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Extended Abstract - Invited Talk
Machine learning promises to empower dynamic resource
allocation requirements of Next Generation (NextG) wire-
less networks including 6G and tactical networks. Recently,
we have seen the impact machine learning can make on vari-
ous aspects of wireless networks (Jagannath, Jagannath, and
Melodia 2021; Jagannath et al. 2019). Yet, in most cases,
the progress has been limited to simulations and/or relies
on large processing units to run the decision engines as op-
posed to deploying it on the radio at the edge. While relying
on simulations for rapid and efficient training of deep re-
inforcement learning (DRL) may be necessary, it is key to
mitigate the sim-real gap while trying to improve the gener-
alization capability.

To mitigate these challenges, we developed the Marconi-
Rosenblatt Framework for Intelligent Networks (MR-iNet
Gym), an open-source architecture designed for accelerat-
ing the deployment of novel DRL for NextG wireless net-
works (Farquhar et al. 2023). MR-iNet Gym leverages ns3-
gym, which utilizes ns-3 as an environment within the Ope-
nAI Gym framework (Gawłowicz and Zubow 2019) and cur-
rently focuses on distributed tactical networks.
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Figure 1: MR-iNet Gym Framework

To demonstrate its impact, we tackled the problem of dis-
tributed frequency and power allocation while emphasiz-
ing the generalization capability of DRL decision engine
(Kafle et al. 2023). To accomplish this, we build a custom
DS-CDMA ns3 module within the MR-iNet GYM envi-
ronment. Next, we train the DRL agents that perform fre-
quency and power selection in a distributed manner. MR-
iNet GYM is configured to replicate our hardware de-
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ployment environment which includes hostile jamming. We
demonstrated our approach of federated training improved
link survivability under active jamming. The decision engine
also demonstrated better generalization, i.e. improved per-
formance when tested on previously unseen environments.

Furthermore, the end-to-end solution was implemented on
the GPU-embedded software-defined radio and validated us-
ing over-the-air evaluation to prove practical impact. To the
best of our knowledge, these were the first instances that
established the feasibility of deploying DRL for optimized
distributed resource allocation for next-generation of GPU-
embedded radios (Jagannath et al. 2022; Kafle et al. 2023).
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