the discrete space
of possible actions.

Thus, through direct adjustment of the parameters based
on sampled distributions and observing the resulting perfor-
mance, PGPE can steer the learning process toward an op-
timal parameter space, potentially leading to faster learning
and enhanced policy performance in comparison to tradi-
tional policy gradient methods.

Hyperparameters In the EvoJAX implementation of the
PGPE algorithm, the navigation through the parameter space
is controlled by three hyperparameters; center-lr, std-lr, and
init-lr. For the MNIST classification task, the default values
for these hyperparameters are 0.006, 0.089, and 0.039, re-
spectively. These hyperparameters play crucial roles in con-
trolling the exploration and learning processes.

The center-lr hyperparameter is the learning rate for up-
dating the center of the Gaussian distribution, and is fun-
damental in dictating how quickly the algorithm adapts its
policy parameters. The std-lr hyperparameter controls the
learning rate for updating the standard deviation of the Gaus-
sian distribution. This aspect of PGPE is critical for manag-
ing the exploration strategy of the algorithm. The init-std hy-
perparameter sets the initial standard deviation of the Gaus-
sian distribution. This value determines the initial breadth of
exploration.

By fine-tuning these hyperparameters, the exploration-
exploitation trade-off can be balanced, the learning rate can
be adapted to the specifics of the environment, and ulti-
mately the algorithm can be guided toward more efficient
and effective policy optimization.

Ask/Tell Mechanism The ask-tell mechanism, within the
EvoJAX implementation of PGPE, is foundational to param-
eter space exploration. In this context, PGPE functions as
the solver, a term used throughout the iterations of the algo-
rithm.

During each iteration, the ask functionality provides a
set of parameters. These inform actions (predictions), after
which rewards are calculated. Subsequently, the tell func-
tionality uses the outcomes to guide the algorithm towards
optimal distribution areas, leveraging the best-performing
individuals.

Parameter sets generated by the ask are sampled from a
Gaussian distribution centered around the current policy pa-
rameters, promoting variation and exploration. This explo-
ration is governed by the parameters’ mean (µ) and standard
deviation (σ), adapted based on performance feedback:

∆µi = α(r − b)(θi − µi) (3)

∆σi = α(r − b)
(θi − µi)

2 − σ2
i

σi
(4)

where α is a constant step size, r is the reward, b is a
baseline subtracted from the reward to reduce variance, θi
represents the parameters of the individual, µi is the mean,
and σi is the standard deviation of the Gaussian distribu-
tion from which parameters are sampled. The updates aim
to refine exploration by adjusting the distribution’s center
and scale according to the performance (reward) feedback.

Symmetric perturbations ensure balanced exploration.
Each parameter set is paired with a counterpart, mirroring
parameter alterations in the opposite direction, aiding in a
more accurate gradient estimation of the performance land-
scape.

Post-environment interaction, the tell function evaluates
individual fitness based on environmental rewards. These as-
sessments inform updates to µ and σ, steering the algorithm
towards more effective parameter configurations. The learn-
ing process, fueled by iterative adjustments via the ask and
tell functionalities, navigates the parameter space towards
optimal policy parameters, enhancing agent performance in
complex environments.

Cultural Algorithms
Overview Cultural algorithms are an extension of evolu-
tionary algorithms, specifically genetic algorithms, to better
model the process of cultural evolution. They were inspired
by the idea that cultural knowledge and values are transmit-
ted and evolve in a manner similar to biological evolution.
The purpose of cultural algorithms is to solve complex opti-
mization problems that are difficult to solve using traditional
methods by providing a belief space, which represents the
cultural knowledge and values that are relevant to the prob-
lem at hand, to help guide through a search space.
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Integration With the mean, also referred to as center, (µ)
and standard deviation (σ) of the distribution playing such
an important role in the navigation through the parameter
space, our research focuses on integrating CA to help guide
the iterative updates to center and standard deviation val-
ues based on Domain, Situational, and History knowledge
sources. We adjust equations 3 and 4 as follows:

∆µi,cultural = 0.45× α(r − b)(θi − µKS)

+ 0.55× α(r − b)(θi − µi)
(5)

∆σi,cultural = 0.45× α(r − b)((θi − µKS)
2 − σ2

KS)

+ 0.55× α(r − b)((θi − µi)
2 − σ2

i )
(6)

where α represents the learning rate, r is the reward, b is
the baseline, θi denotes individual parameters, and µKS, σKS
are the knowledge source-informed center and standard de-
viation, respectively. The weighting factors (0.45 for cultural
knowledge and 0.55 for individual or current parameters)
balance between learned cultural knowledge and individual
exploration.

We also measure the magnitude of the perturbations to the
center when parameters are sampled from a Gaussian distri-
bution. This magnitude is used to guide the perturbations of
a small subset of individuals each iteration.

In each iteration, center and standard deviation values are
updated, guiding the parameter distribution for the popu-
lation. To maintain exploration symmetry and enhance in-
formed decision-making, scaled noises are used to generate
parameter sets for individuals. These noises are then cultur-
ally adjusted:

For each individual, a noise magnitude is calculated based
on the norm of their associated noise vector:
for i, noise in enumerate
(self._scaled_noises):

magnitude = jnp.linalg.norm(noise)
self.population_space.individuals[i]
.noise_magnitude = magnitude

Using predefined indexes for each Knowledge Source
(KS), the scaled noises at these indexes are updated based
on the corresponding individuals’ noise magnitudes within
the KS. For instance, if the Situational KS is assigned in-
dexes [5, 10, 20, 22], then for each index, the scaled noise is
modified by the respective individual’s noise magnitude in
this KS.

Subsequently, solutions are computed as follows, integrat-
ing cultural influences into the generation of scaled noises:
next_key, key = random.split(self._key)
scaled_noises = random.normal(key,

[self._num_directions,
self._solution_size])
* stdev

self._scaled_noises =
self.belief_space.influence(
scaled_noises)

self._solutions = jnp.hstack(
[center + self._scaled_noises,
center - self._scaled_noises]
).reshape(-1, self._solution_size)

The number of indexes assigned to each Situational and
History KS for this study is one for every twelve individuals
in a population. The Domain KS has a single index assigned
to it because its population size is always one. The effect of
this on a population of 64 is the influencing of 11 individu-
als. Increasing the number of indexes assigned to more than
one for every eight individuals in a population hinders the
initial exploration and the algorithm has difficulty converg-
ing to an optimal parameter space.

Experiments and Results

Hardware Specifications
The experiments were conducted on a personal com-
puter running Arch Linux operating system. The system is
equipped with the following hardware components:

• Processor (CPU): AMD Ryzen 5800X, an 8-core/16-
thread CPU with a base clock speed of 3.8 GHz and a
boost clock speed of 4.7 GHz.

• Graphics Processing Units (GPUs): Two NVIDIA RTX-
3090 GPUs, each with 24 GB of GDDR6X memory. The
RTX-3090 is a high-performance graphics card designed
for deep learning and computationally intensive tasks.
The presence of two GPUs allows for massive paral-
lelization, which is a key feature of the JAX library used
in EvoJAX. The PGPE algorithm can leverage the par-
allel processing capabilities of the GPUs to significantly
accelerate the training and evaluation of the CNN model.

• Random Access Memory (RAM): 128 GB of DDR4
RAM running at 3600 MHz.

• Storage: A 4 TB Western Digital Black NVMe solid-state
drive (SSD) is used as the primary storage device. The
NVMe SSD provides fast read and write speeds, enabling
quick access to data and reducing I/O bottlenecks.

The combination of the powerful AMD Ryzen 5800X
CPU, two high-end NVIDIA RTX-3090 GPUs, ample high-
speed RAM, and fast NVMe SSD storage creates an ideal
computing environment for leveraging the capabilities of
the EvoJAX framework and the PGPE algorithm. JAX, the
library on which EvoJAX is built, is designed for high-
performance numerical computing and supports just-in-time
(JIT) compilation, automatic differentiation, and paralleliza-
tion. The PGPE algorithm implemented in EvoJAX takes
full advantage of these features, allowing for efficient and
scalable training of the CNN model on the MNIST dataset.

Results
To summarize the algorithms parameters mentioned
throughout this paper for this experiment:

382



Figure 1: Training Loss: PGPE and CA-PGPE

• The base population consists of 64 individuals
• The center-lr is set to 0.006, std-lr to 0.089, and init-std

to 0.039
• The algorithm runs for 1,000 iterations
• For each iteration that performs worse than the previous,

the knowledge sources influence the center and standard
deviation values with a weight of 0.45

• Each iteration, the knowledge sources influence the
scaled noises of 11 individuals

• The History KS uses a decay factor of 0.8
• The Situational KS keeps information from the top 100

individuals

As shown in 1, early iterations (0-300) demonstrate
quicker convergence to better-performing parameter spaces
for CA-PGPE compared to the original PGPE, attributed to
the integration of exploitative KS. However, as iterations ap-
proach 1,000, performance diverges, likely due to the ab-
sence of exploratory KS such as Topographic and Norma-
tive, highlighting the balance between exploration and ex-
ploitation. The lack of exploration can also be observed by
how CA-PGPE maintains a much more narrow range of loss
values across the population for each iteration.

At 1,000 iterations, evaluation is done on the validation
set. Due to CA-PGPE being currently equipped with only
explotative KS, more optimal parameter spaces are missed
after 500 iterations. With PGPE maintaining a wider range
of loss values amongst its individuals for each iteration, its
able to find the more optimal parameters spaces over 500
iterations. Thus, at 1,000 iterations, CA-PGPE loss values

are still within range of the PGPE loss values, but are at
the higher end of that range. The PGPE algorithms achieves
.9636 test accuracy after 1,000 iterations while CA-PGPE
achieves .9539.

Ablation Study

With multiple adjustments made from the original PGPE al-
gorithm to CA-PGPE, it’s important to understand each ad-
justment. An ablation study was conducted to improve this
understanding. We look at the overall performance without
each KS over 1,000 iterations. We also look at the perfor-
mance without adjustments to center and standard deviation
values and only scaled noises, and vice versa.

Performance without Each KS The overall performance
after 1,000 iterations with the removal of any of the three KS
is worse than with all three, but there are subtle differences
between the performances without each of the KS, as we can
observe in 2.

The worst performance overall comes from removing the
Situational KS. After 1,000 iterations, CA-PGPE achieves
0.9414 test accuracy without the SItuational KS. This is
similar to CA-PGPE without Domain KS which achieves
0.9417 test accuracy.

However, CA-PGPE without Domain KS remains more
exploratory as seen in the wider range of loss values up
to 250 iterations. It’s most noticeable around iteration 70,
where CA-PGPE without Domain KS loss values are still
within range of CA-PGPE and CA-PGPE without Situa-
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Figure 2: Training Loss: CA-PGPE and CA-PGPE without
each KS

tional KS are not. This confirms that the Domain KS restricts
exploration by focusing on a single individual from the most
recent iteration.

The best performance overall is CA-PGPE without His-
tory KS which achieves 0.9468 test accuracy after 1,000 it-
erations. Despite the overall better performance, the removal
of the History KS shows worse performance in early itera-
tions.

This provides a couple insights into the HIstory KS. In
early iterations, 1 to 50, individuals from a handful of re-
cent iterations (not just the most recent iteration as given by
Domain KS and not all previous iterations as given by Situa-
tional KS in early iterations) helps find an optimal parameter
space.

Also, the decay factor of 0.8 used to weight the averaging
of center values may need to be adjusted to lower the weights
applied to individuals from the earliest iterations.

Performance without Center and Standard Deviation
Adjustments Next, we test the overall performance of the
algorithm while keeping all knowledge sources but remov-
ing the influence of center and standard deviation values,
or noise scaling values. While the results in 3 seem self-
explanatory, there are some key insights collected from these
experiments.

Starting with the top-right plot in 3, we are comparing
the PGPE algorithm performance against the CA-PGPE al-
gorithm without adjusting center and standard deviation val-
ues via KS. The only influencing done by the set of KS is on
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Figure 3: Training Loss: PGPE and CA-PGPE without scaled noises adjustments (bottom-left) and CA-PGPE without center
and standard deviation adjustments (top-right)

scaled noise values.

This plot looks similar to 1, but the overall performance
is worse which is visible at two main points. After 100 iter-
ations, there is no separation from the PGPE algorithm. At
iteration 500, the CA-PGPE algorithm loss values are near
the top of the PGPE loss value range, and continues to di-
verge from there. This CA-PGPE algorithm achieves 0.9389
test accuracy, worse than removing any of the individual KS.

In the bottom-left plot in 3, we are comparing the
PGPE algorithm performance against the CA-PGPE algo-
rithm without adjusting scaled noise values via KS. The only
influencing done by the set of KS is on center and standard
deviation values. The overall performance is very similar to
that of the original PGPE algorithm. This suggests the im-
pact of center and standard deviation adjustments may be
overshadowed by the inherent exploration and learning ca-
pabilities of the PGPE algorithm itself.

Limitations and Future Work
As mentioned in the abstract and as observed in the results,
the more exploratory Topographic and Normative KS are

not implemented in this study. Furthermore, the weighting
of the implemented KS is static throughout algorithm. The
next step in our research includes both the addition of the
Topographic and Normative KS, and a cyclic weighting sys-
tem (i.e., sine function) to dynamically weight each KS over
the course of the iterations.

Our expectations are that these updates will provide more
exploration in general to prevent the algorithm from plateau-
ing early on by alternating between exploitation and explo-
ration phases during the search process. The algorithm will
start by increasing weights assigned to each exploitative KS
while reaching peak amplitude around 150 iterations and
then beginning to assign more weights to each exploratory
KS, with the period of the function being roughly 600 iter-
ations. This will allow the algorithm to strike a balance be-
tween leveraging the accumulated knowledge and exploring
new regions of the search space.

With an optimal implementation of CA-PGPE for MNIST
hand-written digit classification, our vision for near-term
research involves performing these same experiments us-
ing higher-dimensional data and parameter spaces. This in-
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cludes applying CA-PGPE to the CIFAR-10 and CheXpert
(Irvin et al. 2019) task states, and DenseNet policy state.
We’ve conducted some preliminary work on these task and
policy states with the original PGPE algorithm.

The complexity of the search space of CheXpert and
DenseNet seems too difficult of a task for the original PGPE
algorithm. The CIFAR-10 dataset is higher-dimensional data
space then MNIST but lower-dimensional data space than
CheXpert which makes it a good candidate for testing an
algorithms ability to navigate through a search space. The
original PGPE algorithm takes over 50,000 iterations to
achieve a test accuracy over 0.70 for the CIFAR-10 task and
DenseNet policy. We hypothesize that CA-PGPE improves
convergence in more complex search spaces.

With evidence of CA improving navigation through high-
dimensional search spaces, our longer-term vision is to im-
plement the CoDeepNEAT algorithm (Miikkulainen et al.
2017) in the EvoJAX framework and integrate CA into
CoDeepNEAT. In some preliminary work, we have shown
CoDeepNEAT to evolve DenseNet-like model architectures
over four generations with improved performance over each
generation for the task of pathology detection using the
CheXpert dataset. We hypothesize that CA can improve the
convergence toward an optimal model architecture that is
highly-efficient and performant.
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