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Abstract

Federated Learning (FL) has received tremendous attention
as a decentralized machine learning (ML) framework that al-
lows distributed data owners to collaboratively train a global
model without sharing raw data. Since FL trains the model
directly on edge devices, the heterogeneity of participating
clients in terms of data distribution, hardware capabilities
and network connectivity can significantly impact the overall
performance of FL systems. Optimizing for model accuracy
could extend the training time due to the diverse and resource-
constrained nature of edge devices while minimizing train-
ing time could compromise the model’s accuracy. Effective
client selection thus becomes crucial to ensure that the train-
ing process is not only efficient but also capitalizes on the
diverse data and computational capabilities of different de-
vices. To this end, we propose FedPROM, a novel framework
that tackles client selection in FL as a multi-criteria optimiza-
tion problem. By leveraging the PROMETHEE method, Fed-
PROM ranks clients based on their suitability for a given
FL task, considering multiple criteria such as system re-
sources, network conditions, and data quality. This approach
allows FedPROM to dynamically select the most appropri-
ate set of clients for each learning round, optimizing both
model accuracy and training efficiency. Our evaluations on
diverse datasets demonstrate that FedPROM outperforms sev-
eral state-of-the-art FL client selection protocols in terms
of convergence speed, and accuracy, highlighting the frame-
work’s effectiveness and the importance of multi-criteria
client selection in FL.

Introduction
The shift from centralized data centers to edge computing
has highlighted Federated Learning (FL) as a key approach
for efficient, privacy-preserving model training on edge de-
vices (McMahan and Ramage 2017; Wang et al. 2019b).
This paradigm shift, however, introduces challenges due to
the inherent heterogeneity in edge devices’ hardware, com-
munication, and data resources (Bonawitz et al. 2019; Hsieh
et al. 2020; Zawad et al. 2021), directly impacting model
accuracy and system efficiency. Current FL protocols often
overlook this heterogeneity, focusing primarily on either op-
timizing statistical model performance (Li et al. 2020; Zhang
et al. 2020) or system efficiency (Brendan et al. 2016), but
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not both. Our research (Tahir and Ali 2022) indicates that
incorporating updates from devices with low-quality data or
delays can adversely affect the overall system performance.
Therefore, a strategic client selection strategy, considering
the constraints of edge devices, is essential for high-quality
federated solutions.

Existing client selection methods often simplify the is-
sue, focusing on singular criteria like computational re-
sources (Nishio and Yonetani 2019; Sasindran, Yelchuri, and
Prabhakar 2023; Chen et al. 2024) or data quality (Cho,
Wang, and Joshi 2020; Lin et al. 2022; Deng et al. 2022),
potentially leading to biased model updates. To address
these challenges, we propose FedPROM, a multi-criterion
client selection framework that aims to jointly optimize sta-
tistical model utility and system efficiency. We formulate
the client selection problem as a multi-criterion-decision-
making (MCDM) problem and employ the Preference Rank-
ing Organization METHod for Enrichment of Evaluations
(PROMETHEE) (Brans and Vincke 1985) to systematically
evaluate the clients based on multiple criteria such as avail-
ability, computational resources (e.g., CPU, memory, stor-
age, power), network conditions (e.g., bandwidth, latency)
and data quality (e.g., data size, accuracy) as well as practi-
cal constraints like budget limits (B). FedPROM’s compre-
hensive approach enables a balanced and effective ranking
of clients, ensuring an optimized trade-off between accu-
racy and training time. Our results demonstrate how a multi-
criterion framework can significantly enhance both the ef-
ficiency and effectiveness of FL systems, offering valuable
insights for future advancements in this domain.

Related Work
Client selection in FL has been the subject of extensive re-
search in recent years due to its critical role in determining
the efficiency and performance of FL systems with selection
strategies ranging from simple random selection to advanced
heuristics (Nishio and Yonetani 2019), machine learning-
based approaches (Zhang, Lin, and Zhang 2022), and those
based on data quality measures (Sattler et al. 2019; Goetz
et al. 2019; Cho, Wang, and Joshi 2020). Despite their di-
versity, the effectiveness of these strategies in balancing effi-
ciency and performance in FL environments remains a topic
of active debate. For instance, random selection (Brendan
et al. 2016) ensures fairness but may neglect client hetero-
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geneity, leading to inefficiencies. Heuristic methods, while
accounting for aspects such as computational power, lack
adaptability and lead to biased outcomes (Lim et al. 2020).
Similarly, methods focusing on local client loss (Goetz et al.
2019; Cho, Wang, and Joshi 2020) and client contribution
(Lin et al. 2022; Pandey, Nguyen, and Popovski 2022), often
disproportionately favor high-performing clients and over-
look hardware resource constraints.

Other client selection techniques such as those based on
reinforcement learning and cluster-based selection, offer dy-
namic and adaptive client selection (Wang et al. 2019a;
Cheng et al. 2022; Deng et al. 2022; Albelaihi et al. 2023).
However, their utility is counterbalanced by the need for
substantial meta-data and computational resources, increas-
ing the system’s complexity and computational overhead.

Recognizing these challenges, this paper introduces Fed-
PROM, a novel framework designed to systematically con-
sider hardware capabilities, network conditions, and data
quality of edge devices. This unified approach aims to ef-
fectively manage the trade-off between performance and ef-
ficiency, proposing an optimal client selection method for
efficient and effective FL.

FedPROM: A Multi-Criterion Client Selection
Protocol For Federated Learning

Problem Definition
Given the inherent heterogeneity of the edge devices in
terms of varied computation and communication capacities
and data distribution, the challenge lies in selecting an opti-
mal subset of clients (S ⊆ C) that ensures high performance
and swift convergence for the global model. This selection
must balance accuracy and training efficiency, often at odds
due to trade-offs involved.

Formally, let C = {c1, c2, ..., cn} represent the set of all
available clients. Each client ci is characterized by an at-
tribute vector Vi = [Hi, Ni, Qi], a local dataset Di of size
|Di| and an associated cost cost(ci). Here, H = {h1, h2, ...}
represent the client’s system-level metrics (where hi repre-
sents available CPU, memory, storage, battery level, etc.),
N = {n1, n2, ...} denotes network-level attributes (like
bandwidth and reliability), and Q represents the quality of
the client’s data determined by an initial measure of local
accuracy (gauged against the publisher’s test set) and the
size of the client’s dataset |Di|. The primary objective is to
identify a S ⊆ C, such that the global model achieves max-
imum accuracy in the shortest possible time when trained
using data from the clients in S, while the cumulative cost
remains within a predefined budget B.

Problem Formulation
In this study, we approach client selection in FL as a dual-
objective optimization problem. From a pool of clients C,
our goal is to identify a subset S ⊆ C that optimally con-
tributes to the global model’s performance, under a set bud-
get constraint. This problem can be formulated as follows:{

maxS⊆C A(S) = fA(S)
minS⊆C Ttotal(S) = fT (S)

Subject to: ∑
ci∈S

cost(ci) ≤ B,

S ⊆ C.
Where:

• A(S) represents the aggregated accuracy of the global
model using the selected subset of clients S. The function
fA(S) calculates this accuracy, factoring in the individ-
ual contributions of clients based on their characteristics
and the aggregation method used. 1

• Ttotal(S) denotes the total training time for the global
model using the selected subset S. This function aggre-
gates the individual training times of each client in S.

• The budget constraint ensures the total cost of the se-
lected clients does not exceed the available budget B.

Determining the optimal subset S that satisfies these ob-
jectives is computationally challenging. In fact, the problem
can be shown to be NP-hard, as it involves combinatorial
optimization over the set of all possible client subsets.

Theorem: The multi-criterion optimization problem for
client selection in FL, as we formulated above, is NP-hard.

Proof: We demonstrate the NP-hardness of our client se-
lection problem by constructing a reduction from the Knap-
sack problem, which is a well-known NP-hard problem.

In the Knapsack problem, the goal is to select items to
maximize the total value without exceeding a weight limit.
We map this problem to our client selection context as fol-
lows:

• Items in Knapsack: Each item in the Knapsack problem
corresponds to a client in the FL network.

• Weight of Items: The weight of each item in the Knapsack
problem is analogous to the cost associated with selecting
a client for training.

• Value of Items: The value of an item in the Knapsack
problem maps to a combined metric in the FL problem,
representing each client’s contribution to model accuracy
and the efficiency of training. This metric could be a
function of the client’s data quality and the reciprocal of
its expected training time, where shorter training times
are more valuable.

• Weight Capacity: The weight capacity in the Knapsack
problem equates to the total available budget in our prob-
lem, encompassing overall resource limitations.

The transformation function T takes an instance of the
Knapsack problem (items, weights, values, and capacity)
and maps it to an instance of the client selection problem
with corresponding clients, resource costs, contributions to
accuracy, and training time efficiency under a budget con-
straint.

1The function fA(S), represents the expected accuracy of the
global model for a subset of clients, based on the aggregation
method used. For illustrative purposes, consider the FedAvg ag-
gregation mechanism, where fA(S) translates to the mean of the
model updates provided by the selected clients. In practice, fA(S)
can represent any aggregation mechanism.
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Since solving the transformed problem effectively solves
the Knapsack problem instance and the Knapsack problem
is NP-hard, it follows that the client selection problem, with
its dual objectives of maximizing accuracy and minimizing
training time under budget constraints, is also NP-hard. This
complexity arises from the need to optimize multiple con-
flicting criteria simultaneously.

Optimal Multi-Criterion Client Selection Using
FedPROM
To address the NP-hard multi-criterion client selection prob-
lem in FL, we introduce FedPROM. This approach trans-
forms the complex problem into a manageable ranking
task by systematically evaluating clients based on multi-
ple attributes, including system-level metrics H , network
attributes N , and data quality Q, normalized for compara-
bility. Furthermore, utilizing the PROMETHEE decision-
making protocol enables FedPROM to effectively navigate
the trade-off between multiple objectives.

Each client ci is assessed through pairwise preference
functions. For two clients ci and ck, the preference function
for a criterion j is defined as follows:

Pj(dij,ik) =

{
0 if dij,ik ≤ qj ,
dij,ik−qj
pj−qj

if dij,ik > qj ,
(1)

where dij,ik = |gj(ci)−gj(ck)| is the absolute difference
in the j-th criterion between clients ci and ck, qj is the indif-
ference threshold, and pj is the preference threshold for the
j-th criterion.

The global preference score π(ci, ck) for client ci over
client ck is given by:

π(ci, ck) =

m∑
j=1

wjPj(dij,ik), (2)

where wj is the weight for the j-th criterion, and m is
the total number of criteria. The outranking flows ϕ+ and
ϕ− are defined as the average of global preference scores,
indicating the extent to which a client is preferred over or
less preferred than other clients, respectively:

ϕ+(ci) =
1

n− 1

∑
k ̸=i

π(ci, ck), (3)

ϕ−(ci) =
1

n− 1

∑
k ̸=i

π(ck, ci), (4)

where n is the number of clients considered. The final
ranking is determined by the net outranking flow ϕ(ci):

ϕ(ci) = ϕ+(ci)− ϕ−(ci), (5)

Clients with higher net flows are deemed optimal for se-
lection, constrained by the budget B. This approach reduces
the complexity from exponential in a brute-force scenario to
polynomial, making it feasible for large-scale FL setups.

Experimental Setup
To assess the effectiveness of the FedPROM client selec-
tion protocol, we conducted experiments using the Fashion-
MNIST and CIFAR-10 datasets. These datasets were non-
IID partitioned across 100 simulated clients, each receiv-
ing a randomized allocation of 50 to 1000 images to emu-
late real-world data distribution. The client devices varied
in capability and were categorized as low-end, mid-range,
and high-end. The simulation environment ran on a work-
station with a 12th Gen Intel(R) Core(TM) i7-12700K CPU
clocking at 3.60 GHz, and 64GB RAM to mimic an FL
environment. Network conditions, such as bandwidth and
latency, were also modeled to reflect varying connectivity
qualities. A latency factor was also integrated into the simu-
lation based on the device and network capabilities of each
client’s device to closely reflect the real-world FL environ-
ment.

For model training, Fashion-MNIST utilized a custom
convolutional neural network, with two convolutional lay-
ers, a dropout layer, and two fully connected layers. For
the CIFAR dataset, we used a modified version of the pre-
trained ResNet-50 model, adjusted with an adaptive average
pooling layer and a final fully connected layer outputting ten
classes. Both datasets underwent 30 global training rounds,
with a learning rate of 0.01, to compare the performance of
FedPROM against other client selection strategies.

Evaluation and Results
Our evaluation benchmarks the FedPROM client selection
strategy against FedAvg and advanced strategies across mul-
tiple metrics. The comparison includes:

• Random Selection: Clients are selected completely at
random, providing a baseline that ensures no bias in
selection but lacks optimization for learning efficiency
(McMahan and Ramage 2017).

• Adapted FedCS (Resource-based): Selection is based
on the clients’ available computational and communica-
tion resources, aiming to include the most reliable and
efficient participants (Nishio and Yonetani 2019).

• Price First: Prioritizes clients offering the least expen-
sive computational resources, focusing on cost minimiza-
tion for federated learning operations.

• Power of Choice (pow-d): Employs a strategy based on
local client loss, selecting clients that are likely to offer
the greatest immediate improvement to model accuracy
(Cho, Wang, and Joshi 2020).

Furthermore, FedPROM, our proposed method, is as-
sessed for its efficiency and effectiveness in enhancing fed-
erated learning outcomes. We evaluated these strategies
based on accuracy progression over training rounds, Time
of Arrival (ToA) at designated accuracy levels, and perfor-
mance post 30 rounds. The training involved 100 clients with
varying participation levels (10%, 20%, and 50% clients)
and varying budget constraints.
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(a) (b)

Figure 1: Performance comparison of (a) Fashion-MNIST
(b) CIFAR 10 datasets with 10% participating clients.

Performance Evaluation and Discussion
Emulating the client characteristics as detailed in Section ,
we trained models selecting a subset of clients (10% per iter-
ation) and recorded their accuracy progression, as depicted
in Figure 1. Our analysis reveals that FedPROM consistently
surpasses other strategies across varied tasks and client
scales. Notably, in a CIFAR-10 task after 30 rounds, Fed-
PROM attained a 51.98% accuracy rate, significantly out-
performing the Random, Price First, FedCS, and Power of
Choice strategies by 62%, 29%, 44%, and 56%, respectively.
Additionally, FedPROM’s robustness was evaluated with ex-
panded client pools of 20% and 50% participation, demon-
strating significant superiority over other benchmarks even
at scale. While alternative protocols displayed consistent yet
fluctuating performance, suggesting context-dependent ef-
fectiveness, FedPROM maintained notable stability.

Time of Arrival at a Desired Accuracy (ToA@x): We
observed the changes in the accuracy on testing datasets over
time and analyzed when accuracy reached a certain level.
Specifically, we report Time of Arrival at a Desired Accu-
racy (ToA@x) and Rounds of Arrival (RoA@x) for Fashion-
MNIST under non-IID data settings for 50% and 65% accu-
racy levels. We summarize these results in Table 1.

We can observe that FedPROM consistently outperforms
the existing client selection strategies in both ToA and RoA.
Specifically, for achieving a 50% accuracy level, FedPROM
required only 245 seconds and 9 communication rounds
marking a 52% improvement over Random, 71% over Price

Method
Fashion-MNIST

50% accuracy 65% accuracy
ToA RoA ToA RoA

Random 515.89 12 NaN NaN
Price First 842.35 13 1714.46 28
FedCS 206.07 15 NaN NaN
pow-d 415.07 13 886.47 25
FedPROM 245 9 421.61 20

Table 1: Results obtained for Fashion-MNIST with non-IID
data setting. ToA@x represents the time (in seconds) and
RoA@x represents the communication rounds required to
arrive at a testing classification accuracy of x (the earlier the
better). NaN means that the method did not achieve the test-
ing classification accuracy of x% in the given 30 rounds of
training.

First, and 41% over Power of Choice in time, and 25% im-
provement over Random, 44% over Price First, and 31%
over Power of Choice in communication rounds. For the
CIFAR-10 dataset, FedPROM was the only strategy to sur-
pass the 50% accuracy mark, thereby highlighting its supe-
rior efficiency and effectiveness.

Impact of Budget: We comprehensively evaluated the im-
pact of budget constraints on model accuracy, with bud-
get parameters ranging from 5 to 50. Our findings, using
the Fashion-MNIST dataset as a representative sample, sug-
gest that FedPROM consistently outperforms other strate-
gies across varying budget levels. For example, at a mini-
mum budget of 5, FedPROM achieves an accuracy of 65.5%.
This represents an 8.5% improvement over the next best-
performing method, which achieves an accuracy of 59.71%
under the same budget constraints. Although other methods
show incremental improvements in accuracy as the budget
increases, FedPROM maintains a stable high-performance
level. Specifically, its accuracy hovers around the 71%-72%
range when the budget is 15 or higher, indicating that Fed-
PROM can achieve near-optimal performance without re-
quiring additional budget allocation.

Conclusion and Future Work

This study introduces FedPROM, a novel multi-criteria
client selection strategy in FL that aims to jointly optimize
the performance and efficiency of the system. The empiri-
cal results from the Fashion-MNIST and CIFAR-10 datasets
indicate a significant performance improvement over tra-
ditional strategies. By comprehensively evaluating clients’
hardware capabilities, network conditions, and data quality,
our approach boosts the overall system performance, thereby
addressing a fundamental challenge in the field of FL.

Our future work aims to validate the approach with larger
and more complex datasets, test its scalability, and exam-
ine its adaptability to different learning tasks. Further re-
search also concentrates on developing dynamic client se-
lection strategies that allow a responsive approach to the
dynamic conditions of real-world FL scenarios. Ultimately,
this research marks a significant step towards refining FL
client selection, with the potential to substantially advance
distributed machine learning practices.

(a) (b)

Figure 2: Performance comparison of Fashion-MNIST
dataset for varying budget constraint (a) Budget=10 (b) Bud-
get=20
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