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Abstract

Despite their extensive application in language understand-
ing tasks, large language models (LLMs) still encounter chal-
lenges including hallucinations - occasional fabrication of
information - and alignment issues - lack of associations
with human-curated world models (e.g., intuitive physics or
common-sense knowledge). Moreover, the black-box nature
of LLMs presents significant obstacles in training them ef-
fectively to achieve desired behaviors. In particular, modify-
ing the concept embedding spaces of LLMs can be highly in-
tractable. This process involves analyzing the implicit impact
of such adjustments on the myriad parameters within LLMs
and the resulting inductive biases. We propose a novel archi-
tecture that wraps powerful function approximation architec-
tures within an outer, interpretable read-out layer. This read-
out layer can be scrutinized to explicitly observe the effects
of concept modeling during the training of the LLM. Our
method stands in contrast with gradient-based implicit mech-
anisms, which depend solely on adjustments to the LLM pa-
rameters and thus evade scrutiny. By conducting extensive ex-
periments across both generative and discriminative language
modeling tasks, we evaluate the capabilities of our proposed
architecture relative to state-of-the-art LLMs of similar sizes.
Additionally, we offer a qualitative examination of the inter-
pretable read-out layer and visualize the concepts it captures.
The results demonstrate the potential of our approach for ef-
fectively controlling LLM hallucinations and enhancing the
alignment with human expectations.

1 Introduction
Language modeling involves extracting extensive patterns
from vast amounts of data and representing these patterns
in high-dimensional vector spaces (Zhou et al. 2023). These
vector spaces enable us to assess the similarity or dissimilar-
ity between different concepts by calculating the distances
between their embedded vectors. For instance, the embed-
dings of various fruits such as apples, grapes, and watermel-
ons will be located within a small distance (e.g., ε) from
each other. As a result, the common attributes (e.g., being
fruits) or unique characteristics (e.g., nutritional value) of
these concepts are implicitly encoded within the parameters
of the language models that embed them. The implicit rep-
resentation of concept features by language model parame-
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ters, like fruits providing natural sugars, presents challenges
in aligning the model’s parameter space to achieve desired
outcomes (Huang et al. 2023).

Consider a scenario where we train an LLM to capture
concepts of apples, grapes, and watermelons for a specific
task, such as designing a diet plan focused on high levels
of antioxidants. Given that watermelons do not possess sig-
nificant levels of antioxidants, the LLM should distinguish
the concept of watermelon from fruits that are high in an-
tioxidants. A knowledge graph (KG) provides explicit infor-
mation about the nutritional properties of fruits. Therefore,
instead of relying on implicit representations by the LLM’s
parameters, existing work enforces categorizations within
the LLM’s concept embedding space by integrating vector
representations of KG concepts during training (Sarzynska-
Wawer et al. 2021). Nevertheless, these methods either in-
corporate KG concept embeddings as part of the input to the
LLMs, or combine them into the parametric space of these
black-box models. Consequently, they result in changes to
the concept space of LLMs that are impossible to interpret.

To address this challenge, we introduce an outer inter-
pretable read-out layer to enable the explicit observation
of modifications to a language model’s concept embedding
space. This layer is added as the last layer after the LLM’s
parametric architectural layers. In the subsequent sections,
we develop and formalize the proposed approach. We then
evaluate our approach on benchmark language modeling
and understanding tasks. The findings demonstrate that our
method performs comparably with state-of-the-art LLMs of
similar size while offering a cleaner and more interpretable
way to understand the LLM’s concept representations.

2 The Interpretable Read-Out Layer
Let gθ(x) : x → Rd be a function parameterized by θ, which
embeds a concept x as a d dimensional embedding vector.
Let fβ : gθ(x) → y, y ∈ RC be a linear function βT gθ(x)
which maps the embedding for x to a set of C target out-
comes, for example, C target classes for sentiment classi-
fication or C possible next concepts (words or tokens) for
language generation. The similarity of concepts in an em-
bedding space depends on the target task. That is, after fβ is
trained for a target task, we define two concepts xi and xj

are similar if ||gθ(xi)− gθ(xj)|| ≤ ε, where ε is some small
number, and ||.|| is an appropriate distance metric.
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We introduce a non-parametric interpretable read-out
layer over gθ(x), denoted by Φ(x), which characterizes the
concept x using gθ(x) and other “support” concepts before
computing fβ . In the next section, we define such “sup-
port” concepts in the interpretable read-out layer, and ex-
plain their roles for explicit concept modeling. Specifically,
we delve into the core underpinnings of language modeling
and subsequently examine how fundamental operations of
state-of-the-art language models, such as transformers, for-
malize these underpinnings (Vaswani et al. 2017). We then
generalize these operations to demonstrate that adding the
interpretable read-out layer is the logical next step for en-
dowing the model with interpretability.

A Closer Look at Language Modeling, the
Transformer Architecture and Defining the
Interpretable Read-Out Layer Φ(x)
While our discussion has focused on concept embeddings
of single words, such as apple, it is essential to note that a
LLM also embeds concept-phrases of arbitrary length, like
a red apple with vitamin C. The key idea is that when com-
puting for the LLM’s concept embedding space, a set of
co-occurring concepts that constitute a concept phrase serve
as each other’s “support”. Intuitively, the co-occurring con-
cepts apple and vitamin C, serve to support the interpretation
of the individual tokens (apple, vitamin and C) as belonging
together, indicating their presumed proximity in the LLM’s
embedding space. If the concept apple were co-occurring
with Steve Jobs in the concept phrase, the concept Steve Jobs
would support a different interpretation of apple (i.e., em-
beddings for apple, vitamin, and C would not be close in this
case). The core operation in a transformer, the self-attention
operator, leverages this idea of “support” during computing
for concept and concept phrase embeddings.

Let T be the set of all possible concepts in a language.
Let X = [x1, x2, . . . , xN ] denote a concept phrase, which
is an ordered list of concepts such that each xn ∈ X is
an element in the set T . Thus the self-attention for the con-
cept xi, denoted by SAxi

is computed as
∑

j σ(
qTi kj√

d
)vj =∑

j

(
exp(

qTi kj√
d

)∑
j exp(

qT
i

kj√
d

)

)
vj . The qi, kj , and vj are vectors com-

puted using Wqgθ(xi), Wkgθ(xj), and Wvgθ(xj), respec-
tively (gθ is as defined in Section 2). The matrices Wq, Wk,
and Wv are square matrices of dimension d×d. Notice that
the self-attention computation for xi depends on j other co-
occurring “support” concepts. We now generalize this idea
to obtain the interpretable read-out layer.
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(1)

Then, we substitute qi = −q′i = −Wqgθ(xi), kj = −k′j =
−Wkgθ(xj), and vj = Wvgθ(xj). We also observe that

exp(−||l−m||2√
d

) is the Gaussian kernel with bandwidth
√
d,

denoted by the inner product ϕ(l)Tϕ(m), where ϕ(.) is the
infinite-dimensional map (Gaussian kernel is the infinite-
dimensional inner product). Thus, we rewrite Eq (1) as:

SAxi

=
∑
j

(
C||ϕ(Wqgθ(xi))

Tϕ(Wkgθ(xj))||2

C
∑

j ||ϕ(Wqgθ(xi))Tϕ(Wkgθ(xj))||2

)
vj ,

vj = Wvgθ(xj), C = ϕ(0)Tϕ(0)
(2)

=
∑
j

(
Φ(Wqgθ(xi))

TΦ(Wkgθ(xj))∑
j Φ(Wqgθ(xi))TΦ(Wkgθ(xj))

)
vj ,

Φ(.)TΦ(.) = ||ϕ(.)Tϕ(.)||2
(3)

We replace ||ϕ(.)Tϕ(.)||2 with a new inner product (kernel)
Φ(.)TΦ(.) as the product of two kernels is still a kernel. In
this way, we have introduced a read-out layer over gθ and the
notion of “support” concepts xj for characterizing the con-
cept xi. In the next section, we will explain how we enable
the explicit observation of language modeling outcomes by
incorporating the interpretable read-out layer Φ(.) and the
“support” concepts. It is important to note that although ear-
lier methods have demonstrated the feasibility of construct-
ing a kernel to instantiate the self-attention operation, they
have yet to explicitly derive the specific form containing the
Gaussian kernel as in this work (Tsai et al. 2019; Chowd-
hury et al. 2021). Furthermore, our objective is not to offer
an alternative kernel re-formulation, but to achieve a formu-
lation through which we can explicitly interpret the LLM’s
concept embeddings using “support” concepts, as we will
detail in the following sections.

Language Modeling by Leveraging the
Interpretable Read-Out Layer
Support Concepts Recall the target task of designing a
diet plan rich in antioxidants from Section 1, using just the
fruits - apples, grapes, and watermelons. We can obtain
“support” concepts as paths from external KGs. For exam-
ple, the KGs can have the triples Apple is a Fruit, and Ap-
ple has Antioxidants, which can be reformulated as the path
Antioxidants has-1 Apple is a Fruit using inverse relation-
ships. Similarly, for grape, we have the path Antioxidants
has-1 Grape is a Fruit. Thus, we can characterize the con-
cepts Apple and Grape as being fruits rich in antioxidants,
an appropriate description of a fruit category for the target
task. Thus in this example, xi in Eq (3) is the concept ap-
ple and the xj are the KG paths, Antioxidants has-1 Apple
is a Fruit, and Antioxidants has-1 Grape is a Fruit. Figure 1
depicts this process.

Layering the Interpretable Read-Out Layer over Differ-
ent Parametric Function Approximation Architectures
for Language Modeling In traditional parametric lan-
guage modeling, the self-attention operations such as de-
scribed in Eq (1) are layered on top of one another (e.g., 12
layers in BERT (Devlin et al. 2018)). In our approach, we
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Proposed Method
How: (i) Introducing Data Context-Specific Support Concepts for Additional Supporting 
Context

2.

Apples are fruits that are both rich in antioxidants and natural sugars. 
Watermelons on the other hand, do not contain a high amount of 
antioxidants, however, are still a good source of natural sugars.

Input Data

apples, antioxidants, natural, sugars, watermelons, …

apples, antioxidants, natural, sugars, watermelons, …, apples 
antioxidants, natural sugars, ….

tokenize input data using tokenizer

get concepts (token spans of upto length 2)
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e 
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Antioxidants

Pre-trained Graph 
Encoder Network 
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Antioxidants

Antioxidants KGE Embedding

Apple

Apple KGE Embedding 

< 𝜖

Compare if similarity less than 
threshold

1. Apple has Antioxidants
2. Apple has Natural Sugars 
3. Antioxidants has-1 Apple has Natural Sugars
…Su

pp
or

t 
C

on
ce

pt
s

Extract graph paths with at 
most two relationships 

Apple Antioxidants

Figure 1: Process for deriving supportive concepts from data and an external KG. Initially, the data undergoes tokenization.
Subsequently, token spans of length K are identified as potential concept candidates for retrieving graph paths from the KG
(where K is set to 2 in the illustration). Graph paths are extracted by evaluating vector distances between concepts and graph
nodes. These graph paths then serve as the resulting supportive concepts.

instead lay the read-out layer Φ(.) over the parametric ar-
chitecture gθ (e.g., could be a 12-layer transformer architec-
ture). This allows us to leverage the high-capacity function
approximation capabilities of complex parametric architec-
tures in gθ, while still retaining the explicit interpretation of
concept descriptions using “support” concepts, as explained
in the previous section (Section 2). Furthermore, we can
now experiment with different parametric architectures for
gθ to achieve optimal language modeling performance. Fig-
ure 2 illustrates the idea of layering the interpretable read-
out layer on top of parametric architectures and how the
layer’s output can be interpreted.

3 Definitions
In following sections, we introduce definitions required for
explaining our method and experiments, then elaborate on
the choices for the parametric function approximation gθ
and the interpretable read-out layer Φ(.).

Data Structure Definitions
Knowledge Graphs We formally define a KG and its
paths (paths in the next section), as we use KG paths as
“support” concepts in our experiments. A KG is denoted by
KG(V,E,L), where the sets V and E are the vertices and
edges of the graph, respectively. The set L consists of rela-
tionships represented by the edges e(v1, v2) ∈ E, v1, v2 ∈
V. The relationships represented by the edges e(v1, v2) ∈ E
are given by a set of N boolean-valued functions:

L = {re(v1,v2) : ye ∈ {0, 1}N | e ∈ E} (4)

Here 1 and 0 denotes whether the relationship re(v1,v2)

between vertices v1, v2 ∈ V holds or not. We use L(e)

to denote the value ye associated with the relationship
re(v1,v2). We use subject(e) and object(e) to denote the
incident vertices v1, v2 for the edge e(v1, v2). Figure 1
(bottom-left) shows an example of a KG where the vertices
V is the set {apple, watermelon, grape, antioxidants,
natural sugar}, the edges E is the set
{has(apple, antioxidants), has(apple, natural sugar)
, . . .}, and L is the set {apple has antioxidants :
1, apple has natural sugar : 1, . . .}. Note that the set L
is not completely specified, i.e., only the relationships that
hold (L(e) = 1) are stored, and the ones that are not in L
are assumed not to hold (L(e) = 0).

Knowledge Graph Paths Given a KG denoted by
KG(V,E,L), a K length path pK(vl, vm) between two
vertices vl, vm ∈ V, is a sequence of edges e1, e2, .., eK ∈
E, such that L(ek) = 1∧ subject(e1) = vl ∧ object(eK) =
vm ∧ object(ek) = subject(ek+1), k ∈ {1, 2, . . . ,K}. We
have shown examples of KG paths in Section 2.

Task Definitions

We experiment with generative (text generation) and dis-
criminative (classification) modeling tasks. We describe
these tasks and how a KG is used to solve the tasks formally
in the following subsections.

Generative Modeling In generative modeling, given a
context sequence of H previous concepts [x1, . . . , xH ], the
task is next-concept prediction, i.e., predicting the concept
xH+1 from among a predefined vocabulary of C concepts.
The forward pass for this computation is written using a
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The Interpretable Read-Out Layer 𝚽(x) allows us to 
explicitly interpret and align the support concepts 

related to the data, against the appropriate 
relational context, which is learned through 

iterations of training the model.

(QKT)V (QKT)V(QKT)V ……

Feed-Forward Neural 
Network-based
Approximation

Polynomial 
Approximation

Multi-headed 
Self-Attention-based

Approximation

Underlying Parametric Function Approximations g𝛳

Interpretable Read-Out Layer 𝚽(x)

Figure 2: Shows different possible parametric function choices for gθ under the interpretable read-out layer Φ(x), all of which
have universal approximation properties. The figure also illustrates how the read-out layer can be interpreted as defining the
appropriate relational context for the target task of designing a diet plan rich in antioxidants (Section 1), using apples, grapes,
and watermelons. The relevant data-specific context is captured in Φ(.) throughout the training iterations of the model. This is
depicted as an adjacency matrix (formed by utilizing thresholded dot product values calculated by Equation (2)).

modification to fβ (introduced in Section 2) and Eq 3 as:

fβ(xH+1 | [x1, . . . , xH ])

= β
∑
j

(
(Wqgθ(xi))

T (Wkgθ(xj))∑
j(Wqgθ(xi))T (Wkgθ(xj))

)
Wvgθ(xj),

xj ∈ {x1, . . . , xH}
(5)

Here the “support” concepts are the set of concepts in con-
text sequence [x1, . . . , xH ]. Note here that we set Φ(.) to be
the identity function, thus reducing the inner product in Eq
(3) to the standard scalar product in Eq (5), as this is what
we experiment with. Crucially, this change still retains the
explicit interpretation described in Section 2 as the inner-
product is still the outermost layer over gθ. We leave the
exploration of different Φ(.) for future work.

Generative Modeling using Knowledge Graph paths as
“support” concepts xj in Eq (5) For a concept x and KG
denoted by KG(V,E,L), we define all KG paths of up to
length K corresponding to concept x as

PK(x)

= {pK(vl, vm) | k ≤ K vl, vm ∈ V,

||gKGE(x)− gKGE(vm)|| ≤ ε}
(6)

where ||gKGE(x) − gKGE(vm)|| ≤ ε denotes if embed-
dings for vm and concept x are “close enough” using a KG
embedding (KGE) model gKGE . Let IKG(x, xj) be an in-
dicator function that returns 1 or 0 indicating whether the
“support” concept xj ∈ Φ(x) or not, i.e., if the “support”
concept is a path in the KG. Thus, to incorporate KG paths,

we make a slight modification to Eq (5) as follows:

fβ(xH+1 | [x1, . . . , xH ])

= β
∑
j

(
(Wqg

′
θ(xi))

T (Wkg
′
θ(xj))∑

j(Wqg′θ(xi))T (Wkg′θ(xj))

)
Wvg

′
θ(xj)

g′θ =

{
gθ if IKG(xH+1, xj) = 0

gKGE if IKG(xH+1, xj) = 1,

xj ∈ {x1, . . . , xH} ∪ PK(xH+1)
(7)

Here the “support” concepts include both the set of concepts
[x1, . . . , xH ] and the KG paths in PK(xi).

Discriminative Modeling In discriminative modeling,
given a dataset of D data points, i.e., concept set and label
pairs (ld = {x1, x2, . . . , xH},md = c), where the labels c
are from among a predefined set of labels C, the task is to
predict the label c using fβ . Let y denote the predicted vari-
able for the class label c. The forward pass computation for
the logit corresponding to label c ∈ C is as follows:

fβ(y = c | {x1, . . . , xH})

= β
∑
j

(
(Wqgθ(xi))

T (Wkgθ(xj))∑
j(Wqgθ(xi))T (Wkgθ(xj))

)
Wvgθ(xj),

xj ∈ {l1 ∪ l2 ∪ . . . ∪ lD} \ {x1, . . . , xH}
(8)

Thus the “support” concepts for a datapoint during discrim-
inative learning are concepts from all the other D − 1 data-
points in the dataset. Extending the “support” concepts to the
discriminative modeling case involves including the union of
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all the KG paths PK(xj) corresponding to the support xj . To
incorporate KG paths, we modify gθ as in Eq 7.

Defining Approximation Architectures for gθ
As illustrated in Figure 2, we experiment with different ap-
proximation architectures, all of which have universal ap-
proximation properties. They are feed-forward neural net-
works, polynomial approximations, and the multi-headed
self-attention architecture.

Feed-Forward Neural Network First, we experiment
with a Z layer feed-forward neural network described by:

ex = Ex, E ∈ Rd

px = ex +Pex, Pe ∈ Rd

zx = max(Wz
T px, 0), W1 ∈ Rd×d1 , Wz\{1,Z} ∈ Rdz×dz+1

WZ ∈ RdZ−1×d, z ∈ {1, 2, . . . , Z}
(9)

The matrices E, Pe, and the Wz are the trainable weights
in the network (the embedding matrix, the position encod-
ing matrix, and the network weights and biases). We layer
multiple feed-forward structures as described in Eq (9) (12
layers in our experiments, each layer with its own trainable
weights) to obtain deeper approximation architectures. From
each lower layer to the upper layer, we extract the last d di-
mensional column of zx output at that lower layer. Finally,
to obtain the d dimensional vector corresponding to gθ(x),
we extract the last column of zx from the final layer.

Polynomial Approximation Next, we experiment with a
polynomial approximation where we compute powers of x
up to order J . This is described by the equations

ex = Ex, E ∈ Rd

px = ex +Pex, Pe ∈ Rd

zx = {p1x, p2x, . . . , pJx}
(10)

Each of the {p1x, p2x, . . . pJx} is computed dimension-wise
(i.e., each of the d dimensions of x is raised to the power j).
The matrices E and Pe are the trainable weights in the net-
work (the embedding and position encoding matrices). Once
again, we layer multiple such structures to obtain deeper ap-
proximation architectures. From each lower layer, we take
the average of the polynomial powers at that layer to obtain a
d dimensional vector to pass to the layer above it. Finally, to
obtain the d dimensional vector corresponding to gθ(x), we
take the average of the polynomial powers at the last layer.

Multiheaded Self-Attention

ex = Ex, E ∈ Rd

px = ex +Pex, Pe ∈ Rd

qax, k
a
x, v

a
x = {Wa

qx,W
a
kx,W

a
vx | a ∈ {1, 2, . . . , A}}

zx = {σ
(
(qax)

T kax√
d

)
vax | a ∈ {1, 2, . . . , A}}

(11)

The matrices E, Pe, and the Wa
q, Wa

k, and Wa
v are the

trainable weights of the network. A denotes the number
of attention heads. Again, multiple self-attention blocks are
layered, as in the other two cases. From each lower layer, we
take the average of the elements of zx at that layer to obtain
a d dimensional vector to pass to the layer above it. The fi-
nal d dimensional vector corresponding to gθ(x) is obtained
from the average of the elements in zx from the last layer.

4 Experiments
In this section, we describe our hyperparameter configu-
rations and experiments for generative and discriminative
modeling in Sections 4, 4 and 4, respectively. Due to space
concerns, the table and figure captions contain the discussion
about all the experiments. We provide the GLUE leader-
board result for context for the numbers in the results ta-
bles. However, it should be noted that the leaderboard mod-
els are up to 10 times larger than the models implemented
in this paper. We will compare larger models in future work
when the models have finished training.

Hyperparameter Configurations
For all our experiments, we use a single A100 GPU.
For the feed-forward neural network described in Sec-
tion 3, we set d = 384 (chosen by tuning from the set
{200, 384, 768}), and dz = 4000 (chosen by tuning from
the set {500, 1000, 2000, 4000}). For the polynomial ap-
proximation described in Section 3, we set d = 384 (cho-
sen by tuning from the set {200, 384, 768}), and J = 5
(chosen by tuning from the set {2, 3, 4, 5}). Finally, for
the multi-headed-self-attention-based network described in
Section 3, we set d = 384 (chosen by tuning from the
set {200, 384, 768}), and A = 12 (chosen by tuning from
the set {4, 8, 12}). These form the basic units, and to get
deep architectures, we layer them 4, 4, and 6 times for
the feed-forward approximation, polynomial approximation,
and self-attention-based approximation, respectively (cho-
sen by tuning from the set {4, 6, 12}). We also include layer
normalization between the layers. We use a train-validation
split of 80-20 for all our experiments, and all reported results
are evaluation loss scores.

Generative Modeling
Context Size, Tokenization, and Batch Size: For all models,
the context size is set to 1024 (chosen by tuning from the set
{256, 512, 1024}). Batch size is set to 32 (chosen by tuning
from the set {8, 16, 32}). For tokenization, we use the GPT-2
tokenizer 1, which consists of 50, 257 tokens (C in Section
3). Embeddings for the gKGE from Eq (7): We use Con-
ceptNet Numberbatch Embeddings2 and EWISE WordNet
Embeddings3 for ConceptNet and WordNet, respectively.

Parameter Initializations: All the parameter matrices for
all three methods are randomly initialized. Tables 1 and 2
show the results.

1https://huggingface.co/docs/transformers/model doc/gpt2
2https://github.com/commonsense/conceptnet-numberbatch
3https://github.com/malllabiisc/EWISE
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Figure 3: Interpretability results on a sentence similarity example. Since the read-out layer includes explicit inner products,
we visualize and highlight in bold, the inner products from different models for a test example comparing sentence similarities
against an anchor text (center). The squares green boxes represent the OLMpf model, the green oval boxes represent the OLMmha
models, and the pink oval boxes represent the OLMnn model. A significant advantage to using language modeling using our
method is that we can directly use it to visualize the quality of the outputs. We find here also that a lot of the highlights
correspond to relationships from ConceptNet (e.g., austria, 1914, austro-hungarian, great war, etc.), showing explicitly that
KGs benefit performance in the discriminative modeling case.

Datasets and Knowledge Graphs We experiment with
two text generation tasks. One, we train models for text
generation in the style of Shakespeare by using the tiny-
Shakespeare dataset4, which consists of 338, 025 tokens. We
use a train-evaluation split of 80% and 20%, respectively.
Second, we train models for autocomplete (next-word pre-
diction) using the OpenWebText dataset5, which consists
of ∼9 Billion (9, 040, 017, 095) tokens. For the first task,
we used the KGs WordNet6 and ConceptNet7, respectively.
The relationships across both include: Antonym, Distinct-
From, EtymologicallyRelatedTo, LocatedNear, RelatedTo,
SimilarTo, Synonym, AtLocation, CapableOf, Causes, Caus-
esDesire, CreatedBy, DefinedAs, DerivedFrom, Desires, En-
tails, ExternalURL, FormOf, HasA, HasContext, HasFirst-
Subevent, HasLastSubevent, HasPrerequisite, HasProperty,
InstanceOf, IsA, MadeOf, MannerOf, MotivatedByGoal,
ObstructedBy, PartOf, ReceivesAction, SenseOf, SymbolOf,
and UsedFor (Speer, Chin, and Havasi 2017).

Results Table 1 shows the results on the tiny-Shakespeare
dataset. We see that multi-headed-self-attention architecture
takes only 5 minutes and converges to the least evaluation
loss. Across the board, including KGs results in worse per-
formance. The polynomial fit converges the fastest in terms
of the number of epochs but the slowest in terms of the num-
ber of minutes. Finally, we see that the difference in the eval-
uation losses with and without KG is significantly smaller

4https://raw.githubusercontent.com/karpathy/char-rnn/master/
data/tinyshakespeare/input.txt

5https://skylion007.github.io/OpenWebTextCorpus/
6https://wordnet.princeton.edu/
7https://conceptnet.io/

using the polynomial approximation method.

Model w/o
KG

/w
KG

#Ep Mins

Feed-forward Network 3.2 7.1 300 10
Polynomial Approximation 2.5 4.2 100 22

Multi-head Attention 1.55 6.8 200 5
GPT-2-Large-Fine-Tuned 2.2 6.7 250 4

Table 1: Results on the tiny-Shakespeare dataset

Table 2 shows the results on the OpenWebText dataset.
We see similar trends as in the tiny-Shakespeare dataset.
The multi-headed-self-attention architecture takes the least
amount of days and achieves the least evaluation loss. Once
again, including KGs consistently results in worse perfor-
mance. The polynomial fit converges the fastest in terms of
the number of epochs but the slowest in terms of the num-
ber of days. The polynomial approximation also again shows
the least difference in the evaluation losses with and without
KGs compared to the other two methods. Note that GPT-2 is
fine-tuned, and our models are trained from scratch.

Discriminative Modeling
We experiment with General Language Understanding Eval-
uation (GLUE) benchmark Tasks - STS (Semantic Textual
Similarity Benchmark), MNLI (Multi-genre Natural Lan-
guage Inference), QNLI (Question Answering Natural Lan-
guage Inference), WNLI (Winograd Natural Language In-
ference), RTE (Recognizing Textual Entailment), and QQP
(Quora Question Pairs) (Wang et al. 2018).
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Model w/o
KG

/w
KG

#Ep Days

Feed-forward Network 5.2 10.3 300 45
Polynomial Approximation 3.5 6.2 200 60

Multi-head Attention 2.8 9.5 300 32
GPT-2-Large-Fine-Tuned 3.2 8.7 250 2

Table 2: Results on the OpenWebText dataset

Table 3 shows the results. Here, OLM denotes our lan-
guage model, with the neural network (nn), polynomial-
fit (pf), and multiheaded (mha) self-attention architecture.
We find that across the board, adding “support” concepts
from the KGs improves scores significantly. Interestingly,
the polynomial fit exhibits the best performance among the
options for gθ.

Model STS QQP QNLI WNLIMNLIRTE
(GLUELEADER) 93.5 90.9 96.7 97.9 92.5 93.6
OLMnn w/o KG 85.71 86.11 89.9 89.5 75.3 85.1
OLMnn /w KG 89.2 90.2 90.5 90.2 82.1 90.3
OLMpf w/o KG 90.89 86.41 92.3 90.11 88.53 90.4
OLMpf /w KG 93.55 90.51 95.56 98.7 92.08 92.3

OLMmha w/o KG 88.7 86.2 90.3 91.2 86.3 87.3
OLMmha /w KG 90.5 88.8 93.6 97.9 90.8 90.56

Table 3: Results on the GLUE Benchmark tasks.

Interpretability
We perform interpretability analysis for a few examples
from the test set, specifically for the task of sentence sim-
ilarity. Figure 3 shows an example comparing different sen-
tences talking about World War 1, World War 2, and the
American Civil War.

5 Future Work
Additional Forms of Support Concepts
In Section 2, we explored the application of KGs in rela-
tion to support concepts. Moving forward, we will incor-
porate support concepts from Instructing Tuning datasets as
described in the subsequent two paragraphs.

Support Concepts from Instruction Tuning Datasets
Consider the (Prompt, Instruction) pair, (Prompt:
Given information <data>, give me a food item rich in
antioxidants containing apples, Instruction: Here is a
food item rich in antioxidants containing apples - A fruit
salad with the fruits apples and grapes), where an example
of <data> is shown in Figure 2. xi is the concept apple,
xj can be the “support” concepts in Instruction that af-
fects the distribution of LLM’s generated output given xi.

A Note on Instruction-based Fine-Tuning of LLMs
Instruction-based fine-tuning of LLMs using Reinforcement
Learning with Human Feedback (RLHF) updates a policy
function that uses proximal policy gradient-based methods
to modify the LLM’s output distribution (Ouyang et al.
2022). In the case of RLHF, the policy function for modi-
fying the LLM can be seen as an interpretable read-out layer
over the LLM. More formally, let π : (xi, xj) → [0, 1] de-
note a distribution over different “support” concepts xj’s
in the Instruction given concept xi in the Prompt.

The quantity
(

Φ(Wqgθ(xi))
TΦ(Wkgθ(xj))∑

j Φ(Wqgθ(xi))TΦ(Wkgθ(xj))

)
in Eq (2) also

defines such a distribution. Thus RLHF achieves the ob-
jective of reducing the divergence between distributions

π and
(

Φ(Wqgθ(xi))
TΦ(Wkgθ(xj))∑

j Φ(Wqgθ(xi))TΦ(Wkgθ(xj))

)
, for eaxample, re-

ducing the KL-divergence in RLHF using proximal policy
gradient-based methods.

Efficient Inner Product Implementations
Since we derive an explicit inner product or kernel formula-
tion in the interpretable read-out layer, we can exploit high-
quality sub-quadratic approximations to kernels to signif-
icantly speed up learning and inference (Poli et al. 2023;
Hallgren 2021).

6 Conclusion
In this paper, we explore alternative perspectives on lan-
guage modeling and demonstrate its comparable effective-
ness to parametric approaches. Additionally, we illustrate its
added advantage of facilitating easy visualization and inter-
pretation. Consequently, the methodologies outlined in this
paper hold promise for implementing mitigation strategies
concerning observed adverse effects in language models,
such as hallucinations and alignment issues.
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