
HomeRobot: An Open Source Software Stack for Mobile Manipulation Research
Chris Paxton1, Austin Wang1, Binit Shah2, Blaine Matulevich2, Dhruv Shah1, Karmesh Yadav1,3,

Santhosh Ramakrishnan5, Sriram Yenamandra3, Yonatan Bisk1,4

1FAIR, Meta AI
2Hello Robot

3Georgia Tech
4Carnegie Mellon

5UT Austin
cpaxton@fb.com

Abstract

Reproducibility in robotics research requires capable, shared
hardware platforms which can be used for a wide variety of
research. We have seen the power of these sorts of shared
platforms in more general machine learning research (e.g.,
PyTorch), where there is a constant and open-sourced devel-
opment over time to meet the needs of the community To be
able to make rapid progress in robotics in the same way, we
propose that we need: (1) shared real-world platforms which
allow different teams to test and compare methods at low
cost; (2) challenging simulations that reflect real-world en-
vironments and especially can drive perception and planning
research; and (3) low-cost platforms with enough software to
get started addressing all of these problems. To this end, we
propose HomeRobot, a mobile manipulator software stack
with associated benchmark in simulation, which is initially
based on the low-cost, human-safe Hello Robot Stretch.1

Intro
Home assistants have long been a motivating example in
robotics, although relatively few teams have actually been
able to deploy robots, especially mobile manipulators, in a
wide range of homes. There are good reasons for this: de-
ploying a useful mobile manipulator requires integrating a
wide range of components, from grasping to object detec-
tion, task planning, and more. We propose HomeRobot, a
software stack with both simulation and real-world hard-
ware components, as a common, open-source platform for
mobile manipulation research and development, in order to
allow more users to perform high-impact research in home
environments.

Common, shared platforms and software have spurred
rapid progress in fields like language understanding (Wolf
et al. 2019), image generation (von Platen et al. 2022), and
are credited with the success of deep learning (Neubig et al.
2017; Al-Rfou et al. 2016; Abadi et al. 2015; Paszke et al.
2017). Robotics, unfortunately, lacks such shared platforms
– the closest being the prevalent ROS (Quigley et al. 2009)
software stack, often criticized for being complex and hard
to use (Murali et al. 2019). Unlike PyRobot, we focus on

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://github.com/facebookresearch/home-robot

Figure 1: HomeRobot is a simple, easy-to-set-up library
which works in multiple environments and requires only rel-
atively affordable hardware. Computationally intensive op-
erations are performed on a desktop PC with a GPU, and a
dedicated consumer-grade router provides a network inter-
face to a robot running low-level control and SLAM.

providing a strong simulation component and implementing
a variety of baselines.

We identify three goals for a platform for reproducible
robotics research:

• A motivating north star: it must provide some guiding
north-star tasks which can help shape and motivate re-
searchers and allow for comparisons of a variety of meth-
ods on interesting, real-world problems;

• Software Capability: it should provide abstract inter-
faces that make a robot easier to use for a wide variety
of tasks, including navigation and manipulation; and

• Community: we should incentive people to get involved,
use the codebase, and build up a community around it.

We specifically propose a task called open-vocabulary
mobile manipulation (OVMM) as our north star for this
project. In OVMM, a robot must, without any prior maps,
move around a new environment and find objects specified

AAAI Fall Symposium Series (FSS-23)

518

Figure 2: A low-cost home robot performing the HomeRobot OVMM task in both a simulated and a real-world environment.
In HomeRobot, we provide both a challenging simulated “north star” task, wherein a mobile manipulator robot must find and
grasp multiple seen and unseen objects, and a corresponding real-world robotics stack to allow others to reproduce this research
and evaluation to produce useful home robot assistants.

by language. We believe this is a strong “building block” for
future capabilities, and can be implemented in many differ-
ent ways: using motion planning and simple heuristics or an
LLM-based planner to determine goals, as per SayCan/Say-
Plan (Ahn et al. 2022; Rana et al. 2023), built on a task-
and-motion-planning stack (Garrett et al. 2020; Curtis et al.
2022), reinforcement learning (Yenamandra et al. 2023b), or
using implicit representations and pretrained models (Bolte
et al. 2023). Having a common task which does not preclude
any of these options allows us to share useful components
across projects (e.g. detection, mapping, and grasping).

Our proposal and software stack are based around the
Hello Robot Stretch, a low-cost mobile manipulation plat-
form already in use at over 40 universities. By leveraging
existing and accessible infrastructure increases the odds of
adoption, code-sharing, and expediting research progress.

Projects using HomeRobot. Many research projects
have already started using HomeRobot for object naviga-
tion (Ramakrishnan et al. 2022), exploration (Ramakrish-
nan, Al-Halah, and Grauman 2020), image-instance naviga-
tion (Krantz et al. 2023), continuous/lifelong learning (Pow-
ers, Gupta, and Paxton 2023), language-conditioned naviga-
tion (Bolte et al. 2023), and language-conditioned multi-task
learning (Parashar et al. 2023).

Contributions. We describe the HomeRobot software
stack: a codebase which allows for both simulated and real-
world control of a Stretch robot from Hello Robots, a low-
cost mobile manipulator with good manipulation and navi-
gation capabilities (Kemp et al. 2022) that provides a strong

basis for shared, mobile manipulation research in human
home environments.

Open-Vocabulary Mobile Manipulation
Our HomeRobot code is released with modules for Open Vo-
cabulary Mobile Manipulation (OVMM) (Yenamandra et al.
2023b), where a robot must find any object and place it in
any location in an ordinary home. We chose this task be-
cause it represents a foundational capability for robots to
be useful assistants: they must perceive a wide variety of
objects, grasp and manipulate them, and understand large,
complex scenes that may not be well mapped to begin with.

Formally, the HomeRobot OVMM task is set up as
instructions of the form: “Move (object) from the
(start receptacle) to the (goal receptacle).” The
object is a small and manipulable household object (e.g., a
cup, stuffed toy, or box). By contrast, start receptacle
and goal receptacle are large pieces of furniture, which
have surfaces upon which objects can be placed. The
robot is placed in an unknown single-floor home environ-
ment - such as an apartment - and must, given the natu-
ral language names of start receptacle, object, and
goal receptacle, pick up an object that is known to
be on a start receptacle and move it to any valid
goal receptacle. start receptacle is always known
to the robot, to help agents know where to look for the
object.

The agent is successful if the specified object is in-
deed moved from a start receptacle on which it be-

519

Find Toy Animal Pick Up Toy Animal Find Dining Table Place On Dining Table

Find Stuffed Animal Pick Up Stuffed Animal Find Sofa Place On Sofa

Figure 3: The HomeRobot stack being used to perform the Open Vocabulary Mobile Manipulation task in a held-out, real-world
test environment. The test environment is a mock apartment which will be used for multiple versions of the benchmark, includ-
ing for the HomeRobot Neurips 2023 competition (Yenamandra et al. 2023a). This allows us to perform both simulated and
real-world benchmarking of new methods, and will help center the community around a broadly-available, low-cost platform
with growing capabilities.

gan the episode, to any valid goal receptacle. We give
partial credit for each step the robot accomplishes: finding
the start receptacle with the object, picking up the
object, finding the goal receptacle, and placing the
object on the goal receptacle. There can be multiple
valid objects that satisfy each query.

We implemented both a simulation and a real-world ver-
sion of this HomeRobot OVMM task. In the real world, we
use a controlled apartment environment with fixed lighting
and furniture, within which we can reset a number of dif-
ferent objects drawn from both a seen (in training data) and
unseen object set. Unseen objects used for testing are with-
held and not released to the public.

Configuration and Setup
One challenge with low-cost mobile robots is how we can
run GPU- and compute-intensive models to evaluate modern
AI methods on them. The Stretch, like many similar robots,
does not have onboard GPU, and will always have more lim-
ited compute than is available on a similar workstation. We
this with a simple network configuration shown in Fig. 4.
There are three components:

1. The desktop running code – in our case, the
eval episode.py script from HomeRobot – which
connects to a remote mobile manipulator.

2. The dedicated router – an off-the-shelf consumer router,
such as a Netgear Nighthawk router. This should ideally

be dedicated for your robot and desktop setup to ensure
good performance.

3. The mobile robot itself: a Hello Robot Stretch with
DexWrist, as described above.

After the robot is configured, one only need run one script,
a ROS launch file, as described in the HomeRobot startup
instructions, which can be done over SSH. With a properly
configured robot and router, you can visualize information
on the desktop side, showing the robot’s position, map from
SLAM, and cameras. On the robot side, the only necessary
command is starting the correct ROS launch file:

startup stretch hector slam.launch

which brings up the robot controllers and starts running Hec-
tor SLAM to provide localization.

Checking network performance. We describe the visu-
alization tools available briefly in the next section, but to
check that the setup is working properly, you can start rviz
and wave your hand in front of the robot – you should see
minimal latency when waving a hand in front of the camera.

Timing between the robot and the remote workstation.
We use ROS (Quigley et al. 2009) as our communications
layer, and to implement low-level control on the robot. This
also provides network communication. However, due to po-
tential latency between the robot and desktop, we also need
to make sure that observations are up to date.

We set up the robot to block after executing most navi-
gation motions, in order to make this process simpler, until

520

Figure 4: System overview for HomeRobot. We run visual-
izations and deep neural networks on a GPU-enabled work-
station; the Hello Robots Stretch runs low-level controllers
and mapping code. This allows us to use more compute than
is strictly possible on the mobile robot for decision making
and scene understanding.

there is an up to date image observation from the robot side.
This means that timing between the robot and the worksta-
tion is extremely important: if we do not have up to date tim-
ing, we might have SLAM poses and depth measurements
that do not match, which will lead to worse performance.

We solved this by having a clock on the robot side publish
its time over ROS, and configure all systems to use this ROS
master clock instead of system time. This prevents the user
from having to worry about Linux time synchronization pro-
tocols like NTP when setting up the robot for the first time.

The HomeRobot Stack
HomeRobot is based on ROS (Quigley et al. 2009), with
the goal being to provide abstractions which make it easy
to learn in simulation, perform mobile manipulation experi-
ments, and share code across labs and projects. We initially
focus on the HomeRobot OVMM task, but also support mul-
tiple other types of research.

To support a wide range of machine learning reasearch
projects, there are three different modules within the open-
source HomeRobot library:

• home robot: Shared components such as Environment
interfaces, controllers, detection and segmentation.

• home robot sim: Simulation stack with Environ-
ments based on Habitat. We specifically provide envi-
ronments modified from the Habitat Synthetic Scenes
dataset (Yenamandra et al. 2023b; Khanna et al. 2023)
as a starting point for development and testing.

• home robot hw: Hardware stack with server processes
that runs on the robot, client API that runs on the GPU
workstation, and Environments built using the client API.

Within HomeRobot, we also divide functionality between

Agents and Environments, similar to how many reinforce-
ment learning benchmarks are set up (Savva et al. 2019).

• Agents contain all of the necessary code to execute poli-
cies. We implement agents which use a mixture of heuris-
tic policies and policies learned on our scene dataset via
reinforcement learning.

• Environments provide Observations to the Agent, and
a function which allows them to execute actions in the
(real or simulated) environment.

Robot Control
We expand on the basic Stretch low-level control in order
to make it easier to control the robot. In particular, we im-
plemented a high-level motion planner, integrated different
grasping and placement strategies, and also implemented re-
active low-level control to make it easier to move the robot
around in the real world for different methods.

State estimation In the real world, we use Hector
SLAM (Kohlbrecher et al. 2014) to provide our robot’s base
pose as it moves around in a novel environment. This is
as recommended in the Hello Robot documentation (Kemp
et al. 2022). This is a reliable, LIDAR-based SLAM method,
which in our experience works well in home-like environ-
ments such as that used in the HomeRobot OVMM real-
world challenge.

However, Hector SLAM has a lot of high-frequency noise
particularly when the robot is rotating. At the same time,
we have access to wheel odometry signals, which provides
accurate and low latency readings of displacement between
time steps, but is subject to drift when integrated through
time to estimate absolute position. We combine the signal
coming from Hector SLAM with the pose signal from wheel
odometry by effectively applying a discrete high-pass filter
on the odometry signal and a discrete low-pass filter with
the same cutoff frequency on the Hector SLAM signal, then
blending the two signals together at a fixed rate:

xt = xt−1 + (1− λ) · (xs
t − xt−1) + λ · (xo

t − xo
t−1)

with x as the output pose, xs and xo are pose estimates from
Hector SLAM and wheel odometry respectively, and λ as
a tuned coefficient. In our implementation, λ is computed
from the cutoff frequency of 0.2 Hz, below which the pose
estimate basically trusts SLAM for its unbiased absolute
pose estimates, and relies on odometry signals for higher
frequency, transient state estimations.

Base Velocity Controller The Hello Stretch software pro-
vides a native interface for controlling the linear and angular
velocities of the differential-drive robot base. While we do
expose an interface for users to control these velocities di-
rectly, it is desireable to have desired short-term goals as a
more intuitive action space for policies, and to make them
update-able at any instant to allow for replanning.

Thus, we implemented a velocity controller that produces
continuous velocity commands that moves the robot to an
input goal pose, show in Alg. 1. The controller operates in
a heuristic manner: by rotating the robot so that it faces the

521

Algorithm 1: Base Velocity Controller Pseudocode

Require: Goal pose pg ∈ SE(2), Current pose p ∈ SE(2)
1: Compute pose error ep = pg − p ∈ SE(2)
2: Compute heading error θe = error between robot heading and

direction of the goal location (direction of translational portion
of ep)

3: if translational part of ep < dthreshold then
4: vl = 0
5: vr : computed from the rotational part of ep using a trape-

zoidal velocity profile
6: else
7: vr : computed from θe using a trapezoidal velocity profile
8: vl : computed from the translational part of ep using a trape-

zoidal velocity profile
9: Reduce linear velocity based on heading error vl =

v0l sin(2θe)
10: Compute ėl = fl(vl), the rate at which heading error in-

creases due to linear velocity
11: Compute ėr = fr(vr), the rate at which heading error de-

creases due to angular velocity
12: if ėl < 1

2
ėr then

13: Limit linear velocity vl so that ėl = 1
2
ėr

14: end if
15: end if
16: Apply vl, vr

goal position at all times while moving towards the goal po-
sition, and then rotating to reach the goal orientation once
goal position is reached.

Planning and Mapping
Our motion planner expands upon prior work (Gervet et al.
2022), which was shown to work in a wide range of human
environments. We provide default values which tune it for
navigating close to other objects and extended it to work
in our continuous action space – challenging navigation as-
pects not present in the original paper. We implemented
three components for the baseline verison of our system:

Semantic Mapping Module. The semantic map stores
relevant objects, explored regions, and obstacles. To con-
struct the map, we predict semantic categories and segmen-
tation masks of objects from first-person observations. We
use Detic (Zhou et al. 2022) for object detection and instance
segmentation and backproject first-person semantic segmen-
tation into a point cloud using the perceived depth, bin it into
a 3D semantic voxel map, and finally sum over the height to
compute a 2D semantic map.

We keep track of objects detected, obstacles, and explored
areas in an explicit metric map of the environment from
(Chaplot et al. 2020a). Concretely, it is a binary K x M x M
matrix where M x M is the map size and K is the number of
map channels. Each cell of this spatial map corresponds to
25 cm2 (5 cm x 5 cm) in the physical world. Map channels
K = C + 4 where C is the number of semantic object cate-
gories, and the remaining 4 channels represent the obstacles,
the explored area, and the agent’s current and past locations.
An entry in the map is one if the cell contains an object of a
particular semantic category, an obstacle, or is explored, and
zero otherwise.

Figure 5: Exploring a real-world apartment during testing.
The robot uses Detic (Zhou et al. 2022) to perceive the world
and update a 2D map (center) which captures where it’s seen
relevant classes, and which obstacles exist; detections aren’t
always reliable, especially given a large and changing vo-
cabulary of objects that we care about. In the HomeRobot
stack, we provide a variety of tools for visualizing and im-
plementing policies, including integration of RVIZ (right).

Frontier Exploration Policy. We explore the environ-
ment with a heuristic frontier-based exploration policy (Ya-
mauchi 1997). This heuristic selects as the goal the point
closest to the robot in geodesic distance within the bound-
ary between the explored and unexplored region of the map.
We further implemented and tested more advanced explo-
ration policies in HomeRobot, and verified that they work
on the real-world robot in a variety of environments (Ra-
makrishnan, Al-Halah, and Grauman 2020; Ramakrishnan
et al. 2022).

Navigation Planner. Given a long-term goal output by
the frontier exploration policy, we use the Fast Marching
Method (Sethian 1999) as in (Chaplot et al. 2020a) to plan a
path and the first low-level action along this path determin-
istically. Although the semantic exploration policy acts at a
coarse time scale, the planner acts at a fine time scale: every
step we update the map and replan the path to the long-term
goal. The robot attempts to plan to goals if they have been
seen; if it cannot get within a certain distance of the goal
objects, then it will instead plan to a point on the frontier.

Navigating to objects on start receptacle. Since
small objects (e.g. action figure, apple) can be hard
to locate from a distance, we leverage the typically larger
start receptacle goals for finding objects. We make the
following changes to the original planning policy (Chaplot
et al. 2020b):
1. If object and start receptacle co-occur in at least

one cell of the semantic map, plan to reach the object
2. If the object is not found but start receptacle ap-

pears in the semantic map after excluding the regions
within 1m of the agent’s past locations, plan to reach the
start receptacle

3. Otherwise, plan to reach the closest frontier
In step 2, we exclude the regions that the agent has been
close to, to prevent it from re-visiting already visited in-
stances of start receptacle.

Visualization Tools
We use RVIZ, a part of ROS, to visualize results and
progress. Fig. 5 shows three different outputs from our sys-

522

Human Commercially Manipulation Approximate
Name Mobile Sized Safe Available DOF Cost
Boston Dynamics Spot ✓ ✓ 7 $200,000
Franka Emika Panda ✓ ✓ 7 $30,000
Locobot ✓ ✓ 5 $5,000
Fetch ✓ ✓ ✓ 7 $100,000
Hello Robot Stretch ✓ ✓ ✓ ✓ 4 $19,000
Stretch with DexWrist ✓ ✓ ✓ ✓ 6 $25,000

Table 1: Notes on platform selection. We chose the Stretch with DexWrist as a good compromise between manipulation,
navigation, and cost, while being human-safe and approximately human-sized.

tem: on the far left, an image from the test environment be-
ing processed by Detic; in the center, a top-down map gen-
erated by the navigation planner described in Sec. ; and on
the right, an image from RVIZ with the point cloud from
the robot’s head camera registered against the 2D lidar map
created by Hector SLAM.

One advantage of the HomeRobot stack is that it is de-
signed to work with existing debugging tools - especially
ROS (Quigley et al. 2009). ROS is a widely-used frame-
work for robotics software development which comes with
a lot of online resources, official support from Hello Robot,
and a rich and thriving open-source community with wide
industry backing.

The HomeRobot Community
Our goal with HomeRobot is to build a community which
allows researchers to attempt different research projects, and
compare them across a variety of different environments on
the same real-world robot platform. To this end, we’ve taken
a three-pronged approach:
• Releasing an open-source software stack with both a sim-

ulation and a real-world component, containing powerful
baselines for a variety of robot tasks;

• Implementing a number of different novel research
projects using HomeRobot; and

• Proposing a competition (Yenamandra et al. 2023a)
which will reward the best solutions, which can then
be integrated into our open-source stack and compared
against other teams in a controlled environment.

Choice of Hardware
When deciding on a common platform for research, it’s im-
portant that we choose a robot which has a wide range of
capabilities, some of which allow for research projects that
have not yet been attempted. We decided to focus on a spe-
cific model of the Hello Robot Stretch: it is relatively low
cost, human safe, light weight, and a capable 6dof manipula-
tor that has been used in numerous research projects (Gervet
et al. 2022; Yenamandra et al. 2023b; Parashar et al. 2023;
Haldar et al. 2023; Bahl, Gupta, and Pathak 2022).

We describe some options for commercially-available
robotics hardware in Tab. 1. While the Franka Emika Panda
is not a mobile robot, we include it here because it’s a very
commmonly used platform in both industrial research labs
and at universities, making its price a fair comparison point
for what is reasonable.

The Competition
We also proposed a Neurips 2023 competition in order to
incentive people to begin using our software stack (Yena-
mandra et al. 2023a). This competition is centered around
the HomeRobot OVMM task: picking up an object from a
start receptacle and moving it to a goal receptacle
somewhere else in the world, all initially without any maps.

There are two phases in this competition: a simulation
phase and a real-world phase. Our goal with this two-phase
structure is that it allows us to run a set of experiments on
held-out test scenes, and then identify only the best few vari-
ants of our method to re-run in the real world. This allows
us to run more controlled experiments for methods imple-
mented by different teams.

At present 20 universities have begun participating both
providing a testament to the community interest and provid-
ing us valuable feedback on further refining the codebase
and ensuring generality. Moving forward, we will be advo-
cating for pull requests from the community to help consol-
idate research efforts and insights for all to benefit.

Discussion and Conclusions
As noted at the start, within robotics we have watched the
runaway success of shared frameworks with transferable and
reproducible code across machine learning. While a strength
of robotics is creating new hardware, custom end effectors,
and beyond, there is now a critical mass of interested re-
searchers focusing on indoor mobile manipulation and this
is coupled with a low-cost commercial platform. This puts
us in a unique position to begin sharing code and models to
dramatically speed up the pace of research.

Our aim with HomeRobot is to provide the community a
common platform from which to build and share knowledge.
We focused on a widely-available, low-cost platform which
can perform 6dof pick-and-place object manipulation, and
implemented a modular software architecture allowing both
simulation and real-world experimentation. In addition, we
describe the “north star” goal of sharing solutions to Open-
Vocabulary Mobile Manipulation, which we consider to be
a cornerstone of robotics manipulation in homes due to its
ubiquity, and to the fact that existing methods often perform
quite poorly in the real world or even on realistic simulation
settings (Yenamandra et al. 2023b).

The HomeRobot code and example videos of the simula-
tion and real-world benchmarks are online at ovmm.github.
io and https://github.com/facebookresearch/home-robot.

523

References
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.;
Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.;
Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard,
M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Lev-
enberg, J.; Mané, D.; Monga, R.; Moore, S.; Murray, D.;
Olah, C.; Schuster, M.; Shlens, J.; Steiner, B.; Sutskever,
I.; Talwar, K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.;
Viégas, F.; Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke,
M.; Yu, Y.; and Zheng, X. 2015. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems. https://www.
tensorflow.org/. Software available from tensorflow.org.
Ahn, M.; Brohan, A.; Brown, N.; Chebotar, Y.; Cortes, O.;
David, B.; Finn, C.; Fu, C.; Gopalakrishnan, K.; Hausman,
K.; et al. 2022. Do as i can, not as i say: Grounding language
in robotic affordances. arXiv preprint arXiv:2204.01691.
Al-Rfou, R.; Alain, G.; Almahairi, A.; Angermueller,
C.; Bahdanau, D.; Ballas, N.; Bastien, F.; Bayer, J.;
Belikov, A.; Belopolsky, A.; Bengio, Y.; Bergeron, A.;
Bergstra, J.; Bisson, V.; Snyder, J. B.; Bouchard, N.;
Boulanger-Lewandowski, N.; Bouthillier, X.; de Brébisson,
A.; Breuleux, O.; Carrier, P.-L.; Cho, K.; Chorowski, J.;
Christiano, P.; Cooijmans, T.; Côté, M.-A.; Côté, M.;
Courville, A.; Dauphin, Y. N.; Delalleau, O.; Demouth, J.;
Desjardins, G.; Dieleman, S.; Dinh, L.; Ducoffe, M.; Du-
moulin, V.; Kahou, S. E.; Erhan, D.; Fan, Z.; Firat, O.; Ger-
main, M.; Glorot, X.; Goodfellow, I.; Graham, M.; Gul-
cehre, C.; Hamel, P.; Harlouchet, I.; Heng, J.-P.; Hidasi, B.;
Honari, S.; Jain, A.; Jean, S.; Jia, K.; Korobov, M.; Kulka-
rni, V.; Lamb, A.; Lamblin, P.; Larsen, E.; Laurent, C.;
Lee, S.; Lefrancois, S.; Lemieux, S.; Léonard, N.; Lin, Z.;
Livezey, J. A.; Lorenz, C.; Lowin, J.; Ma, Q.; Manzagol,
P.-A.; Mastropietro, O.; McGibbon, R. T.; Memisevic, R.;
van Merriënboer, B.; Michalski, V.; Mirza, M.; Orlandi, A.;
Pal, C.; Pascanu, R.; Pezeshki, M.; Raffel, C.; Renshaw,
D.; Rocklin, M.; Romero, A.; Roth, M.; Sadowski, P.; Sal-
vatier, J.; Savard, F.; Schlüter, J.; Schulman, J.; Schwartz, G.;
Serban, I. V.; Serdyuk, D.; Shabanian, S.; Étienne Simon;
Spieckermann, S.; Subramanyam, S. R.; Sygnowski, J.; Tan-
guay, J.; van Tulder, G.; Turian, J.; Urban, S.; Vincent, P.;
Visin, F.; de Vries, H.; Warde-Farley, D.; Webb, D. J.; Will-
son, M.; Xu, K.; Xue, L.; Yao, L.; Zhang, S.; and Zhang, Y.
2016. Theano: A Python framework for fast computation of
mathematical expressions. ArXiv 1605.02688.
Bahl, S.; Gupta, A.; and Pathak, D. 2022. Human-to-robot
imitation in the wild. arXiv preprint arXiv:2207.09450.
Bolte, B.; Wang, A.; Yang, J.; Mukadam, M.; Kalakrish-
nan, M.; and Paxton, C. 2023. USA-Net: Unified Semantic
and Affordance Representations for Robot Memory. arXiv
preprint arXiv:2304.12164.
Chaplot, D. S.; Gandhi, D. P.; Gupta, A.; and Salakhutdinov,
R. R. 2020a. Object goal navigation using goal-oriented se-
mantic exploration. In NeurIPS.
Chaplot, D. S.; Gupta, S.; Gupta, A.; and Salakhutdinov, R.
2020b. Learning To Explore Using Active Neural Mapping.
ICLR.
Curtis, A.; Fang, X.; Kaelbling, L. P.; Lozano-Pérez, T.; and
Garrett, C. R. 2022. Long-horizon manipulation of unknown

objects via task and motion planning with estimated affor-
dances. In 2022 International Conference on Robotics and
Automation (ICRA), 1940–1946. IEEE.

Garrett, C. R.; Paxton, C.; Lozano-Pérez, T.; Kaelbling,
L. P.; and Fox, D. 2020. Online replanning in belief space
for partially observable task and motion problems. In 2020
IEEE International Conference on Robotics and Automation
(ICRA), 5678–5684. IEEE.

Gervet, T.; Chintala, S.; Batra, D.; Malik, J.; and Chaplot,
D. S. 2022. Navigating to Objects in the Real World. arXiv.

Haldar, S.; Pari, J.; Rai, A.; and Pinto, L. 2023. Teach
a Robot to FISH: Versatile Imitation from One Minute of
Demonstrations. arXiv preprint arXiv:2303.01497.

Kemp, C. C.; Edsinger, A.; Clever, H. M.; and Matulevich,
B. 2022. The design of stretch: A compact, lightweight
mobile manipulator for indoor human environments. In
2022 International Conference on Robotics and Automation
(ICRA), 3150–3157. IEEE.

Khanna, M.; Mao, Y.; Jiang, H.; Haresh, S.; Schacklett,
B.; Batra, D.; Clegg, A.; Undersander, E.; Chang, A. X.;
and Savva, M. 2023. Habitat Synthetic Scenes Dataset
(HSSD-200): An Analysis of 3D Scene Scale and Real-
ism Tradeoffs for ObjectGoal Navigation. arXiv preprint
arXiv:2306.11290.

Kohlbrecher, S.; Meyer, J.; Graber, T.; Petersen, K.; Klin-
gauf, U.; and Von Stryk, O. 2014. Hector open source mod-
ules for autonomous mapping and navigation with rescue
robots. In RoboCup 2013: Robot World Cup XVII 17, 624–
631. Springer.

Krantz, J.; Gervet, T.; Yadav, K.; Wang, A.; Paxton, C.; Mot-
taghi, R.; Batra, D.; Malik, J.; Lee, S.; and Chaplot, D. S.
2023. Navigating to Objects Specified by Images. arXiv
preprint arXiv:2304.01192.

Murali, A.; Chen, T.; Alwala, K. V.; Gandhi, D.; Pinto, L.;
Gupta, S.; and Gupta, A. 2019. Pyrobot: An open-source
robotics framework for research and benchmarking. arXiv
preprint arXiv:1906.08236.

Neubig, G.; Dyer, C.; Goldberg, Y.; Matthews, A.; Am-
mar, W.; Anastasopoulos, A.; Ballesteros, M.; Chiang, D.;
Clothiaux, D.; Cohn, T.; Duh, K.; Faruqui, M.; Gan, C.;
Garrette, D.; Ji, Y.; Kong, L.; Kuncoro, A.; Kumar, G.;
Malaviya, C.; Michel, P.; Oda, Y.; Richardson, M.; Saphra,
N.; Swayamdipta, S.; and Yin, P. 2017. DyNet: The Dy-
namic Neural Network Toolkit. ArXiv.

Parashar, P.; Vakil, J.; Powers, S.; and Paxton, C. 2023.
Spatial-Language Attention Policies for Efficient Robot
Learning. arXiv preprint arXiv:2304.11235.

Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
A. 2017. Automatic differentiation in PyTorch. In NIPS
2017 Workshop Autodiff.

Powers, S.; Gupta, A.; and Paxton, C. 2023. Evaluat-
ing Continual Learning on a Home Robot. arXiv preprint
arXiv:2306.02413.

524

Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.;
Leibs, J.; Wheeler, R.; Ng, A. Y.; et al. 2009. ROS: an open-
source Robot Operating System. In ICRA workshop on open
source software, volume 3, 5. Kobe, Japan.
Ramakrishnan, S. K.; Al-Halah, Z.; and Grauman, K. 2020.
Occupancy Anticipation for Efficient Exploration and Navi-
gation. In Proceedings of the European Conference on Com-
puter Vision (ECCV).
Ramakrishnan, S. K.; Chaplot, D. S.; Al-Halah, Z.; Malik, J.;
and Grauman, K. 2022. PONI: Potential Functions for Ob-
jectGoal Navigation with Interaction-free Learning. In Com-
puter Vision and Pattern Recognition (CVPR), 2022 IEEE
Conference on. IEEE.
Rana, K.; Haviland, J.; Garg, S.; Abou-Chakra, J.; Reid,
I.; and Suenderhauf, N. 2023. SayPlan: Grounding Large
Language Models using 3D Scene Graphs for Scalable Task
Planning. arXiv preprint arXiv:2307.06135.
Savva, M.; Kadian, A.; Maksymets, O.; Zhao, Y.; Wijmans,
E.; Jain, B.; Straub, J.; Liu, J.; Koltun, V.; Malik, J.; Parikh,
D.; and Batra, D. 2019. Habitat: A Platform for Embodied
AI Research. ICCV.
Sethian, J. A. 1999. Fast marching methods. SIAM review.
von Platen, P.; Patil, S.; Lozhkov, A.; Cuenca, P.; Lambert,
N.; Rasul, K.; Davaadorj, M.; and Wolf, T. 2022. Dif-
fusers: State-of-the-art diffusion models. https://github.com/
huggingface/diffusers. Accessed: 2024-01-01.
Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; Davi-
son, J.; Shleifer, S.; von Platen, P.; Ma, C.; Jernite, Y.; Plu,
J.; Xu, C.; Scao, T. L.; Gugger, S.; Drame, M.; Lhoest, Q.;
and Rush, A. M. 2019. HuggingFace’s Transformers: State-
of-the-art Natural Language Processing. ArXiv.
Yamauchi, B. 1997. A frontier-based approach for au-
tonomous exploration. In IEEE International Symposium
on Computational Intelligence in Robotics and Automation.
Yenamandra, S.; Ramachandran, A.; Khanna, M.; Yadav, K.;
Chaplot, D. S.; Chhablani, G.; Clegg, A.; Gervet, T.; Jain, V.;
Partsey, R.; Ramrakhya, R.; Szot, A.; Yang, T.-Y.; Edsinger,
A.; Kemp, C.; Shah, B.; Kira, Z.; Batra, D.; Mottaghi, R.;
Bisk, Y.; and Paxton, C. 2023a. HomeRobot Open Vocab
Mobile Manipulation Challenge. In Thirty-seventh Confer-
ence on Neural Information Processing Systems: Competi-
tion Track.
Yenamandra, S.; Ramachandran, A.; Yadav, K.; Wang, A.;
Khanna, M.; Gervet, T.; Yang, T.-Y.; Jain, V.; Clegg, A. W.;
Turner, J.; Kira, Z.; Savva, M.; Chang, A.; Chaplot, D. S.;
Batra, D.; Mottaghi, R.; Bisk, Y.; and Paxton, C. 2023b.
HomeRobot: Open-Vocabulary Mobile Manipulation. In
Conference on Robot Learning.
Zhou, X.; Girdhar, R.; Joulin, A.; Krähenbühl, P.; and Misra,
I. 2022. Detecting Twenty-thousand Classes using Image-
level Supervision. In ECCV.

525

