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Abstract

This paper describes a general approach to integrating higher-
level reasoning mechanisms including planning and schedul-
ing methods with lower-level robotic control processes. We
adopt a domain-independent task representation language
TAEMS to describe the knowledge of tasks, resources, and
their interrelationships. This TAEMS representation language
serves as the input of the reasoning functions, which generate
a schedule of executable methods to be executed by the robot
in the physical world. In the execution process of this goal-
directed plan, the robot also needs to attend to basic func-
tions. The potential interactions between the plan and these
basic functions would lead to interesting challenges that will
be discussed. An integrated development platform with a sim-
ulator that supports real-world physics is also presented.

Introduction
Autonomous robots have been used to perform complex
tasks in domains (Darmanin and Bugeja 2017) that have
been deemed too dangerous, tedious, or out of reach for hu-
man intervention for nigh on 50 years. From the frontiers of
space to the depths of the ocean, autonomous robots have
been deployed to make the impossible possible by operating
with decision-making capabilities to rival that of our own.
Increasingly complex and expansive tasks require a higher
order of planning and cooperation.

Autonomous robots have been researched and deployed
in a multitude of various applications and capacities. Most
of these approaches use a low-level approach to the perfor-
mance of tasks such as behavior-based (Arkin 1998; Parker
1995) or rule-based decision-making (Marti et al. 2009).
As researchers (Wahde 2009) have pointed out earlier, such
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basic control mechanisms are insufficient to solve realistic
problems, nor to support efficient cooperation among mul-
tiple robots. Many cooperation approaches also rely on a
centralized component to process and direct the actions of
others such as swarms based on biological flocks (Lee and
Chong 2008). Such centralized approaches usually suffer
from single-point failure problems and lack the flexibility to
handle environmental dynamics. A distributed multi-robot
architecture DIRA has been proposed in (Simmons et al.
2001; Parker, Rus, and Sukhatme 2016), where each robot
has three layers of control including planner, executive, and
behaviors. Robots can interact with each other at each of
these layers. This hierarchical idea resembles our approach
through this early work is limited to fixed agent teams and
task allocations, and the planning is restricted from support-
ing more complex tasks and constraints.

On the other hand, software agent control has been stud-
ied in the AI community from the deliberation perspec-
tive with planning and scheduling mechanisms. Addition-
ally, the multi-agent community has examined the cooper-
ation among multiple agents on topics including task allo-
cations (Liang and Kang 2016), multi-agent planning, Gen-
eralized Partial Global Planning (Lesser and Corkill 2014),
auction and HTN planning (Milot et al. 2021). Partially Ob-
servable Markov Decision Processes (POMDPs) are another
framework to model dynamic processes with uncertainty
used for robot planning (Castellini, Marchesini, and Farinelli
2019) though the computational cost is challenging. Most of
these works focus on reasoning and deliberation of goals and
tasks but leave out the physical world complexities such as
communication limitations and environmental uncertainties.
Therefore, the objective of this study is to develop efficient
robot control and coordination mechanisms with both the
higher-lever deliberations on goals and tasks as well as the
lower-level consideration of physical world complexities.

Figure 1 describes the overview of this framework. First,
we adopt domain-independent task representation language
TÆMS to represent the knowledge of tasks, resources, and
their interrelationships. This domain-independent represen-
tation language serves as the input of the reasoning tools
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Figure 1: Framework Overview

including scheduling and planning functions. The output
from the reasoning toolkit, which is a schedule of executable
methods, is passed to the robot in the physical world. In the
execution process of this goal-directed plan, the robot also
needs to attend to basic functions such as sensing, communi-
cation, navigation, and discovery. The potential interactions
between the plan and these basic functions would lead to
interesting challenges that we will discuss later.

We will describe this process in greater detail in the rest
of this paper. We will also present an integrated develop-
ment platform to support the development of agent proto-
types with a simulator environment with real-world physics.

TÆMS Formal Representation of Tasks and
Environment

TÆMS (Task Analysis, Environment Modeling, and Simu-
lation) is a framework for modeling complex task environ-
ments from both an agent-centric subject view and an ob-
jective view of the real problem-solving situation. Figure 2
shows a TÆMS example graphically in Robot Rescue (Go-
hardani, Mehrabi, and Ardestani 2016), where a group of
heterogeneous agents, Police Force, Ambulance, and Fire
Brigate are working to rescue civilians in a disaster scenario.

Each node in TÆMS graph represents a task, which
may be further decomposed as a set of subtasks. A task
with no subtask is referred to as a method, the smallest ele-
ment for scheduling and direct execution. For example, the
task Rescue Civilians in Building 1 has two subtasks, first
Pickup Civilians in Building 1 and then Deliver Civilians
to Hospital. The quality accumulation function (QAF) asso-
ciated with the task node Rescue Civilians in Building 1 is
seq min, which specifies that the two subtasks, Pickup and
Deliver need to be executed in a sequence order; in addition,
the minimum quality associated with any of these subtasks
would be counted as the quality achieved for the task node.
TÆMS defines various QAFs to specify how the quality of
a task’s subtasks shall be used to calculate the quality of the
task itself, including the following:

• Max: the quality of the task is equal to the maximum quality of
any one of its subtasks;

• Min: the quality of the task is equal to the minimum quality of
any one of its subtasks;

• Sum: the quality of the task is equal to the sum of the qualities
of its subtasks;

• Sum All: similar to Sum, with the additional requirement that all
the subtasks must be completed for the task to have quality.

In addition, Seq Max, Seq Min, and Seq Sum are similar to
Max, Min and Sum All described above except the subtasks
need to be executed in a sequencing order.

The outcome of the execution of each method is described
from three perspectives: quality, cost, and duration. Duration
is the time length of the method execution, the quality and
cost may be assigned to domain-specific meaning. For ex-
ample, in this Robot Rescue domain, quality may be defined
by the importance and contribution towards the final evalu-
ation goal, which is to maximize the number of saved civil-
ians and their health scores. Cost may be defined as resource
consumption.

Given the stochastic nature of the environment, the
method execution outcome is described as a probability dis-
tribution over possible values. For example, method Remove
Blockade on Road A has its quality outcome specified as:
(25% 0)(75% 10.0)
which means there is a probability of 0.75 that this method
execution would produce 10.0 units quality but it may fail
with a probability of 0.25 hence producing 0 unit quality.
Such probability distribution would be built in the agent as
pre-knowledge if available; which could also be learned and
updated by the agent from the real-world experience.

Time constraints may also be specified for task and
method with earliest start time (est) and deadline (dl), in-
dicating the earliest possible time at which the method can
be executed and the latest possible time at which the method
should be completed respectively.

Besides these task-associated constraints described
above, there are also non-local effects to characterize the in-
fluence of task A on task B:

• enables: task B can only start after task A has succeed.

• disables: task B cannot be executed after task A succeed.

• facilitates: the execution of task A helps task B by increasing
its quality, or reducing its cost or duration.

• hinders: the execution of task A makes task B more difficult by
reducing its quality, or increasing its cost or duration.

In the Robot Rescue example, the Police Force needs to
clear the road so that Fire Brigade may move to the build-
ing to extinguish fire and then the Ambulance may pick up
civilians from that building. Such a complex task scenario
is depicted in Figure 2 with enables relationship: both task
Remove Blockade on Road B and task Extinguish fire on Building
1 enable task Pickup Civilian in Building 1.

Though the initial task structure with outcome data is pro-
vided as pre-knowledge to each agent, this information may
be updated by the agent during execution when the agent
learns from its experience with the environment. New tasks
and methods may also be created and incorporated into the
current task tree according to dynamic needs.
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Figure 2: Robot Rescue Example in TÆMS Representation

Intelligent Scheduler and Collaboration
Toolkit

As we presented in the previous section, TÆMS framework
supports the modeling of complex scenarios with alternative
ways to accomplish goals, the interrelationship among tasks
and agents, soft-realtime constraints, and uncertainty de-
scription of the environment. Domain-dependent intelligent
schedulers with planning capability may be developed to
produce a sequence of methods with specified start and fin-
ish times, considering specific evaluation criteria. The com-
plexities of the task representations prohibit an exhaustive
search for an optimal outcome, hence the planning sched-
uler would exploit various heuristics to produce approximate
solutions guided by the user-specified criteria (Wagner, Gar-
vey, and Lesser 1998).

The top portion of Figure 3 depicts the TÆMS task trees
for two agents: Police A and Police B in the Robot Res-
cue Scenario. Police A must first move to the target block-
age in order to remove it. There are two ways to remove
the blockage, either by itself (Remove-Blockage-Self) or as
a team that requires help from Police B (Remove-Blockage-
Team). The difference between these two approaches is that
the team approach produces a higher quality (10 v.s. 6) with
less cost and shorter duration (5 v.s. 10).

The left bottom portion describes the schedule evalua-
tion criteria with three dimensions. In this shown example,
quality is the most important factor with a weight of 0.5,
followed by duration with a weight of 0.4 and cost is the
least important factor. This criterion is used by the intelligent
scheduler to rank alternative schedulers. The best schedules
according to this criterion are returned.

The right bottom portion shows two schedules. The first
schedule does not need coordination, finishing at time 11
with a quality of 7 and a cost of 11. The second schedule
needs the collaboration from another Police B, it finishes at
time 6, with a quality of 11 and a cost of 6. Noted this cost
is only the cost of Police A. Additional cost would occur
from Police B when it helps, but that amount is not known
to Police A nor considered by Police A.

A collaboration toolkit would evaluate this collaboration

schedule compared with the best alternative without coordi-
nation, and find out that, with this collaboration approach,
the local utility is increased by 2 units. Therefore, a coordi-
nation request is generated shown in Figure 4.

This request is sent to Police B for asking help to remove
the blockage as a team with a deadline of 6. Police B then
uses its collaboration toolkit to evaluate this request by com-
paring its best plan with this request and without this request.
Usually helping another agent may cause the loss of its lo-
cal utility. However, if this loss is less than the gain of Po-
lice A, police B will grant this request. Otherwise, Police B
will reject this request. In the latter case, Police B may also
propose an alternative by offering to help at a time differ-
ent from what is requested. Police A then re-evaluates this
alternative to see if it still is valid.

It’s worth noting that TÆMS framework adopts a soft
real-time (Erickson and Anderson 2022) assumption which
means that missing deadlines sometimes are permitted,
though it may bring different utility in solving the problem.
This is different from a hard real-time system where a valid
solution must ensure no task misses a deadline. Hence Police
A may evaluate the alternative completion time proposed by
Police B to see how it fits into its local view of the problem-
solving scenario.

Both the intelligent scheduler and the collaboration
toolkit are domain-independent and, therefore may be ap-
plicable to various applications as long as the problems are
described with the TÆMS framework.

Robot Control and Challenges
The integration of higher-level planning, scheduling, and
collaboration reasoning processes with and robot’s lower-
level functional behaviors brings quite some exciting chal-
lenges to this research. Figure 5 depicts the overview of
this integrated architecture for autonomous robot control.
The robot receives new information from its sensors, and
new messages arrive through communication channels. This
new information and new messages are used to update the
robot’s world model, which contains the knowledge of the
environment and also about other robots in this environ-
ment. In the robot rescue example, the world model stores
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Figure 3: Schedule Example with Coordination Choices
Generated by a task structure visualizer with runtime information. Each method’s outcome is described as quality Q, cost C, and duration D
distribution. D:[5.0, 1.0]: with a probability of 1.0, the duration is 5.

Coordination Request
from: Police_A
to:   Police_B
task: Help-Remove-Blockage-Team
deadline: 6
gain: 2.0 

Figure 4: Coordination Request Example

information about the map, the blockage location, the dis-
covered civilians and their locations, and the closeby agents
and their locations. Based on the updated world model, the
TÆMS model may also be updated. For example, a new
task is created to help remove a blockage resulting from a
message received. The expected outcome of a task may also
be specified with more accurate information. For example,
the time duration of arriving at a specific location may be
updated when the road situation is known better.

Based on the TÆMS model, the intelligent scheduler
may produce a soft real-time (Erickson and Anderson 2022)
plan, a sequence of executable methods, each with a speci-
fied start time and end time. When applicable, the collabo-
ration toolkit would also generate collaboration requests for
other robots, which will be sent out as new messages by the
communication module.

The first challenge is to decide whether the robot needs
to interrupt the execution of a low-level method and report
to the upper-level controller with newly discovered informa-
tion and new messages. For example, in the movement pro-
cess of picking up a civilian, which is a scheduled method
for the ambulance robot, it discovers another location with
trapped civilians inside. Should the ambulance stop its cur-
rent execution and report this new piece of information and
wait for a potentially modified plan or continue its current
movement to pick up the assigned civilian as previously
planned? In application domains where the computing de-
liberation time is ignorable compared to the execution time,

the robot does not need to stop its execution while waiting
for possible revision of the plan. Otherwise, this decision
needs to be made more carefully.

Besides whether the robot shall stop its execution when
new information is discovered, the second challenge is
whether the robot shall replan given new information dis-
covered or a new message received. This is also referred to
as the commitment problem (Wooldridge 1999). Overcom-
mit to a predetermined plan may lead to failure to respond to
a changed environment or missing new opportunities. How-
ever, too frequently replanning also may lead to failure to
accomplish any goal. In order to make a balanced decision,
the robot needs to carefully evaluate the impact of the newly
discovered information on its current plan and also assess
the opportunity cost of each choice.

The third challenge is to decide when to communicate and
to whom to communicate. Such decisions could be made
as part of the collaboration plan at the upper level, how-
ever, more reactive and dynamic communications are also
needed to share new discoveries with other robots or to reat-
tempt sending messages when no response is received for
previously sent messages. The question is how frequently
such update messages shall be sent and how persistent the
robot shall be to resend an unresponded message. Consid-
ering communication also carries a cost, channels may be
unreliable, robots may move out of range, and information
may be inaccurate or outdated, the decisions regarding com-
munication demand further deliberation.

Simulation Environment and Development
Interface

To verify the proposed framework as shown in Figure 1 and
explore the challenges described in the previous section,
we build a platform for developing software agents with
AI technologies in a simulation environment in which they
can be tested with real-world physics. This platform is built
on the integration of an agent development framework and
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Figure 5: Integration of High-Level Reasoning and Low-
Level Functions

a simulation environment. The agent development environ-
ment supports the pre-deployment prototyping of agents for
customizable use cases, and the simulation environment can
be altered to present obstacles to navigate, resources to mine,
entities to rescue, and environmental forces such as tides or
gravity to adapt to. We assert that such simulation testing
is paramount to the success of real-world-deployed multi-
agent systems used in collaborative autonomous robots.

The agent development framework chosen here is the Java
Agent DEvelopment Framework, referred to as JADE (Bel-
lifemine, Caire, and Greenwood 2007). This decision is
made for the following two reasons. First, JADE has an in-
tegrated communication protocol, which is consistent with
FIPA’s ACL Message structure, and therefore simplifies the
implementation of any communication between agents. Sec-
ondly, JADE also has support the use of TÆMS frame-
work because both use the Java language for implementa-
tion. The widely-used open-source Robot Operating System,
ROS (Quigley et al. 2009; Koubâa et al. 2017), is not chosen
in this project because of the difficulty of integrating it with
the Java-based TÆMS related AI technologies. However,
as a future direction, it shall be considered to build a bridge
between this set of AI technologies and ROS.

The construction of a simulator environment requires
two principal elements: a graphics library and a physics
engine. The natural place to start with such a search
is where these tw o elements married most prominently,
LibGDX (Stemkoski 2018) combines multiple graphics li-
braries and one of the most widely used two-dimensional
physics libraries, Box2D (Parberry 2017). As Box2D is na-
tively a C++ library, the thin wrapper that the LibGDX
framework provides makes it usable in the native Java
project architecture (libGDX community 2023). While ele-
ments of the graphic libraries it contains are used to draw the
window, and render the actual scene, Box2D is responsible
for most of the features concerning the agents.

Integrated Architecture Initial prototyping of both
frameworks was straightforward but integrating them into
a single project structure posed some challenges. To in-

stantiate JADE agents, the JADE platform needs to be run-
ning. This feat was previously accomplished by running the
jade.Boot class as the main class with command line argu-
ments to specify the agents. To launch the simulator, its own
main class must be declared in the run configuration. For-
tunately, JADE supplies the ability to launch the platform
programmatically which we can integrate into the setup of
the simulator environment.

To truly emulate the partial observability of the environ-
ment that the robot would have in a real-world application, a
wrapping layer called AgentWorldPerspectiveLayer is needed
between the instance of the world (environment) and the
agent core, because the agent should not be given direct ac-
cess to the instance of the world that contains all environ-
mental information. The introduction of the AgentWorldPer-
spectiveLayer class will act as an intermediary class between
the agent core and the simulated environment. This will also
grant us the ability to model communication constraints. For
example, a message is delivered only when by the desired
recipient is within the communication range before sending
the message. Conceptually, the agent core wrapped with this
AgentWorldPerspectiveLayer simulates the robot with limited
and specified sensor/communication capability. By keeping
the reference to the world encapsulated in a separate class
from the agent, we can ensure that everything that the agent
knows about the world is entirely derived from its own per-
ception experiences and the messages of other agents.

Agent Anatomy The simulator includes a multitude of
visualization options for rendering object bodies including
those representing the agent body. The full spectrum of these
features can be seen in Figure 7. The agent bodies and sen-
sors are given a basic circular shape to simplify movement
by being able to ignore complicating factors such as orienta-
tion. The perimeter of the body boundary is drawn in white.
The orientation of the agents body is indicated by the same
color line emanating from its center. This gives an indication
of rotation which can be especially useful in shapes such as
circles where rotation can be hard to discern. The direction
and magnitude of a shapes velocity is indicated by a red line
also emanating from the bodys center in the direction of its
movement. Bounding boxes are also drawn around each ob-
ject in magenta to indicate the coordinate minima and max-
ima in both dimensions. Bounding boxes and velocities can
be turned off when the renderer is instantiated.

Scenario The scenario that was used in the demonstration
consisted of two agents initialized on opposite sides of the
simulator environment. The communicating agent commA-
gent first sends a CFP message to the receiving agent recAgent
with a list of potential coordinates to navigate to. The recA-
gent parses this list and calculates which of the coordinates
has the smallest Euclidean distance to its current location.
It then replies with a Proposal message with these coordi-
nates. The commAgent replies with an Accept message and
begins moving to the destination. Once the recAgent receives
this proposal acceptance, it also begins moving toward the
destination. To make it more explicit, a static object at the
destination point was added to the simulator environment.
As an interesting additional feature, the recAgent was also
outfitted with a sensor to demonstrate that these objects can
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Figure 6: Functionality of Agent-World Perspective Layer

detect other objects within its boundaries without colliding
with them.

Conclusion and Future Work
We presented an integration approach to developing robots
with AI technologies for planning, scheduling, and coordi-
nation for complex soft real-time application problems with
interrelated task relationships. We described the TÆMS lan-
guage framework and showed how it may be used to model
a sophisticated problem scenario - Robotcup rescue. An in-
telligent scheduler and a collaboration toolkit may be de-
veloped based on TÆMS framework to generate a plan
for the robot and handle necessary collaboration with other
robots. Three major challenges in this integration approach
have been discussed. In the end, we presented a platform to
support the development of software agents and testing them
in a simulated environment with real-world physics, which
would facilitate the transfer into real robot architecture.

We hope to continue this work to further explore the three
challenges presented in this paper. It is important to test this
approach with complex problem scenarios on the integrated
simulation platform to better understand the feasibility and
limitations of this approach. Furthermore, we would like to
transfer this approach to real robots hopefully to work with
RoS as a starting point.
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