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Abstract

Predicting pedestrian behavior is the key to ensure safety
and reliability of autonomous vehicles. While deep learn-
ing methods have been promising by learning from anno-
tated video frame sequences, they often fail to fully grasp
the dynamic interactions between pedestrians and traffic, cru-
cial for accurate predictions. These models also lack nuanced
common sense reasoning. Moreover, the manual annotation
of datasets for these models is expensive and challenging to
adapt to new situations. The advent of Vision Language Mod-
els (VLMs) introduces promising alternatives to these issues,
thanks to their advanced visual and causal reasoning skills.
To our knowledge, this research is the first to conduct both
quantitative and qualitative evaluations of VLMs in the con-
text of pedestrian behavior prediction for autonomous driv-
ing. We evaluate GPT-4V(ision) on publicly available pedes-
trian datasets: JAAD and WiDEVIEW. Our quantitative anal-
ysis focuses on GPT-4V’s ability to predict pedestrian behav-
ior in current and future frames. The model achieves a 57%
accuracy in a zero-shot manner, which, while impressive, is
still behind the state-of-the-art domain-specific models (70%)
in predicting pedestrian crossing actions. Qualitatively, GPT-
4V shows an impressive ability to process and interpret com-
plex traffic scenarios, differentiate between various pedes-
trian behaviors, and detect and analyze groups. However, it
faces challenges, such as difficulty in detecting smaller pedes-
trians and assessing the relative motion between pedestrians
and the ego vehicle.

Introduction
To ensure safe autonomous driving and make timely ma-
neuvering decisions, it is crucial for Autonomous Vehicles
(AVs) to have the ability to recognize and anticipate pedes-
trians’ behaviors effectively, especially in urban environ-
ments with complex vehicle-pedestrian interactions. Pedes-
trian behavior prediction is a challenging task due to diverse
factors influencing pedestrians’ behaviors, which include
their individual characteristics like demographics and gaits,
social interactions with other road users (e.g. whether walk-
ing in a group or alone), responses to environmental factors
such as but not limited to road width, traffic lights etc. (Ra-
souli and Tsotsos 2020). As high-level information of be-
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havior is not directly observable and cannot be estimated by
simply using the pedestrian’s trajectories, pedestrian cross-
ing intention prediction requires a holistic comprehension
of the context, scene, pedestrian behavioral attributes, and
meticulous inference from past actions (Sharma, Dhiman,
and Indu 2022; Zhang and Berger 2023).

Most of the recent works treat pedestrian crossing in-
tention prediction as a binary classification with cross-
ing or not-crossing (C/NC) action, while some other stud-
ies predict multi-classification with several different action
types such as crossing, stopping, bending, and starting in
(Fang and López 2018). These methods make use of one
or more feature inputs, such as pedestrian poses (Fang and
López 2018; Zhang et al. 2021) or skeleton (Quintero et al.
2017), past trajectories and velocities through ground truth
annotations or real time tracking algorithms(Huang, Gau-
tam, and Saripalli 2023; Saleh, Hossny, and Nahavandi
2019), local context(Rasouli, Kotseruba, and Tsotsos 2017),
semantic maps(Rasouli et al. 2022), ego vehicle dynam-
ics(Rasouli et al. 2022; Kotseruba, Rasouli, and Tsotsos
2021), etc. These features are concatenated and then fed into
sequential models like RNN (Yang et al. 2022), LSTM and
transformer-based models (Huang, Gautam, and Saripalli
2023; Zhou et al. 2023; Sui et al. 2021), or non-sequential
models like CNN (Saleh, Hossny, and Nahavandi 2019) and
GNN-based models (Razali, Mordan, and Alahi 2021; Chen,
Tian, and Ding 2021; Yau et al. 2021) to capture temporal
and spatial information (Liu et al. 2020).

Although these vision-based methods show promising re-
sults, they exhibit weaknesses in accurately perceiving ob-
jects on real-life data, and have difficulty in interpreting the
behavioral intentions of surrounding traffic participants in
complex and rapidly dynamic environments. Moreover, they
struggle to distill driving-related knowledge from data for
nuanced scenario understanding and effective causal reason-
ing, leading to potential safety concerns, and limiting the
path toward more advanced autonomous driving.

The emergence of VLMs provide potential solutions for
the inherent limitations of current autonomous driving tasks.
While Large Language Models (LLMs) provide human-like
understanding and reasoning capabilities for decision mak-
ing, VLMs (Zhu et al. 2023; Peng et al. 2023) including
GPT-4 (OpenAI 2023) further expand LLMs’ capabilities
through the inclusion and reasoning of image inputs, thus

AAAI Spring Symposium Series (SSS-24)

134



extending their functionality beyond strictly text-based in-
teraction (Fu et al. 2023; Cui et al. 2023; Xu et al. 2023).

Recently, the advent of the cutting edge VLM, GPT-4V
(Gallagher and Skalski 2023) has expanded the horizons for
research and development. An evaluation of GPT-4V in au-
tonomous driving (Wen et al. 2023) scenarios demonstrates
its ability to understand and reason about driving scenes and
make decisions as a driver, including traffic light recogni-
tion and vision grounding. Although similar works touch
upon pedestrian-vehicle interactions in temporal sequences
reasoning of autonomous driving tasks, to the best of our
knowledge, none of them has focused on the ability of GPT-
4V for pedestrian behavior prediction both quantitatively
and qualitatively.

Towards this, we evaluate the performance of GPT-4V
on the most widely used pedestrian behavior dataset JAAD
(Rasouli, Kotseruba, and Tsotsos 2017) along with our own
dataset WiDEViEW (Huang et al. 2023), and provide a thor-
ough assessment of the extent to which VLM can bring
to the landscape of human-centric autonomous driving and
VLM’s ability to decipher and reason about pedestrian and
road users’ behaviour and eventually their role in safer AV-
human interactions.

Evaluation Method
Datasets
JAAD (Rasouli, Kotseruba, and Tsotsos 2017) is one of
the publicly available image-centric datasets specifically de-
signed for pedestrian crossing action prediction. In contrast,
WiDEVIEW (Huang et al. 2023) serves as a comprehensive
multi-modal dataset, for deciphering pedestrian-vehicle in-
teractions in urban environments. Our quantitative evalua-
tion relies only on JAAD, while selective interesting scenar-
ios from both datasets are discussed for qualitative analysis.
While both datasets have pedestrian bounding box tracks as
ground truth, JAAD additionally includes pedestrians’ be-
havioral tags and attribute annotations.

Quantitative Experiment Design
For quantitative experiments, we utilize the OpenAI Python
API to perform a batch evaluation on JAAD dataset.
We task the model with inferring information from n
(num frames) past frames and predicting pedestrian be-
havior for m (prediction num) future frames. Key be-
haviors we focus on, annotated in the JAAD dataset, in-
clude crossing, action(walking/standing) and looking.
The JAAD dataset videos are captured at a frequency of 30
FPS. Our preliminary experiments indicate that the model
struggles to discern differences between frames that are too
closely spaced due to subtle motion changes. While an ideal
experiment would vary skip num (the number of frames to
skip), API constraints limit us to perform batch analysis with
different skip num. Consequently, we set num frames to
10 and prediction num to 5.

Our prompts are constructed based on best practices (see
(Bes 2023)) and iterative trial-and-error. The system mes-
sage is designed to contextualize the AI’s role as an au-
tonomous vehicle with a front camera that interacts with

pedestrians and is capable of outputting JSON files. The
prompt is as follows:

"You are an autonomous vehicle that uses front-camera

images to interact with pedestrians and also a

helpful assistant designed to output JSON."

↪→
↪→

Subsequently, we input image details along with the defi-
nitions of the targeted behaviors for analysis. Rather than
requesting predictions for all pedestrians in the image at the
same time, we focus our inquiry on a single pedestrian at
a time, distinguished by a red bounding box, which aligns
with standard practices in pedestrian behavior prediction re-
search. Since the sizes of some pedestrians are too small
even for humans to accurately detect, we filter out some
pedestrian samples based on their bounding boxes sizes. As
a result, we are left with 194 sequences for evaluation.

The images are entered sequentially and initially we used
the definitions of pedestrian behavior provided in the JAAD
dataset. However, these definitions were not ideal for the
model’s understanding and task performance based on ini-
tial tests. Consequently, we turned to ChatGPT for help in
refining these definitions. This modification leads to a no-
ticeable improvement in the model’s performance, as the re-
vised definitions are more conducive to its comprehension
and predictive capabilities compared to the original ones.

f"""These are {num_frames} ego-vehicle front-camera

view images that you can see behind the wheel.\↪→
Here are the definitions of the pedestrian behaviors

we are interested in: \↪→

* Cross: Not-crossing: The pedestrian is not crossing

the road .\↪→
Crossing: The pedestrian is actively crossing the road

and their path intersects with that of the

ego-vehicle.\

↪→
↪→
Crossing-irrelevant: The pedestrian is crossing the

road, but their path does not intersect with the

ego-vehicle's path, hence it is irrelevant to the

vehicle's immediate trajectory.\

↪→
↪→
↪→

* Action: Whether the pedestrian is `walking` or

`standing` \↪→

* Look: This term describes the pedestrian's attention

in relation to the ego-vehicle, indicating if the

pedestrian is 'looking' towards or 'not-looking'

(not-facing) away from the direction of the

ego-vehicle. """

↪→
↪→
↪→
↪→

Our approach to inference and prediction involves posing
specific questions to the model. Initially, these questions
were directly tied to the three key behaviors we were inves-
tigating. However, we encountered a challenge: the model
struggled to distinguish between ’crossing’ and ’walking
along a sidewalk’. To mitigate this issue, we introduced an
additional question, which was proved to be somewhat ef-
fective, enhancing the model’s ability to differentiate be-
tween these two behaviors.

f"""By answering the following questions, can you

describe the current {num_frames} frames and

predict the next {prediction_num} frame behavior

of the pedestrian within the red box separately?

↪→
↪→
↪→
Questions: \
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* Can you drive forward very fast without hitting the

pedestrian within the red box ? \↪→

* Is the pedestrian crossing in front of our car? \

* What's the action (standing/walking) of the

pedestrian? \↪→

* Is the pedestrian looking towards the direction of

the ego-vehicle (not-looking/looking)?` """↪→

In the final step of our procedure, we direct the model to
present its responses in a predefined JSON format. This
structured output is essential for consistent analysis and in-
terpretation of the results. We consolidate all the prompts
into a single text-based input, followed by a series of image
prompts. Given that GPT is a generative model, its outputs
can vary with each iteration. To enhance determinism in our
experiments, we configure internal parameters of the GPT
model, setting ’temperature’ to 0 and ’seed’ to 0. Addition-
ally, to ensure consistency and reliability, we repeat the same
prompt sequence five times for each experiment.

Qualitative Experiment Design
Our qualitative experiments with ChatGPT supplement the
insights from quantitative batch experiments, enhancing our
understanding of GPT-4V’s capabilities in real-world sce-
narios. We expose GPT-4V to a variety of images from both
datasets to assess its initial responses, then engage in inter-
active dialogues to probe deeper into its initial observations
and analyze the model’s logic. We document the process to
profile the model’s performance, capturing both accurate in-
terpretations and misjudgments.

Results
Quantitative Experiments
Evaluation Metrics In this study, we approach the pedes-
trian behavior prediction as a standard classification task.
To achieve a comprehensive view of the model’s predic-
tion accuracy and reliability, we employ several key stan-
dard metrics: accuracy, precision, recall, F1 score, and ROC
AUC (Area Under the Curve). To quantitatively evaluate the
model’s inherent randomness in output, we utilize entropy
to measure the differences across multiple predictions gen-
erated by the model.

Overall Evaluation Table 2 showcases our evaluation re-
sults. The term current represents the inferred behavior
of pedestrians for given images. The terms future and
future skip refer to predictions for the next five frames.
These predictions are compared against two ground-truth
standards: future, which uses a direct sequence of five
consecutive frames, and future skip, which refers to
five every 10th frames in the future. future summary
and future skip summary in the table will be elab-
orated upon in Future Pedestrian Behavior Prediction by
Summary.

In the analysis of GPT-4V’s current behavior recogni-
tion, ’crossing’ shows moderate performance with 64.77%
accuracy and 65.13% AUC, while its F1 score is a higher
67.11%, indicating a balanced detection ability. ’action’
is marked by high precision (87.69%) but lower recall

(64.39%), suggesting accurate identification but with some
missed instances. For ’looking’, the model struggles more,
with lower accuracy (55.64%), AUC (56.63%), and a sig-
nificantly lower F1 score (38.87%), indicating frequent
misidentification of this behavior due to its high recall
(56.94%) but low precision (29.51%).

In future predictions, ’crossing’ sees a decline in accuracy
(down to 55.08%) and AUC (down to 59.72%), although
precision remains over 80%, indicating correct predictions
when made. ’Action’ interestingly shows increased accuracy
(up to 67.08% from 62.77%) and consistently high preci-
sion (over 95%), suggesting improved predictive capabili-
ties over time, but the recall remains around 67%. ’Looking’
faces decreasing performance in future predictions, with a
significant drop in precision to as low as 8.11%, pointing to
challenges in accurately predicting this behavior.

Overall, GPT-4V exhibits variable accuracy and reliabil-
ity across behaviors. The consistently high precision in ’ac-
tion’ suggests strong predictive capabilities, but lower recall
across behaviors indicates a need for improvement in detect-
ing all relevant instances. The decrease in future prediction
metrics highlights the model’s limitations in long-term ac-
curacy. These varied trends across behaviors suggest a need
for behavior-specific tuning to enhance GPT-4V’s perfor-
mance. Enhancements could include prompt adjustments or
fine-tuning using diverse datasets, aiming to improve both
short-term and long-term prediction reliability.

Comparison with State-of-the-Art Models In standard
pedestrian behavior prediction task, most of the works fo-
cus mainly on the crossing behavior. According to Table 1,
Pedestrian Graph+ and PIT are leading, with the former ex-
celling in accuracy and AUC (both 0.70), and the latter in
F1 score (0.81) and recall (0.93). GPT-4V models, however,
show lower accuracy and AUC scores, and their F1 scores
are not at the state-of-the-art level. While GPT-4V stands
out in precision, with scores over 0.80, it falls short in re-
call compared to models like PIT. This high precision is
vital in scenarios where false positives have serious conse-
quences, but GPT-4V’s lower accuracy and recall indicate
a need for improvement, especially in identifying true pos-
itives and avoiding misclassification. Overall, despite GPT-
4V’s high precision, it lags in overall performance compared
to leading models, especially in accuracy and recall. This
highlights the need for further development of GPT-4V to
enhance its predictive accuracy and effectiveness in captur-
ing true positives.

Current Pedestrian Behavior Recognition Frame by
Frame The model struggles when pedestrians appear too
small in the frames. To investigate this, we calculate pedes-
trian size as the ratio of the bounding box area to the total
image area. We found that most of the pedestrians in JAAD
dataset occupy less than 2% of the image area.

Our analysis assesses the impact of pedestrian size on
the model’s capacity to discern behaviors from images. The
metrics are averaged for frames within ten bins represent-
ing equal divisions of the area ratio of the bounding box.
As depicted in Fig. 1, a clear pattern emerges: the accuracy
increases with the size of the pedestrian, particularly in the
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Models Year Model Variants Input JAAD
Use Frames Extra Info ACC AUC F1 P R

PCPA 2021 CNN+RNN+Attention 16 ✗ 0.58 0.50 0.71 \ \
TrouSPI-Net 2021 GRU+Attention 16 ✗ 0.64 0.56 0.76 0.66 0.91

IntFormer 2021 Transformer 16 ✗ 0.59 0.54 0.69 \ \
ST CrossingPose 2022 Graph CNN 16 ✗ 0.63 0.56 0.74 0.66 0.83

FFSTP 2022 GRU+Attention 16 Seg 0.62 0.54 0.74 0.65 0.85
Pedestrian Graph + 2022 Graph CNN+Attention 32 Seg, P3D 0.70 0.70 0.76 0.77 0.75

PIT-Block(a) 2022 Transformer 16 ✗ 0.70 0.65 0.81 0.71 0.93
PIT-Block(d) 2022 Transformer 16 ✗ 0.70 0.69 0.76 0.79 0.74

GPT-4V 2023 Transformer 10 text 0.57 0.61 0.65 0.82 0.54
GPT-4V Skip 2023 Transformer 10 text 0.55 0.59 0.64 0.81 0.53

Table 1: Performance comparison with state-of-the-art methods from PIT Paper (Zhou et al. 2023). The best results are bold.

Time Behavior ACC AUC F1 P R

current
crossing 64.77 65.13 67.11 67.40 66.83
action 62.77 62.04 74.26 87.69 64.39
looking 55.64 56.63 38.87 29.51 56.94

future
crossing 57.03 61.31 65.91 82.82 54.73
action 66.46 59.12 79.08 95.08 67.69
looking 59.08 49.27 20.99 14.32 39.26

future
skip

crossing 55.08 59.72 64.51 81.39 53.42
action 67.08 60.48 79.59 96.31 67.82
looking 59.79 52.20 13.27 8.11 36.59

future
summary

crossing 44.10 62.72 47.34 83.05 33.11
action 62.56 58.61 76.07 95.08 63.39
looking 74.87 49.93 10.91 11.54 10.34

future
skip

summary

crossing 40.51 65.09 47.27 88.14 32.30
action 62.56 57.09 76.38 96.72 63.10
looking 69.74 47.95 9.23 11.54 7.69

Table 2: Evaluation results on JAAD dataset. Units are in
percent.

detection of crossing and action behaviors. In particular, the
accuracy exceeds 60% for these categories once the area ra-
tio surpasses 1.0%. This trend suggests that the model can
more easily classify larger objects. Conversely, the ”look-
ing” behavior consistently underperforms, hinting at the be-
haviour’s intrinsic complexity or the model’s limitations in
recognizing this specific behavior.

Since GPT-4V is a generative model, we seek to under-
stand its response variability by running five iterations per
prompt and analyzing the outcomes by calculating entropy.
Interestingly, the size of the pedestrians depicted in the im-
ages emerges as a factor that affects the consistency of the
responses. These findings are summarized in Figure 2. The
box plots reveal that, for ’crossing’ and ’action’ behaviors,
larger pedestrian representations lead to lower entropy, im-
plying that predictability increases with pedestrian size. The
’action’ behavior, in particular, shows greater variability at
smaller sizes, as indicated by a wider interquartile range. On
the other hand, the ’looking’ behavior exhibits a consistently
high level of entropy across all sizes. We postulate that this
is due to the inherent complexity of the ’looking’ task, since
it relies on detecting subtle head and face orientation—a fea-
ture that occupies a very small area of the image, making it
challenging regardless of the pedestrian’s overall size.

Figure 1: Accuracy of current pedestrian behavior recogni-
tion across different bounding boxes area ratios.

Future Pedestrian Behavior Prediction Frame by Frame
This section explores the capability of GPT-4V in forecast-
ing pedestrian behaviors over a series of time-lapsed frames.
We input a set of 10 image frames into the model, each se-
lected at every 10th interval. The model is tasked to predict
the pedestrian behaviors in the subsequent five frames. The
accuracy of these forecasts is measured against two bench-
marks: one involving an immediate follow-up of five frames
and the other considering subsequent five frames with every
10th interval. As indicated in Table 2, the prediction accu-
racy of GPT-4V is modest, reaching around 55%—slightly
better than a random guess. Notably, the predictions are
more aligned with the continuous frame sequence rather
than the skip-frame one, though the difference is minimal.
Further, we investigate how the pedestrian size in the frames
influences the accuracy of future behavior predictions. Dif-
ferent from the analysis of current frames, we categorize
our dataset into ten equally sized groups, based on the av-
erage size ratio of the input pedestrians, to maintain unifor-
mity in the dataset. The results show a positive correlation
between the pedestrian’s size in the frame and the predic-
tive accuracy: larger pedestrian images, indicating proxim-
ity to the camera, resulting in higher accuracy and F1 scores
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Figure 2: Average entropy of current pedestrian behavior
recognition across various pedestrian size ranges.

for behaviors like ’crossing’ and ’action’. However, the pre-
dictability of ’looking’ behavior is more erratic. Addition-
ally, we examine the consistency of the model’s predictions.
It is observed that ’action’ behavior predictions are generally
more uniform across different groups, as indicated by lower
entropy values. In contrast, the predictions for ’crossing’ and
’looking’ behaviors are more varied.

Future Pedestrian Behavior Prediction by Summary
Because GPT-4V isn’t explicitly designed to forecast pedes-
trian movements over several future frames, we are curi-
ous whether GPT-4V will perform better if we simplify
the task by only asking about future dynamic behaviors,
such as walking, crossing, and looking. Therefore, we cre-
ate one ground truth label for each sequence by combining
five labels. For example, if a pedestrian’s future five frames
are labeled as ’[not-crossing, not-crossing, crossing, cross-
ing, crossing],’ we interpret this as an overall future be-
havior of ’[crossing].’ The results are thoroughly detailed
in future summary and future skip summary in
Table 2. However, summary prediction only improves cer-
tain aspects like AUC in ’crossing’ and ACC in ’looking’,
reductions in other important metrics counterbalance this.
Its effectiveness varies per behavior and does not uniformly
enhance performance.

Qualitative Analysis
Scene understanding In this case, we assess GPT-4V’s
scene understanding and its ability to prioritize pedestrians
for safe navigation in a complex traffic situation. Our find-
ings in Fig. 3 demonstrate the model’s effectiveness in rec-
ognizing traffic conditions, other road users, and environ-
mental factors. It also justifies its focus on specific pedestri-
ans, vital for autonomous vehicle decision-making.

Figure 3: Scene understanding example on JAAD images.

While GPT-4V provides a reasonably good understanding
of the environment, it can struggle with subtle scene details,
which is illustrated in a case from the WiDEVIEW dataset,
see Fig. 4. The model correctly identifies colored bounding
boxes and the pedestrian count within each but fails to de-
scribe their crossing behavior accurately. This is because it
misinterprets a yellow-lined raised concrete as a sidewalk
instead of a road section. Despite initial prompts indicating
the vehicle’s road presence, the model’s scene understand-
ing leads to incorrect pedestrian behavior summarizing. Ad-
ditionally, since it’s a single-image input, the model solely
relies on scene understanding, made challenging by sunny
lighting conditions.

Individual behavior analysis In this experiment, our ob-
jective is to assess the ability of GPT-4V to identify various
pedestrian or cyclist behaviors, including crossing the road
and looking towards traffic, and its corresponding reasoning
behind the answers.

Pedestrian’s crossing behavior: The response in Fig. 5
highlights that GPT-4V’s assessment considers factors like
crosswalks and intersections. When we mentioned a faded
crosswalk, GPT-4V stuck to its original stance, showing a
preference for certain visual cues.
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Figure 4: Scene understanding failure example on Wide-
VIEW images.

Figure 5: Pedestrian’s crossing behavior from JAAD images.

Pedestrian’s looking behavior: The model missed the
looking behavior in the first and third frames, possibly due

to subtle head orientation changes, see Fig. 6 .

Figure 6: Pedestrian’s looking behavior from JAAD images.

Cyclist’s crossing behavior: The model successfully dif-
ferentiated between a cyclist and a pedestrian with a bicycle,
despite the prompt mentioning only cyclists, see Fig. 7.

Figure 7: Cyclist’s crossing behavior from WiDEVIEW im-
ages.

Group detection and behavior analysis This scenario as-
sesses the model’s ability to detect and categorize groups
of pedestrians and compares its explanations to those for
individual pedestrians. It’s an intriguing scenario because:
(1) Detecting and predicting group behavior can be highly
beneficial when there’s limited information about individual
pedestrians. (2) Modeling group behavior can lead to better
predictions, given richer historical observations. The model
correctly detected the number of groups after some initial
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errors, but failed to describe the groups’ crossing direction,
see Fig. 8.

Figure 8: Group detection in WiDEVIEW images.

After detecting the groups, we investigate whether the
model can provide additional information about group char-
acteristics when given bounding box annotations and initial
prompt information as in Fig. 9. Despite an error in pedes-
trian count (which was due to pedestrian being occluded
through most of the frames), it accurately summarized the
crossing direction and even provided insights into group for-
mation and individual actions, like a raised arm signaling
intent to cross.

The effect of relative motion This experiment demon-
strates that GPT-4V struggles to recognize pedestrian be-
havior due to its inability to consider the relative motion
between pedestrians and the ego vehicle by using an exam-
ple from the JAAD dataset, where a pedestrian with a bi-
cycle stands by the roadside as the ego vehicle approaches
an intersection, shown in Fig. 10. Despite the pedestrian not
crossing the street, GPT-4V incorrectly labels it as crossing,
as observed from the viewer’s perspective. This misclassi-
fication occurs because the model misinterprets the pedes-

Figure 9: Group behavior in WiDEVIEW images.

trian’s lateral movement, primarily caused by the vehicle’s
motion, as crossing, rather than the pedestrian’s actual be-
havior. Such inaccuracies are common when pedestrians re-
main stationary or move parallel to the sidewalk while the
vehicle’s speed causes pixel position changes, leading to in-
correct behavior detection.

Discussion
This section provides insights from both quantitative and
qualitative evaluations, and some nuances of GPT-4V’s per-
formance, its potential, and the challenges it faces in pedes-
trian behavior recognition and prediction for urban driving
scenarios.

PROMISES: Advanced Scene Interpretation: GPT-
4V’s ability to process and interpret complex traffic scenar-
ios is impressive. This involves not just recognizing static
elements like road infrastructure but also dynamic factors
like pedestrian movements and vehicle traffic flow. More-
over, the capability to prioritize the attention to perceived
road users can be advantageous for safe navigation of AVs.

Diverse Behavioral Understanding: The model’s ability
to differentiate between various pedestrian behaviors, such
as crossing, standing, and walking, mirrors human percep-
tion. This is crucial in safety-critical scenarios where recog-
nizing subtle behavior differences can have significant con-
sequences.
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Figure 10: Effect of relative motion on JAAD images.

Nuanced Differentiation Between Road Users: GPT-
4V’s ability to distinguish between pedestrians and cyclists,
and even between a cyclist and a pedestrian with a bicycle,
shows an advanced level of detail in its analysis. This nu-
anced understanding is particularly beneficial in urban envi-
ronments where a variety of road users share close spaces,
and accurate behavior prediction for each is necessary for
safe navigation.

Group Behavior Analysis: The model’s success in de-
tecting and analyzing groups of pedestrians is particularly
promising. This aspect is not just about identifying multiple
individuals but understanding group dynamics and potential
collective behaviors. In crowd management and urban plan-
ning, such insights can be invaluable for designing more ef-
ficient and safer public spaces.

CHALLENGES: Inconsistency and Reliability Issues:
GPT-4V faces challenges in delivering consistent and reli-
able outputs. Notably, it is sensitive to subtle prompt vari-
ations, which may be partly due to the deliberate introduc-
tion of randomness in the output generation process. Desired

improvement in consistency was not achieved even with the
temperature parameter set to minimum. This raises concerns
about its stability and response reliability across different in-
puts.

Dependence on Precise Prompt Structuring: A well-
designed prompt structure is crucial for GPT-4V’s perfor-
mance. We observed that consistency between prompt ques-
tions and concept definitions significantly influences the
model’s reasoning abilities. Higher consistency in prompt
design leads to improved reasoning. Prompts that align
with concept definitions is essential for coherent and reli-
able model responses. Additionally, designing generalized
prompts for various inputs can be challenging.

Challenges in Relative Motion Analysis: GPT-4V’s lim-
itations in accurately interpreting relative motion between
pedestrians and vehicles can lead to critical misjudgments.
This is especially concerning in scenarios where the relative
speed and direction of multiple entities play a vital role in
decision-making, such as in collision avoidance systems in
autonomous vehicles.

Processing Speed Limitations: One of the limitations of
the current GPT-4V version is the relatively slow processing
speed, which requires 10 to 20 seconds for a single prompt
used in quantitative analysis and 10 combined images. As
a result, the integration of these algorithms into real-time,
local systems like dashcams or traffic warning systems is
currently not deemed worthwhile.

Complex Scene Comprehension: While GPT-4V
demonstrates a good understanding of general traffic
conditions, its ability to comprehend and analyze complex
scenes with multiple interacting elements still requires im-
provement. For instance, scenarios involving simultaneous
pedestrian and vehicular movements, or interactions be-
tween multiple pedestrians, present a significant challenge.

Conclusion
This study comprehensively assessed GPT-4V’s capabilities
to recognize and predict pedestrian behaviors in urban en-
vironment context. We carried out quantitative analysis us-
ing JAAD dataset as binary classification, and the results
for crossing behavior classification were compared with
state-of-the-art deep learning models. Qualitative evalua-
tions involved interactive communication with ChatGPT4 to
showcase interesting scenarios from JAAD and WiDEViEW
datasets. GPT-4V exhibits promises in interpreting pedes-
trian behavior, particularly in diverse actions and group dy-
namics, with potential applicability in autonomous naviga-
tion and urban safety systems. However, challenges like out-
put consistency, prompt structure, real-time processing, etc.,
need to be addressed for practical implementation in dy-
namic urban settings.
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