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Abstract
Temporal credit assignment is the process of distributing de-
layed outcomes to each action in a sequence, which is essen-
tial for learning to adapt and make decisions in dynamic en-
vironments. While computational methods in reinforcement
learning, such as temporal difference (TD), have shown suc-
cess in tackling this issue, it remains unclear whether these
mechanisms accurately reflect how humans handle feedback
delays. Furthermore, cognitive science research has not fully
explored the credit assignment problem in humans and cog-
nitive models. Our study uses a cognitive model based on
Instance-Based Learning Theory (IBLT) to investigate var-
ious credit assignment mechanisms, including equal credit,
exponential credit, and TD credit, using the IBL decision
mechanism in a goal-seeking navigation task with feedback
delays and varying levels of decision complexity. We com-
pare the performance and process measures of the differ-
ent models with human decision-making in two experiments.
Our findings indicate that the human learning process cannot
be fully explained by any of the mechanisms. We also ob-
serve that decision complexity affects human behavior, but
not model behavior. By examining the similarities and differ-
ences between human and model behavior, we summarize the
challenges and opportunities for developing learning agents
that emulate human decisions in dynamic environments.

Introduction
Learning the relationship between actions and outcomes
is essential for behavioral adaptation and decision-making
in dynamic environments (Gonzalez, Lerch, and Lebiere
2003). A difficult learning challenge arises when a decision
maker must make a series of decisions without receiving
feedback until the end of the sequence. The value of each
decision can only be determined retrospectively after learn-
ing the final outcome of the task, and this learning process
is important for improving future decisions. This problem,
known as the temporal credit assignment, determines how
credit should be assigned to intermediate actions within a
sequence (Minsky 1961). The gap between when a decision
is made and when the outcome of such a decision is ob-
served is known as “feedback delay” in dynamic decision-
making research (Brehmer 1989), and it is one of the most
challenging problems in learning to improve decisions over
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time in dynamic situations (Gonzalez, Lerch, and Lebiere
2003; Gonzalez, Fakhari, and Busemeyer 2017).

Computational sciences have proposed a number of ap-
proaches to handle delayed feedback. One of the most
prominent mechanisms for addressing the credit assignment
problem is the temporal difference (TD) from the reinforce-
ment learning (RL) literature (Sutton 1985; Sutton and Barto
2018). TD approaches enable an agent to predict the value of
intermediate states in the absence of final feedback and use
prediction errors over small intervals to update their future
predictions. Many RL algorithms use TD methods (Van Sei-
jen et al. 2009; Hasselt 2010; Xu, van Hasselt, and Sil-
ver 2018), including several state-of-the-art deep RL algo-
rithms (Mnih et al. 2015; Van Hasselt, Guez, and Silver
2016; Hessel et al. 2018).

Recent advances in deep RL algorithms have allowed ar-
tificial intelligence (AI) agents to reach a level of human
performance that has not been possible before in a variety
of complex decision-making tasks (Wong et al. 2021). How-
ever, these RL agents appear to be less adaptable to novel
situations compared to humans, who can quickly learn many
different tasks and quickly generalize knowledge from one
task to another (Pouncy, Tsividis, and Gershman 2021). Al-
though previous studies have shown that RL models can ac-
count for human behavior in some dynamic decision tasks
(Simon and Daw 2011; Gershman and Daw 2017), none of
the current models can account for this human ability to
adapt rapidly in situations with delayed feedback, and AI
agents are often inadequate to explain and predict adaptation
and learning in complex environments as humans do (Lake
et al. 2017; Pouncy, Tsividis, and Gershman 2021). There-
fore, concerns have been raised that the advancement in
RL algorithms is mainly focused on solving computational
problems efficiently and optimally rather than replicating
the way humans actually learn (Botvinick et al. 2019; Lake
et al. 2017). The purpose of this paper is to highlight the
challenges and insights in the development of human-like
learning agents that adapt and learn in dynamic decision-
making situations with delayed feedback. This research uses
RL agents and cognitive models of decision-making based
on IBLT (Gonzalez, Lerch, and Lebiere 2003) and analyses
of human actions in the same tasks.
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Background
Research in AI has a longstanding goal of replicating vari-
ous human behaviors in computational form so that the ma-
chine’s behavior would be indistinguishable from that of a
human (Lake et al. 2017; Turing 1950). Building accurate
replications of human decisions, a “cognitive clone” of a hu-
man cognitive decision process, is essential to anticipate hu-
man error and to create personalized and dynamic digital as-
sistants, as has been recently shown in various applications
of cognitive models (Somers, Oltramari, and Lebiere 2020;
Gonzalez et al. 2021). Little effort has been dedicated to in-
vestigating how to build “human-like” models that consider
the cognitive plausibility and diversity of human behavior
(Gonzalez 2023). Consequently, a significant challenge for
AI research is to develop systems that can replicate human
learning behavior (Lake et al. 2017).

Given that cognitive architectures have been developed
to represent an integrated view of the cognitive capacities
of the human mind (Anderson et al. 2004; Anderson and
Lebiere 2014), previous research has explored how well
models align with humans in tasks involving feedback de-
lays (Walsh and Anderson 2011, 2014). In particular, TD
credit assignment methods have been incorporated into cog-
nitive architectures to emulate how humans process feed-
back delays in sequential decision-making tasks (Fu and An-
derson 2006). Other cognitive modeling research suggests
that people evaluate intermediate states in terms of future
rewards, as predicted by TD learning (Walsh and Ander-
son 2011). However, these studies have primarily focused
on the similarities between neural processes and computa-
tional mechanisms, leaving room for further investigation
and comparison of observed human behavior and credit as-
signment mechanisms in sequential decision-making tasks.

Computational cognitive models, which are based on cog-
nitive architectures, have demonstrated the ability to repre-
sent human decision-making processes in a variety of tasks.
In particular, Instance-Based Learning (IBL) models that
rely on the theoretical principles of IBLT (Gonzalez, Lerch,
and Lebiere 2003) have been used to emulate human bi-
nary choices (Gonzalez and Dutt 2011) and decisions in
more complex dynamic resource allocation tasks such as the
Internet of Things (Somers, Oltramari, and Lebiere 2020),
cybersecurity (Gonzalez et al. 2020), multistate gridworld
tasks (Nguyen and Gonzalez 2020, 2021), and multi-agent
settings are required to build real-time interactivity between
models and humans (Nguyen, Phan, and Gonzalez 2023a).
IBLT provides a single general algorithm and mathematical
formulation for memory retrieval that is based on the well-
known ACT-R cognitive architecture (Anderson and Lebiere
2014). It has emerged as a comprehensive theory of the cog-
nitive process by which humans make decisions based on
experience in dynamic environments (Gonzalez 2023; Gon-
zalez and Dutt 2011; Hertwig 2015; Nguyen, Phan, and
Gonzalez 2023b). In IBLT, the question of temporal credit
assignment is addressed through a feedback process, but
the development and comparison of particular mechanisms
for credit assignment that mimic human behavior in IBLT
are still in the early stages of exploration (Gonzalez 2023;
Nguyen and Gonzalez 2020).

Figure 1: Experimental scenarios.

Goals and Research Approach
In this study, we investigate the problem of credit assign-
ment in a gridworld task that involves delayed feedback at
varying levels of decision complexity. To achieve this, we
use an IBL model that implements different credit assign-
ment mechanisms, including IBL-Equal (equal credit), IBL-
Exponential (exponential credit), and IBL-TD (Nguyen,
Phan, and Gonzalez 2023a) (TD credit) using the IBL de-
cision mechanism, as well as Q-learning, the fundamental
TD algorithm in RL (Watkins and Dayan 1992; Sutton and
Barto 2018). We analyze the predictions from these models
on human performance under the same gridworld tasks. We
adopt a commonly used approach previously employed in
cognitive research (Busemeyer and Diederich 2010; Gonza-
lez 2017) to validate cognitive models with human data. The
process is illustrated in Figure 1.

Our goal is to gain an in-depth understanding of the abil-
ity of these models to produce human-like behavior and
to expose challenges and insights into the development of
human-like AI agents. To develop insights into the vari-
ous methods of temporal credit assignment, we consider
three credit assignment mechanisms implemented in the IBL
model: equal credit, exponential credit, and TD credit using
the IBL decision mechanism. We compare results obtained
from model simulations and human experiments to deter-
mine how closely the models represent human behavior. For
this study, we conducted two human experiments that pro-
vided different visual representations of the same gridworld
tasks. The analysis of performance and optimal actions helps
determine which credit assignment mechanisms produce be-
havior similar to that of humans and which result in more
optimal and effective actions than those of humans.

After comparing the results of these models with the out-
comes and process measures of human decisions in the two
experiments, we have concluded that an IBL-Equal model
that equally assigns credit to all decisions is able to match
human performance more closely than other models, includ-
ing IBL-Exponential, IBL-TD and Q-learning. Initially, the
learning speed of IBL-TD and Q-learning models was infe-
rior to that of humans, but eventually, the models surpassed
human performance.

We then examine the differences between the strategies
employed by humans and those used by models. This al-
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lows us to understand the nuances of human behavior, what
is and is not captured by AI agents, and the human char-
acteristics that may hinder optimal decisions. Our findings
show that humans have the ability to create a mental model
of a task based on its visual representation. In addition, hu-
mans tend to approach tasks more strategically than models
do. Our experiments reveal that humans have concepts and
strategies that influence their behavior, which are not cap-
tured by models. We also found that humans spend less time
exploring environments than models, which leads to long-
term suboptimality compared to TD models.

Taken together, this work brings us closer to understand-
ing the general algorithms of credit assignment that can be
used to generate human-like models. It also highlights the
challenges that researchers need to address to capture the
initial strategic behavior that humans might carry from one
task to another, as well as potential strategies to enhance hu-
man decisions in sequential decision-making tasks with de-
layed feedback. The results and insights from this research
will need to be used in future work to develop human-like
learning agents and to utilize these models to support human
activities in future AI systems.
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Wong, A.; Bäck, T.; Kononova, A. V.; and Plaat, A. 2021.
Multiagent deep reinforcement learning: Challenges and di-
rections towards human-like approaches. arXiv preprint
arXiv:2106.15691.
Xu, Z.; van Hasselt, H. P.; and Silver, D. 2018. Meta-
gradient reinforcement learning. NeurIPS, 31: 2396–2407.

57


