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Abstract

Neural-symbolic (NeSy) AI strives to empower machine
learning and large language models with fast, reliable pre-
dictions that exhibit commonsense and trustworthy reasoning
by seamlessly integrating neural and symbolic methods. With
such a broad scope, several taxonomies have been proposed
to categorize this integration, emphasizing knowledge rep-
resentation, reasoning algorithms, and applications. We in-
troduce a knowledge representation-agnostic taxonomy fo-
cusing on the neural-symbolic interface capturing methods
that reason with probability, logic, and arithmetic constraints.
Moreover, we derive expressions for gradients of a promi-
nent class of learning losses and a formalization of reasoning
and learning. Through a rigorous empirical analysis spanning
three tasks, we show NeSy approaches reach up to a 37% im-
provement over neural baselines in a semi-supervised setting
and a 19% improvement over GPT-4 on question-answering.

Introduction
Modern AI methods often employ black-box models, such
as deep neural networks, that excel at perception and gen-
eration with low-level data (e.g., pixels or tokens) but lack
consistent and interpretable reasoning capabilities. This sig-
nificantly hinders the utility and trustworthiness of these
models. On the other hand, symbolic frameworks for per-
forming logical or mathematical reasoning exist with com-
plementary properties; they are reliable and consistent but
struggle with low-level perception and generation. The field
of neural-symbolic (NeSy) AI (d’Avila Garcez, Broda, and
Gabbay 2002; d’Avila Garcez, Lamb, and Gabbay 2009) has
emerged with the goal of developing systems that realize a
synergy between neural and symbolic methods. As a result,
the field of NeSy AI is experiencing rapid growth, with new
models regularly being introduced (Manhaeve et al. 2021;
Xu et al. 2018; Badreddine et al. 2022; Ahmed et al. 2022;
Pryor et al. 2023). A number of taxonomies have been pro-
posed to categorize these systems (Bader and Hitzler 2005;
d’Avila Garcez et al. 2019; De Raedt et al. 2020; Lamb
et al. 2020; Besold et al. 2022; Giunchiglia, Stoian, and
Lukasiewicz 2022). Among these efforts, the emphasis has
traditionally been on knowledge representation, reasoning
algorithms, and applications.
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This work introduces a new NeSy taxonomy that is
knowledge representation-agnostic, capturing methods that
reason with probability, logic, and arithmetic constraints. We
introduce a mathematical programming abstraction of sym-
bolic reasoning based on the widely used energy-based mod-
eling (EBM) paradigm (LeCun et al. 2006). Specifically, we
build upon NeSy-EBMs: a family of EBMs defined by en-
ergy functions that are compositions of neural and symbolic
components (Pryor et al. 2023).

We organize approaches for connecting the neural and
symbolic components of a NeSy system into three cate-
gories: deep symbolic variables, deep symbolic parameters,
and deep symbolic potentials. These categories are differen-
tiated by the role of the neural component in formulating
the mathematical program for reasoning and vary with in-
creasing expressivity and complexity. We present an empir-
ical analysis of the strengths and use cases of each of the
three modeling patterns, including semi-supervised learn-
ing, graph node labeling with a mixture of experts, and ques-
tion answering with a large language model (LLM).

Additionally, we derive expressions for gradients of a
general class of NeSy learning losses. The gradient expres-
sions motivate design decisions for the neural-symbolic in-
terface to ensure continuity properties needed for principled
gradient-based learning. We use the gradients to perform
end-to-end learning in our empirical analysis for NeSy mod-
els making categorical predictions.

Our contributions include: 1) The introduction of a novel
taxonomy for NeSy modeling patterns and a general formal-
ization of reasoning and learning. 2) Expressions for gra-
dients of a prominent class of NeSy learning losses and a
set of conditions to ensure principled gradient-based learn-
ing. 3) An extensive empirical analysis of the NeSy model-
ing patterns reaching up to 37% performance improvements
over neural baselines in a semi-supervised problem and 19%
improvement of GPT-4 on a question-answering dataset.

Related Work
NeSy AI is an active area of research that empowers neural
models with domain knowledge and reasoning via the inte-
gration with symbolic systems (d’Avila Garcez, Broda, and
Gabbay 2002; d’Avila Garcez, Lamb, and Gabbay 2009).
This line of work has gained significant attention, result-
ing in a surge of novel NeSy AI models, including, but not
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limited to, the works of Yang, Yang, and Cohen (2017),
Evans and Grefenstette (2018), Xu et al. (2018), (Yang,
Ishay, and Lee 2020), Manhaeve et al. (2021), Badreddine
et al. (2022), Ahmed et al. (2022), Cornelio et al. (2023), and
Pryor et al. (2023). Bader and Hitzler (2005), d’Avila Garcez
et al. (2019), and most recently Besold et al. (2022) provide
extensive surveys using dimensions including knowledge
representation, neural-symbolic integration, and application
to compare and describe methods. Similarly, the works of
De Raedt et al. (2020) and Lamb et al. (2020) propose
taxonomies to connect NeSy to statistical relational learn-
ing and graph neural networks, respectively. Focused tax-
onomies and investigations are put forward by Giunchiglia,
Stoian, and Lukasiewicz (2022) and van Krieken, Acar, and
van Harmelen (2022) for deep learning with constraints and
symbolic knowledge representations and Dash et al. (2022)
for integrating domain knowledge into deep neural net-
works. Finally, Marconato et al. (2023) characterizes com-
mon reasoning mistakes made by NeSy models.

Neural-Symbolic Energy-Based Models
Our modeling taxonomy and learning results build on the
neural-symbolic energy-based model (NeSy-EBM) frame-
work introduced by Pryor et al. (2023). NeSy-EBMs are a
family of EBMs (LeCun et al. 2006) that integrate deep ar-
chitectures with explicit encodings of symbolic relations via
an energy function. The energy function defines a mathe-
matical program that is minimized to obtain predictions that
are consistent with domain knowledge and commonsense.

As diagrammed in Fig. 1, a NeSy-EBM energy function
is a composition of a neural and symbolic component, rep-
resented by the functions gnn and gsy , respectively. The
neural component is a deep model (or collection of deep
models) parameterized by weights from a domain Wnn, that
takes a neural input from a domain Xnn and outputs a real-
valued vector of dimension dnn. The symbolic component
is a function encoding domain knowledge and parameter-
ized by weights from a domain Wsy that maps inputs from a
domain Xsy , target (or output) variables from Y , and neural
outputs to a scalar value. Intuitively, the symbolic compo-
nent measures the compatibility of targets, inputs, and neural
outputs with domain knowledge. Formally,

Definition 1. A NeSy-EBM energy function is a mapping
parameterized by neural and symbolic weights from do-
mains Wnn and Wsy , respectively, and quantifies the com-
patibility of a target variable from a domain Y and neural
and symbolic inputs from the domains Xnn and Xsy , respec-
tively, with a single scalar value:

E : Y × Xsy ×Xnn ×Wsy ×Wnn → R. (1)

A NeSy-EBM energy function is a composition of a neural
and symbolic component. The neural component is param-
eterized by neural weights and outputs a real-valued vector
of dimension dnn: gnn : Xnn×Wnn → Rdnn . The symbolic
component maps the symbolic variables, symbolic parame-
ters, and a real-valued vector of dimension dnn to a scalar
value: gsy : Y ×Xsy ×Wsy ×Rdnn → R. Then, the NeSy-

Figure 1: A neural-symbolic energy-based model.

EBM energy function is:

E(y,xsy,xnn,wsy,wnn) (2)
:= gsy(y,xsy,wsy,gnn(xnn,wnn)).

Given inputs and parameters (xsy,xnn,wsy,wnn) ∈
Xsy×Xnn×Wsy×Wnn, NeSy-EBM energy functions can
be used to define several inference tasks. In this work, we
focus on finding targets that minimize the energy function,
i.e., prediction or decision-making.

argmin
ŷ∈Y

E(ŷ,xsy,xnn,wsy,wnn). (3)

NeSy-EBM prediction captures a broad range of reasoning
frameworks, including probabilistic, logical, and arithmetic.
For instance, it can represent complex NeSy systems such
as DeepProbLog (Manhaeve et al. 2021), LTNs (Badreddine
et al. 2022), and NeuPSL (Pryor et al. 2023), to name a few.

NeSy-EBM Modeling Patterns
This section introduces a taxonomy of NeSy modeling pat-
terns determined by the neural-symbolic interface, i.e., how
the neural outputs are utilized in the symbolic component to
define the prediction program in (3). To formalize the mod-
eling patterns, we introduce a layer of abstraction we refer
to as symbolic potentials, denoted by ψ, and symbolic po-
tential sets, denoted by Ψ. Symbolic potentials organize the
arguments of the symbolic component by the role they play
in formulating the prediction program and belong to a sym-
bolic potential set. The specification of the set of symbolic
potentials and the domains of potentials belonging to the set
defines a modeling pattern. Formally, a symbolic potential,
ψ, is a function random variables from a domain RVψ and
parameters from a domain Paramsψ , and outputs a scalar
value: ψ : RVψ ×Paramsψ → R. Further, Ψ denotes a set
of potential functions that is indexed by the set JΨ.

Using the abstraction of symbolic potentials to formalize
the neural-symbolic interface, we introduce three modeling
patterns in the following subsections that vary with increas-
ing sophistication: deep symbolic variables (DSVar), deep
symbolic parameters (DSPar), and deep symbolic potentials
(DSPot). Throughout, we connect the modeling patterns to
prominent NeSy systems and provide illustrative examples
describing applications studied in our empirical analysis.
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Figure 2: A deep symbolic variables model for solving a Sudoku board constructed from handwritten digits. The neural com-
ponent classifies handwritten digits. Then the symbolic component uses the digit classifications and the rules of Sudoku to fill
in the empty cells. See Ex. 2 extended details.

Deep Symbolic Variables
The deep symbolic variables pattern is an efficient approach
to training a neural component with a loss that captures do-
main knowledge. Concisely, the neural component directly
predicts the values of targets in a single symbolic potential.
In other words, there is a one-to-one mapping from the neu-
ral output to the targets. This approach typically yields the
simplest prediction program as the neural model fixes a sub-
set of the decision variables. However, for the same reason,
the symbolic component cannot be used to resolve constraint
violations made by the neural component during prediction.
Rather, this modeling pattern relies on learning to train a
neural component that consistently adheres to constraints.
Representative methods following this paradigm include se-
mantic loss networks (Xu et al. 2018) and learning with logi-
cal constraints (Giunchiglia, Stoian, and Lukasiewicz 2022).

Formally, a symbolic potential function is a singleton
Ψ = {ψ} with a trivial index set JΨ = {1} such that Ψ1 =
ψ. Further, the neural prediction is treated as a random vari-
able by the symbolic potential; thusRVψ = Y×Xsy×Rdnn ,
and the domain of the symbolic parameters is the symbolic
weights, Paramsψ = Wsy . The neural component controls
the NeSy-EBM prediction via an indicator function:

χY(y,gnn(xnn,wnn)) := (4){
0 yi = gnn(xnn,wnn)i, ∀i ∈ {1, · · · , dnn}
∞ o.w.

,

where yi and gnn(xnn,wnn)i denote the i’th entry of the
random variable and neural output vectors, respectively. The
indicator function χY is added to the symbolic potential to
define the symbolic component. In this way, infinite energy
is assigned to random variable values that do not match the
neural model’s predictions and will not be predicted by the
NeSy-EBM. Therefore, the symbolic component expressed
via the symbolic potential is:

gsy(y,xsy,wsy,gnn(xnn,wnn)) (5)
:= ψ([y,xsy,gnn(xnn,wnn)] ,wsy) + χY(y,gnn(xnn,wnn)),

where [·] denotes concatenation. This pattern is demon-
strated in the following example.

Example 2. Visual Sudoku puzzle solving is the problem of
recognizing handwritten digits in non-empty puzzle cells and
reasoning with the rules of Sudoku (no repeated digits in any
row, column, or box) to fill in empty cells. Fig. 2 shows a
partially complete Sudoku puzzle created with MNIST im-
ages (LeCun et al. 1998) and a NeSy-EBM designed for vi-
sual Sudoku solving. The neural component is a digit classi-
fier predicting the label of MNIST images, and the symbolic
component quantifies rule violations.

Formally, the target variables, y, are the categorical la-
bels of both the handwritten digits and the puzzle’s empty
entries. The symbolic inputs, xsy , indicate whether two puz-
zle positions are in the same row, column, or box. The neu-
ral model, gnn(xnn,wnn), is the categorical labels of the
handwritten digits predicted by the neural component. Then,
the symbolic parameters, wsy , are used to shape the sin-
gle symbolic potential function, ψ, that quantifies the total
amount of Sudoku rule violations.

The deep symbolic variables modeling pattern is applied
in a semi-supervised learning setting to fit neural parame-
ters with a partially labeled dataset in the empirical analysis.
However, as neural model predictions determine a subset of
the target values, the model cannot resolve rule violations.
When the neural model predicts digit labels violating a Su-
doku rule, the predicted target variables also violate the rule.

Deep Symbolic Parameters
The deep symbolic parameters modeling pattern allows tar-
gets and neural predictions to be unequal or represent dif-
ferent concepts. Succinctly, the neural component is ap-
plied as a parameter in the symbolic potential. This pat-
tern allows the symbolic component to correct constraint vi-
olations made by the neural component during prediction.
Prominent NeSy frameworks supporting this technique in-
clude DeepProbLog (Manhaeve et al. 2021), semantic prob-
abilistic layers (Ahmed et al. 2022), logic tensor networks
(Badreddine et al. 2022), and neural probabilistic soft logic
(Pryor et al. 2023).

Formally, there is only one potential in the potential func-
tion set denoted by Ψ = {ψ}. Moreover, the index set of
the potential function set is simply JΨ = {1} such that
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Figure 3: A deep symbolic parameters model for citation network node classification. The symbolic component is a mixture of
experts model that combines weighted arithmetic constraints. The neural component uses paper content to weigh the importance
of satisfying an arithmetic constraint. See Ex. 3 extended details.

Ψ1 = ψ. Further, the symbolic potential parameters are the
symbolic weights and the neural predictions, i.e., the param-
eter domain is Paramsψ = Wsy × Rdnn . The symbolic
random variables are the targets and the symbolic inputs,
i.e., RVψ = Y × Xsy . Thus, the symbolic component ex-
pressed via the single symbolic potential is:

gsy(y,xsy,wsy,gnn(xnn,wnn)) (6)
:= ψ([y,xsy, ] , [wsy,gnn(xnn,wnn)]).

This pattern is demonstrated in the following example.
Example 3. Citation network node classification is the task
of predicting the topic of papers in a network where nodes
are papers and edges are citations. A model may use the
network structure, content, and topic labels in a paper’s
neighborhood for prediction. Fig. 3 shows a citation net-
work and a NeSy-EBM designed for node classification. The
symbolic component is a collection of weighted arithmetic
constraints. One constraint represents the heuristic that two
papers connected by a citation in the network have the same
topic, and another uses a neural network to predict a topic
for each paper using only its content. If a constraint is vio-
lated by a random variable, then a cost proportional to the
weight of the violated constraint will be added to the energy
function. The neural component predicts the weights of each
constraint given the paper content. In other words, the NeSy-
EBM is a mixture of experts. Each arithmetic constraint in
the symbolic component is an expert weighted by the neural
component, and experts are combined to formulate a math-
ematical program to produce a single output.

Formally, the targets, y, are the paper topics, and the
symbolic inputs, xsy , are citation links. The neural model,
gnn(xnn,wnn), predicts the weights of every constraint.
Finally, the symbolic parameters, wsy , are used to shape
the single symbolic potential function, ψ, quantifying the
weighted dissatisfaction of the constraints.

In the empirical analysis, the deep symbolic parameters
modeling pattern is applied to a synthetic citation network
setting as described in the example above. With the deep
symbolic variables and parameters modeling patterns, the
NeSy-EBM has a single fixed symbolic potential. This is

a powerful technique for well-defined and dedicated tasks;
however, it is less applicable to open-ended settings where
the relevant domain knowledge is dependent on context. To
address this challenge, the next modeling pattern leverages a
generative neural component to sample a symbolic potential.

Deep Symbolic Potentials
Deep-symbolic potentials, the most advanced pattern, em-
power deep models and LLMs with symbolic reasoning
tools. Input data is used as context to retrieve relevant do-
main knowledge and formulate a program to perform infer-
ence in open-ended problems. Specifically, the neural com-
ponent is a generative model that samples symbolic poten-
tials from a set. This modeling pattern is best represented
by the Logic-LM pipeline proposed by Pan et al. (2023). In
Logic-LM, an LLM is provided a problem and goal in the
form of a prompt and generates syntax for a symbolic rea-
soning program that is executed and interpreted to obtain
an answer. Any NeSy framework with syntax and semantics
for instantiating symbolic potentials can be integrated into a
Logic-LM style pipeline to achieve this pattern.

Formally, let the potential function set, Ψ, be the set of
potential functions that can be created by a NeSy frame-
work. Ψ is indexed by the output of the neural component,
i.e., JΨ = Range(gnn) and Ψgnn(xnn,wnn) is the potential
function indexed by the neural prediction. The random vari-
able and parameter domains of the sampled symbolic po-
tential are RVψ = Y × Xsy , and Paramsψ = Wsy , re-
spectively. Then, the symbolic component expressed via the
symbolic potential is:

gsy(y,xsy,wsy,gnn(xnn,wnn)) (7)
:= Ψgnn(xnn,wnn)([y,xsy] ,wsy),

This pattern is demonstrated in the following example.

Example 4. Question answering is the problem of giving
a response to a question posed in natural language. Fig. 4
shows a set of word problems asking for the order of a set
of objects given information expressed in natural language
and a NeSy-EBM designed for question answering. The neu-
ral component is an LLM that is provided a word problem
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Figure 4: A deep symbolic potential model for answering questions about a set of objects’ order described in natural language.
The neural component is a generative model that samples a symbolic potential. The symbolic potential performs deductive
reasoning to answer the question. See Ex. 4 extended details.

and generates syntax for a NeSy framework to instantiate a
symbolic component used to perform deductive reasoning.

Formally, the target variables, y, represent object posi-
tions, and there is no symbolic input, xsy , in this example.
The neural input, xnn, is a prompt that includes the natural
language word problem. The neural model, gnn(xnn,wnn),
is an LLM that generates syntax for a declarative symbolic
modeling framework that creates the symbolic potential.
For instance, the symbolic potential generated by the neu-
ral model, Ψgnn(xnn,wnn)([y,xsy] ,wsy), may be the total
amount of violation of arithmetic constraints representing
ordering. Finally, the symbolic parameters wsy are used to
shape the symbolic potential function.

In the empirical analysis, this modeling pattern is applied
to the logical deduction setting as described above.

NeSy-EBM Learning
NeSy-EBM learning is finding weights of an energy func-
tion, defined in (1), that associates lower energies to targets
and neural outputs near their true labels. This section pro-
vides expressions for learning gradients in terms of the neu-
ral and symbolic components for a general class of loss.

The training dataset, denoted by S , comprises P samples.
Each sample Si, where i ∈ {1, · · · , P}, is a tuple of inputs,
labels, and latent variable domains. Sample inputs consist of
neural inputs, xinn from Xnn, and symbolic inputs, xisy from
Xsy . Similarly, sample labels consist of neural and sym-
bolic labels, which are truth values corresponding to a subset
of the neural predictions and target variables, respectively.
Neural labels, denoted by tinn, are dinn ≤ dnn dimensional
real vectors from a domain T i

nn, i.e., tinn ∈ T i
nn ⊆ Rdinn .

Target labels, denoted by tiY , are from a domain T i
Y that is

a subspace of the target domain Y , i.e., tiY ∈ T i
Y . Lastly,

the neural and symbolic latent variable domains are sub-
spaces of the range of the neural component and the tar-
get domain, respectively, corresponding to the set of unla-
beled variables. The neural range and target domain are su-
persets of the Cartesian products of their respective latent
variable and label domains, i.e., Rdnn ⊇ T i

nn × Zi
nn and

Y ⊇ T i
Y ×Zi

Y . The training data is expressed as follows:

S := {(t1Y , t1nn,Z1
nn,Z1

Y ,x
1
sy,x

1
nn), · · · , (8)

(tPY , t
P
nn,ZP

nn,ZP
Y ,x

P
sy,x

P
nn)}.

A learning objective, denoted by L, is a functional that
maps an energy function and a training dataset to a scalar
value. Formally, let E be a family of energy functions in-
dexed by weights from Wsy ×Wnn:

E := {E(·, ·, ·,wsy,wnn) | (wsy,wnn) ∈ Wsy ×Wnn}. (9)

Then, a learning objective is a function L : E × {S} → R.
Further, learning objectives are separable over elements of
S as a sum of per-sample loss functionals denoted by Li

for each i ∈ {1, · · · , P}. A loss functional for the sample
Si ∈ S is a function Li : E × {Si} → R. With this notation,
NeSy-EBM learning is the following minimization problem:

argmin
(ŵsy ,ŵnn)∈Wsy×Wnn

L(E(·, ·, ·,wsy,wnn),S) (10)

= argmin
(ŵsy ,ŵnn)∈Wsy×Wnn

P∑
i=1

Li(E(·, ·, ·,wsy,wnn),Si).

Typically, the energy function parameters are also regular-
ized by a function R : Wsy ×Wnn → R, which we omit in
the formulation to simplify the exposition.

For every training sample Si ∈ S , the general family
of loss functionals we consider are defined using optimal
value-functions. Generally, an optimal value-function is the
minimizing value of an objective defined with the energy
over a subset of targets. For instance, the latent optimal
value-function, denoted by V , is defined as:

V (tiY ,x
i
sy,wsy,gnn(x

i
nn,wnn)) (11)

:= min
ẑ∈Zi

Y

gsy((t
i
Y , ẑ),x

i
sy,wsy,gnn(x

i
nn,wnn))

An illustration of an example latent optimal value-function
is provided in Fig. 5. The latent optimal value-function is
the greatest lower bound of the set of symbolic components
defined for each latent variable.

In this work, we organize loss functionals into a sum of
two losses: neural and value-based. A neural loss is any
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Figure 5: An illustrated example of a latent optimal value-
function with a scalar neural component output and a dis-
crete latent variable domain ZY := {ẑ1, ẑ2, ẑ3}.

differentiable loss (e.g., cross-entropy) that is a function
of the neural output and neural labels and is expressed as
LNN : Rdnn ×Rdinn → R. A valued-based loss depends on
the model weights strictly via optimal value-functions, in-
cluding but not limited to (11), and are expressed as LV al :
E ×{Si} → R. For instance, in our empirical evaluation, we
apply the standard energy loss:

LV al(E(·, ·, ·,wsy,wnn),Si) (12)

:= V (tiY ,x
i
sy,wsy,gnn(x

i
nn,wnn)).

Intuitively, the energy loss is applied to find parameters that
result in low energy values for the target labels. Altogether,
a loss for a sample Si ∈ S is:

Li(E(·, ·, ·,wsy,wnn),Si) (13)

= LNN (gnn(x
i
nn,wnn), t

i
nn) + LV al(E(·, ·, ·,wsy,wnn),Si)

Weights that minimize the learning objective are found
via gradient-descent or similar algorithms. The gradient of a
neural loss with respect to the neural weights is obtained via
a standard application of the backpropagation algorithm.

The gradient of a value-based loss with respect to neu-
ral and symbolic weights are non-trivial due to the fact that
both the energy function and the point the energy function is
evaluated at are dependent on the neural output and sym-
bolic weights, as exemplified by the energy loss and the
latent-optimal-value-function in (12) and (11), respectively.
Nonetheless, Milgrom and Segal (2002) provides a general
theorem defining the gradient of optimal value-functions
with respect to problem parameters, if they exist. We spe-
cialize their result in the following theorem for the latent
optimal value-function of NeSy-EBMs.
Theorem 5 (Milgrom and Segal (2002) Theorem 1 for
NeSy-EBMs). Consider wsy ∈ Wsy and wnn ∈ Wnn and
the sample Si = (tiY , t

i
nn,Zi

nn,Zi
Y ,x

i
sy,x

i
nn) ∈ S . Sup-

pose there exists a latent minimizer,

z∗ ∈ argmin
ẑ∈Zi

Y

gsy((t
i
Y , ẑ),x

i
sy,wsy,gnn(x

i
nn,wnn)),

such that E((tiY , z
∗),xisy,x

i
nn,wsy,wnn) is finite.

If the latent optimal value-function, V , is differen-
tiable with respect to every output of the neural model,
gnn(x

i
nn,wnn), then the gradient of V with respect to

gnn(x
i
nn,wnn) is:

∇gnn(xi
nn,wnn)V (tiY ,xsy,wsy,gnn(x

i
nn,wnn)) (14)

= ∇4gsy((t
i
Y , z

∗),xi
sy,wsy,gnn(x

i
nn,wnn)),

where ∇4gsy denotes the gradient of the symbolic compo-
nent with respect to its 4′th argument with all other argu-
ments fixed at the specified values.

Similarly, if V is differentiable with respect to every com-
ponent of the symbolic weight, wsy , then the gradient of V
with respect to wsy is:

∇wsyV (tiY ,xsy,wsy,gnn(x
i
nn,wnn)) (15)

= ∇3gsy((t
i
Y , z

∗),xi
sy,wsy,gnn(x

i
nn,wnn)).

Sketch of Proof. For an arbitrary index i ∈ {1, · · · , dnn},
let ei be the i′th standard basis vector of Rdnn . For any δ ∈
R, by (11) we have

gsy((t
i
Y , z

∗),xi
sy,wsy,gnn(x

i
nn,wnn) + δei)

− gsy((t
i
Y , z

∗),xi
sy,wsy,gnn(x

i
nn,wnn))

≥ V (tiY ,xsy,wsy,gnn(x
i
nn,wnn) + δei)

− V (tiY ,xsy,wsy,gnn(x
i
nn,wnn)).

For δ ̸= 0, dividing both sides by δ and taking the limit as
δ → 0+ and as δ → 0− yields upper and lower bounds re-
lating partial derivatives of gsy to V when V is right and left
hand differentiable, respectively. Then, by the squeeze theo-
rem, we obtain the partial derivatives implied by the gradient
in (14) when V is differentiable with respect to the neural
outputs. A similar approach is used to obtain gradients with
respect to symbolic weights in (15).

Thm. 5 states if the value-function is differentiable, then
the gradients have the form provided in (14) and (15). Mil-
grom and Segal (2002) also provide sufficient conditions
for guaranteeing differentiability of optimal value-functions.
Beyond Milgrom and Segal’s (2002) work, there is exten-
sive literature on analyzing the sensitivity of optimal value-
functions and guaranteeing their differentiability, including
the seminal papers of (Danskin 1966) on parameterized ob-
jective functions and (Rockafellar 1974) for parameterized
constraints. We direct the reader to the cited articles for
properties that guarantee differentiability of value-functions
and, hence, NeSy-EBM value-based losses. The conditions
ensuring differentiability of the optimal value-functions as
well as the tractability of computing the gradient of the sym-
bolic component with respect to its arguments in (14) and
(15) directly connect to the energy function architecture and
modeling patterns discussed in the previous section. Specif-
ically, if principled gradient-based learning is desired, then
practitioners must design the symbolic potential such that
it is 1) differentiable with respect to the neural output and
symbolic potentials, 2) the gradient of the symbolic poten-
tial with respect to its arguments is tractable, and 3) it satis-
fies sufficient conditions for ensuring differentiability of its
minimizing value over the targets.
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An analogous theorem can be constructed for similarly
defined value-functions and hence used for value-based
losses in general. In our empirical analysis, we use the gra-
dients suggested by the theorem to fit neural and symbolic
weights to a cross-entropy neural loss and an energy value-
based loss with binary target variable domains.

Empirical Analysis
We analyze the NeSy modeling patterns and learning losses
on three unique inference tasks, each showcasing com-
pelling applications of NeSy-EBMs. The experiments are
designed to answer the following research questions:

1. RQ1: Does integrating neural and symbolic systems im-
prove the performance of deep models?

2. RQ2: Can DSVar and DSPar modeling patterns be used
with a value-based loss for semi-supervised learning?

3. RQ3: Can a neural component be trained as a weighting
function for a symbolic mixture of experts model?

4. RQ4: Can LLMs generate symbolic potentials for the
DSPot modeling pattern to improve its reasoning?

All experiments are implemented using the open-source
neural probabilistic soft logic (NeuPSL) (Pryor et al. 2023).
A NeuPSL program is a collection of weighted first-order
logical clauses and linear arithmetic inequalities referred to
as rules. The rules are translated into a symbolic potential
using Łukasiewicz real-valued logic semantics and, there-
fore, measures the total weighted satisfaction of variables.
The NeuPSL symbolic component is a non-smooth con-
vex function, and the targets may be continuous in [0, 1] or
Boolean in {0, 1}. Thus, prediction is a mixed integer pro-
gram we pass to Gurobi to solve. 1

Semi-Supervised Learning
We begin by exploring the prediction performance of DSVar
and DSPar models on two variations of Visual Sudoku, a
standard evaluation setting in the NeSy literature (Wang
et al. 2019; Augustine et al. 2022). Here, Sudoku puzzles
are 9× 9 grids of MNIST images related by the rules of Su-
doku: no duplicate digits in any row, column, or block. We
propose two semi-supervised NeSy learning settings:

• VS-Complete: Valid and complete puzzles.
• VS-Solving: Incomplete puzzles with 30 clues.

Sets of (32, 25, 50) and (64, 50, 100) are provided as train-
ing, validation, and testing for VS-Complete and VS-
Solving, respectively. In both settings, the task is to clas-
sify every MNIST digit in the puzzle. The proportion of
labeled digits in the training data is varied over λ ∈
{1.0, 0.1, 0.05, 0.01}. In other words, if ndigits exist in the
training data across all the provided puzzles, λ · ndigits
are available for supervised training of the neural com-
ponent using the cross-entropy neural loss. The remaining
(1−λ) ·ndigits are unlabeled. We evaluate the performance
of the following models.

• ResNet18: A baseline ResNet18 model (He et al. 2016).

1Code and data: https://github.com/linqs/aaai-make24.

• DSVar: A deep symbolic variables NeSy-EBM. (illus-
trated in Fig. 2 for VS-Solving).

• DSPar: A deep symbolic parameters NeSy-EBM. Neural
component predictions are used as a prior.

The target variables represent the categorical digit label of
every entry in the puzzle for both the DSVar and DSPar mod-
els. Further, for the DSVar model, the targets corresponding
to non-empty cells are assigned to the neural predictions, as
formalized in (4). The neural component of the DSVar and
DSPar models is the baseline ResNet18 digit classifier. The
NeuPSL rules for instantiating the DSVar and DSPar sym-
bolic components are the same. Further, the weights of the
DSVar and DSPar are trained using the energy loss (12).

The test set digit accuracy of both the neural and sym-
bolic components of the NeSy-EBMs and at all levels of
superivsion is provided in Tab. 1. Overall, the results in-
dicate that both the DSVar and DSPar neural components
outperform the ResNet18 model at every level of supervi-
sion, providing evidence for an affirmative answer to RQ1
and RQ2. In VS-Solving, the DSPar neural component con-
sistently outperforms the DSVar model. Further, we see that
the DSPar model’s symbolic component achieves the high-
est accuracy in every experiment. Thus, the DSPar model’s
symbolic component is able to resolve errors made by the
neural component during training using the Sudoku rules.

Mixture of Symbolic Experts
In this experiment, we provide an additional motivating use
case for the deep symbolic parameter modeling pattern. We
use the neural model as a weighting function for the sym-
bolic component, which is a mixture of experts. We evaluate
this model on a synthetic node classification problem, which
closely mirrors Ex. 3. This graph comprises disjoint, fully
connected vertex and edge subgraphs with each subgraph ei-
ther having: 1) nodes with random labels but representative
features, or 2) nodes with a common label but random fea-
tures. Experiments are performed in three inductive settings,
where new nodes are added to pre-existing subgraphs with
the following information concatenated to the node features:

• G+ OH: A sample from a Gaussian conditioned on the
label and a one-hot encoding of the subgraph id.

• G+G: A sample from Gaussians conditioned on the label
and on the subgraph id.

The number of subgraphs is 25 with minimum and maxi-
mum sizes of 10 and 15, and the node label space consists of
4 labels. An equal number of subgraphs are generated from
the symbolic structures each containing at least two nodes
in the train set. Each experiment was performed on 5 splits
using 60/30/10 train-test-valid partitions. Experiments are
conducted using the following models:

• Multi-Layer Perception (MLP).
• PSL (Bach et al. 2017): A baseline symbolic model.
• DSPar: A deep symbolic parameters NeSy-EBM.

The symbolic components of both the PSL and DSPar mod-
els are the same and consist of the two constraints in Ex.
3 and Fig. 3. Further, the neural component of the DSPar
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Neural: gnn Symbolic: gsy

Labeled: λ ResNet18 DSVar DSPar DSPar

VS-Complete

1.00 98.00± 0.18 98.14± 0.36 98.07± 0.19 100.00± 0.00
0.10 92.44± 0.78 97.55± 0.26 97.47± 0.36 100.00± 0.00
0.05 83.35± 2.39 97.36± 0.11 97.35± 0.42 100.00± 0.00
0.01 49.75± 3.40 30.95± 7.94 62.62± 19.48 64.44± 19.89

VS-Solving

1.00 98.10± 0.13 98.02± 0.19 98.09± 0.25 99.40± 0.01
0.10 88.98± 1.60 93.53± 0.39 95.13± 0.79 97.62± 0.60
0.05 81.89± 2.38 93.39± 1.03 93.95± 0.17 97.12± 0.26
0.01 43.62± 3.49 70.87± 15.38 79.97± 9.27 81.19± 10.01

Table 1: Digit accuracy on semi-supervised visual Sudoku.

model is two MLPs that predict the constraint weights. The
weights of the PSL and DSPar models are trained using
the bilevel NeSy learning framework introduced by Dickens
et al. (2024) with a cross-entropy loss on the prediction.

MLP PSL DSPar

G+OH 88.10 ± 5.69 87.06 ± 5.61 100.00 ± 0.00
G+G 89.04 ± 2.72 86.71 ± 5.46 93.35 ± 2.23

Table 2: Accuracy on citation network node classification.

Tab. 2 reports the average and standard deviation of the
categorical accuracy of each model. In all cases, DSPar per-
forms the best, only losing a few percentage points with the
most challenging features (G + G). Notably, PSL cannot
model both symbolic structures of the dataset, motivating
the use of the mixture of symbolic experts approach.

Enhancing Large Language Model Reasoning
Finally, we explore the integration of LLMs with symbolic
solvers to improve problem-solving and reasoning. Specifi-
cally, we study the predictive performance of the deep sym-
bolic potentials modeling pattern in the following logical
reasoning dataset.

• Logical Deduction (Srivastava et al. 2022): Multiple-
choice questions that require deducing the order of a se-
quence of objects given a natural language description.

A prompt with two examples is provided during inference.
The test set consists of 300 logical deduction problems. We
compare our predictive performance with the baseline and
models presented in Pan et al. (2023) on gpt-3.5-turbo and
gpt-4 (Achiam et al. 2023).

• LLMs (Standard): LLM directly answers query.
• Chain-of-Thought (CoT) (Wei et al. 2022): LLM is

prompted for a step-by-step explanation with the answer.
• Logic-LM (Pan et al. 2023): A DSPot NeSy-EBM. The

symbolic component is a python-constraint program .
• NeuPSL: A DSPot NeSy-EBM. An LLM is used to gen-

erate NeuPSL rules.

Similar to Pan et al. (2023), models are tested using identi-
cal in-context examples. For reproducibility, the temperature

Standard CoT DSPot
Logic-LM NeuPSL

GPT-3.5 40.00 42.33 65.67 70.33
GPT-4 71.33 75.25 87.63 90.67

Table 3: Accuracy on logical deduction question answering.

parameter is fixed at 0, so generated responses are with the
highest likelihood.

Tab. 3 reports the accuracy of each model. In all cases,
both DSPot models outperform the standard LLM and CoT
models. Additionally, the LLMs produce feasible symbolic
potentials for DSPot-NeuPSL 89.0% and 98.7% of the time
with gpt-3.5-turbo and gpt-4, respectively.

Limitations
We acknowledge our modeling pattern taxonomy is not ex-
haustive. For instance, we do not cover NeSy systems de-
signed for extracting symbolic knowledge from deep neural
networks as in (d’Avila Garcez et al. 2019). Additionally, we
focus on empowering LLMs with commonsense reasoning
and domain knowledge for question answering and do not
explore their applications in other complex reasoning tasks
summarization, or explanation.

Conclusion and Future Work
Our general taxonomy of NeSy modeling patterns is a new
tool for understanding and bridging NeSy challenges to the
broader AI literature. Furthermore, the empirical analysis
demonstrated multiple compelling applications of the mod-
eling, including empowering LLMs, as shown with notable
improvements to GPT-4’s reasoning capabilities, underscor-
ing the practical relevance of NeSy. A promising direction
for future work is a comprehensive loss categorization with
an extended empirical analysis. Additionally, we advocate
for research that explores new NeSy applications that may
require complex combinations of modeling patterns.
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