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Abstract
In the field of healthcare, individual survival prediction is
important for personalized treatment planning. This study
presents machine learning algorithms for predicting Individ-
ual Survival Distributions (ISD) using electrocardiography
(ECG) data in two different formats. The models, which pre-
dict time until death, are developed and evaluated on a large,
population-based cohort from Alberta, Canada. Our results
demonstrate that models trained on raw ECG waveforms sig-
nificantly outperform those trained on traditional ECG mea-
surements in several metrics, including concordance index,
hinge L1 loss, margin L1 loss, and margin truncated L1 loss.
Additionally, the integration of predicted probabilities from
wide-range diagnostic tasks not only enhances our ISD mod-
els’ performance but also makes them significantly superior
to other models across all evaluation metrics in individual
survival prediction tasks. This innovative approach highlights
the potential to leverage insights from diagnostic models for
prognostic tasks, such as individual survival prediction. These
findings could have far-reaching implications for the develop-
ment of personalized treatment plans and open new avenues
for future research in survival prediction using ECGs.

Introduction
Electrocardiography (ECG) is a fundamental diagnostic tool
in cardiology, providing a non-invasive method to record the
electrical activity of the heart over time. However, the in-
terpretation of ECG data is complex and requires special-
ized knowledge and expertise. Traditional methods often in-
volve manual analysis, which is both time-consuming and
requires specialized education and practice. Moreover, tra-
ditional methods typically require cardiologists who have
undergone extensive training be able to extract ECG mea-
surements, such as Q duration and RR interval, from raw
ECG waveforms for identifying patient’s heart condition.
These traditional methods may not fully capture the wealth
of information contained within the ECG signals, potentially
limiting clinical utility and their predictive accuracy in di-
agnosing patient’s heart condition. Recently, deep learning
techniques have emerged as a promising solution to these
challenges, offering the potential to automate and enhance
the interpretation of ECG data. These techniques can learn
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complex patterns from raw ECG data and have been suc-
cessfully applied in both diagnostic (Ribeiro et al. 2020; Sun
et al. 2022) and prognostic (Raghunath et al. 2020; Sun et al.
2023) tasks.

Previous mortality prediction studies often centered on
binary outcomes, at a single mortality risk point. This ap-
proach, while informative, presents challenges: it may not
sufficiently aid clinical decision-making, and many such
systems simply ignore censored data. Recognizing these
limitations, we extend the application of deep learning to
ECG data by developing ISD algorithms that can provide
survival probabilities for novel instances across all future
time points, while incorporating information obtained from
the censored events. We implement ISD models to accom-
modate both traditional ECG measurements and raw ECG
waveforms.

Further, building on our previous work (Sun et al. 2022),
which demonstrated the potential of using deep learning
techniques to produce models that could accurately predict
a wide range of diseases from ECG data, we adopt a trans-
fer learning-inspired approach. Specifically, we enhance our
models by leveraging the predicted probabilities generated
by a diagnostic model designed to estimate patients’ health
conditions. This innovative approach aims to refine ISD pre-
dictions.

This paper makes several significant contributions:

1. ECG-based ISD Algorithm: We propose a novel ISD al-
gorithm that computes a patient’s time-to-death ISD, uti-
lizing ECG voltage time-series, age, and sex.

2. Incorporation of Predicted Probabilities from Diagnosis
Model: We explore an ISD model, whose input includes
the diagnostic probabilities predicted from ECG, enhanc-
ing prediction precision.

3. Novel Evaluation Metric (L1-margin-truncated): We in-
troduce the L1-margin-truncated metric, addressing chal-
lenges in survival datasets where long-term tracking may
be impractical.

Our findings contribute valuable insights into the potential
of deep learning in enhancing survival prediction, offering a
foundation for future research and potential clinical applica-
tions in cardiology.
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Figure 1: This figure illustrates the individual survival curves
for three patients over a 13-year time interval. Patient A ex-
hibits a greater likelihood of survival compared to Patients
B and C. Within the first 5 years, Patient C faces a higher
mortality risk than Patient B. However, after 5 years, Patient
B demonstrates a higher mortality risk relative to Patient C.

Background Work
Clinical studies have demonstrated a significant correlation
between ECG abnormalities and the risk of mortality. For
instance, Nishime et al. (2000) concluded that ECG abnor-
malities could be used as a significant predictor of coronary
heart disease and all-cause mortality in middle-aged male
patients. Goldman et al. (2019) study found that the all-cause
mortality rate was significantly higher in individuals with an
incidental abnormal ECG finding. They suggested that in-
cidental ECG abnormalities could be used as a marker for
increased risk of mortality.

Recently, Raghunath et al. (2020) developed a CNN-
based deep learning model that could predict a patient’s 1-
year mortality from ECG. Sun et al. (2023) extended their
work with a ResNet-based model that used ECG traces to
predict short- and long-term mortality prediction. However,
these binary mortality classification algorithms have some
limitations: (1) they may not fully utilize censored data; (2)
the single time-point survival probability may not provide
sufficient information for clinicians; and (3) the multiple
probabilistic binary mortality models may produce counter-
intuitive results where the short-term survival probability is
lower than the long-term survival probability.

To address these limitations, researchers have proposed
ISD algorithms. These algorithms can generate monotoni-
cally decreasing survival curves for all future time points
for each patient. Figure 1 illustrates the individual survival
curves of three patients. In the other domains, researchers
have already used multi-modal data in ISD algorithms. Kim,
Kazmierski, and Haibe-Kains (2021) proposed a method
called Deep-CR MTLR, which uses deep neural networks
to learn joint prognostic representations between CT images
and clinical information. This approach extends MTLR to
medical image data input and considers competing risks for
cancer and other causes of survival prediction. Moreover, Li
et al. (2019) proposed the deep learning “Deep Correlational

Survival Model” (DeepCorrSurv) approach for predicting
patient survival based on multi-modal imaging data. In a
public cancer survival dataset, DeepCorrSurv outperformed
other models in predicting patient survival using both CT
images and clinical data.

These studies highlight the potential of ISD algorithms in
improving the survival predictive performance and clinical
utility of multi-modal data, such as ECG along with the tab-
ular features.

Methods
This section introduces comprehensive approaches to pre-
dict ISD using ECG data. We leverage a large dataset from
Alberta, Canada, and develop three distinct models, compar-
ing two different ECG representations (raw ECG waveform
and ECG measurements). The models are trained using a
convolutional neural network (CNN) based on the ResNet
architecture (He et al. 2016), with specified hyperparameters
and training settings. To address the bias related to overpre-
sentation of severely sick patients, the performance of the
models is evaluated using one ECG from each patient, se-
lected at random from the holdout set.

Data
Data Sources and Structure: The data were collected
from the province of Alberta, Canada, which operates a
single-payer and single-provider healthcare system. This en-
sures universal access to hospital, ambulatory, laboratory,
and physician services for its 4.4 million residents. The
dataset includes: Hospitalization Data, Outpatient Clinic
Visit Data, Demographic Information, and Vital Status
Death Registry.

In addition to these data sources, diagnoses were coded
using the World Health Organization’s International Clas-
sification of Diseases (ICD) (WHO 2016), which is a 3 to
7-character identifier that specifies a specific disease. For
example, ‘I214’ refers to ‘Non-ST elevation (NSTEMI) my-
ocardial infarction’. We utilized these ICD codes and their
corresponding categories as labels for our prediction model-
ing. In our dataset, we identified 1,414 distinct ICD codes,
each of which was linked to at least 1,000 ECGs. Note that
a single patient might have more than one ICD code.

The study cohort included patients presenting to 84 emer-
gency departments or hospitals between February 2007 and
April 2020 in the province of Alberta. Clinical characteris-
tics of patient cohorts used for learning and evaluating the
models have been described in our earlier studies (Sun et al.
2022, 2023).

ECG data: The ECG data consisted of standard 12-lead
ECG traces as well as the associated ECG measurements
from the Philips IntelliSpace ECG system (Systems 2009).
Each of the 12 leads had a sequence of ECG voltages sam-
pled at 500 Hz for 10 seconds. The ECG measurements
were automatically generated by the ECG machine manu-
facturer’s built-in algorithm and included 22 features such
as atrial rate, P duration, RR interval, Q wave onset, Frideri-
cia rate-corrected QT interval, heart rate, and others.
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Figure 2: Kaplan Meier (KM) Curve illustrating the survival
distribution of the study cohort. Note the median survival
time is 3,420 days, corresponding to a 50% survival proba-
bility. The curve spans 4,794 days, covering 13 years from
2007 to 2020.

Data Processing and Cohort Selection: After exclud-
ing the ECGs that could not be linked to any episode, the
ECGs of patients under 18 years of age, and the ECGs
with poor signal quality, the final analysis cohort contained
1,605,268 ECGs from 748,773 episodes of 244,077 patients.
We transformed our data into a survival dataset denoted as
D = {[X⃗i, ti, δi] | i = 1, 2, . . . , n}, where: i represents the
ith patient in the dataset, X⃗i denotes the feature vector for
patient i, ti specifies the time to either censoring or death
after ECG test date for patient i, δi serves as an indicator
variable for the death event of patient i, where δ = 1 repre-
sents death and = 0 represents censored. Notably, the censor
rate of the dataset is 63.64%, indicating that patients with
these ECGs did not have the exact death date. See the Ka-
plan Meier (KM) curve (Kaplan and Meier 1958) in Figure
2 for the survival distribution of this study cohort.

Dataset Split: We split our ECG dataset into the devel-
opment set (random 60%: 143,939 patients with 436,508
ECGs, used for training and internal validation) and holdout
set (remaining 40%: 95,913 patients with 287,566 ECGs).
We ensured that ECGs from the same patient were not
shared between the development set and holdout set.

Models
In this study, we explored three distinct architectures for in-
dividual survival analysis, a process that leverages personal
data to estimate the time until an event of interest will occur
– see Figure 3. Each of these models employs the N-MTLR
algorithm (Fotso 2018) for learning a model for individual
survival prediction, but each first transforms the input data
into different intermediate representation.

The implementation of the N-MTLR algorithm in our
study is based on Kazmierski (2020)’s torchmtlr codebase,
which provides a robust and efficient framework. It consists
of three fully connected layers, each containing 128 hidden

neurons. This architecture allows the models to capture non-
linear relationships in the data, providing a robust frame-
work for survival analysis. By utilizing multiple layers and a
substantial number of neurons, the N-MTLR algorithm en-
hances the models’ ability to generalize from the training
data, leading to more accurate and reliable predictions.

Model A: This model is an end-to-end ISD model, de-
signed to provide comprehensive survival predictions for
each patient. The learned model takes as input a set of 12-
lead ECGs, which are represented as a 12 × 4096 numeric
matrix. This matrix is then processed through a ResNet ar-
chitecture, which transforms the raw ECG data into a high-
level feature representation. In addition to the ECG-derived
features, demographic features such as age and sex are also
incorporated into the model. These combined features form
the comprehensive input for the N-MTLR algorithm. The
output of the model is an individual survival distribution.

Model B: This model is a two-step survival prediction ap-
proach. In the first step, we utilize a learned model from
(Sun et al. 2022) ECG diagnosis study. This model, which is
capable of predicting 1,414 different ICD diagnosis labels,
produces features that are input as an ECG feature extractor.
This model is learned only using same development set as
the current study. It processes the ECG data in the develop-
ment set, transforming each instance into a vector of 1414
predicted diagnosis probabilities (one for each diagnosis).
In the second step, these predicted diagnosis probabilities
are combined with demographic features as input features.
These features are then used to train an N-MTLR model on
the development set. This model generates the final individ-
ual survival distributions. During both learning as well as
evaluation phases, note that we do not use any diagnosis la-
bels from the holdout set, ensuring that our model’s perfor-
mance is evaluated purely on its ability to predict survival
based on ECG traces and demographic features.

Model C: This model is designed to accommodate hand-
crafted ECG features. It uses 22 ECG measurements, along
with age and sex, as input features for training with the N-
MTLR model.

For Models A and B, we implement a convolutional neu-
ral network (CNN) based on the ResNet architecture. This
consists of a convolutional layer, four residual blocks with
two convolutional layers per block, followed by a dense
layer. We use batch normalization (Ioffe and Szegedy 2015),
ReLU, and dropout (Hinton et al. 2012) after each convolu-
tional layer. The architecture is based on a model trained on
a large ECG dataset from Ribeiro et al. (2020) study to iden-
tify abnormalities in 12-lead ECGs.

All three models are trained using negative log likelihood
as the loss function, with an initial learning rate of 1×10−4,
Adam optimizer (Kingma and Ba 2014), kernel size of 16,
batch size of 64, and a dropout rate of 0.2. Other hyperpa-
rameters are set to default. The models are trained for a max-
imum of 70 epochs. The learning process is stopped if the
loss in the tuning set does not reduce for 9 epochs. Moreover,
the models are implemented using PyTorch 1.11 in Python
3.8. We train all our models with 8 Tesla V100-SXM2 GPUs
and 32 GB of RAM per GPU.
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Figure 3: Schematic of ISD models. Three ECG feature representations: Model A (End-to-End): Takes 12-lead ECG waveforms,
age, and sex as inputs and directly outputs survival probabilities for future time points; Model B (Two-Step): The first step
processes 12-lead ECG waveforms to generate 1,414 diagnostic prediction values. The second step takes these values along
with age and sex to output survival probabilities; Model C: Utilizes ECG measurements as input to predict survival probabilities
at all future time points. Each model aims to estimate survival probabilities over time based on different feature representations
and methodologies.

Input
Features for
survival algorithm

Hinge
L1 loss

Marginal
Truncated
L1 loss

Marginal
L1 loss

C index IBS

Model A
12 lead ECG
+ Age, Sex

same as input
547.50
(545.51 -
549.20)

1219.54
(1218.21 -
1222.38)

2260.60
(2256.24 -
2263.86)

0.7643
(0.7627 -
0.7660)

0.1503
(0.1490 -
0.1518)

Model B 12 lead ECG
1414 ICD
predictions
+ Age, Sex

514.78
(513.09 -
516.80)

1078.21
(1074.78 -
1082.38)

2116.31
(2112.12 -
2120.32)

0.8004
(0.7995 -
0.8011)

0.1368
(0.1355 -
0.1382)

Model C
ECG
measurements
+ Age, Sex

same as input
564.24
(563.04 -
566.03)

1228.12
(1224.48 -
1231.67)

2304.69
(2302.16 -
2307.95)

0.7589
(0.7576 -
0.7597)

0.1508
(0.1495 -
0.1517)

Table 1: Evaluation of ECG ISD models’ performance in hinge L1 loss, margin truncated L1 loss, margin L1 loss, C-index, and
IBS expressed in mean (95% confidence interval)
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Results
In this section, we assess the performance of the ISD models
using five key metrics: the Concordance Index (C-index),
hinge L1 loss, margin truncated L1 loss, margin L1 loss, and
the Integral Brier Score (IBS).

Concordance Index (C-index)
The C-index (Antolini, Boracchi, and Biganzoli 2005) is a
widely used metric in survival analysis to evaluate the dis-
criminative power of a risk model. It quantifies the agree-
ment between the predicted survival risk and the observed
survival times, with values ranging from 0 to 1. A C-index
of 0.5 represents the baseline performance of a model that
assigns probabilities randomly, while a higher C-index in-
dicates that the predicted survival risks are better ordered
when compared across all patients.

To compute the C-index, we must first define the set of all
comparable pairs (CP) of patients. A pair of patients (i, j) is
considered comparable if patient j is alive when patient i is
dead. The comparable pairs can be defined as:

CPi,j = I{ti < tj ∧δi = 1}+I{ti = tj ∧δi = 1∧δj = 0}

Next, we identify the correctly ranked comparable pairs,
following the approach of Antolini, Boracchi, and Biganzoli
(2005) study. Here, r(x⃗i) represents the risk score of patient
i.

CPcorrecti,j = I{r(x⃗i) < r(x⃗j)} · CPi,j

Finally, the C-index is estimated by calculating the ratio
of correctly ranked comparable pairs to all comparable pairs.
In other words, given two randomly selected patients i and
j in an ISD model with an 80% C-index, if r(x⃗i) > r(x⃗j),
then there is an 80% probability that patient i’s event will
occur before patient j’s event:

C-index =

∑n
i=1

∑n
j=i CPcorrecti,j;i̸=j∑n

i=1

∑n
j=i CPi,j;i̸=j

This formulation of the C-index provides a robust mea-
sure of the model’s ability to accurately rank patients based
on their survival risk, reflecting the model’s effectiveness in
survival prediction.

L1 loss
The ISD model produces an individual survival curve, pre-
dicting the median survival time t̂0.5 representing a 50%
chance for a patient to survive until the event occurs1.

For an uncensored patient, the L1 loss is defined as the av-
erage absolute value of the difference between the predicted
median survival time t̂0.5 and true event time tevent = d.
Since the true event time is unknown for censored patients,
we consider two approaches from Haider et al. (2020) study:
hinge L1 loss and margin L1 loss, and a new approach: mar-
gin truncated L1 loss.

1According to Haider et al. (2020), we use extrapolation to ex-
tend the last point if the user’s survival curve does not reach the
median until the study ends.

Hinge L1 loss: The hinge L1 loss gives 0 loss if expected
survival time larger and equal than the censor time. The ex-
pression for L1-hinge loss is given by:

L1hinge(D, t̂0.5) =
1

|D|
[

∑
i∈Duncensor

|di − t̂0.5i |+

∑
k∈Dcensor

max(0, ck − t̂0.5k )]

Margin L1 loss: In the margin L1 loss, we also assign a
”Best-Guess” (BG) value to each censored patient, repre-
senting the expected survival time given that the patient al-
ready survived until c

BG(c) = c+

∫∞
c

SKM (t)dt

SKM (c)

In our evaluation method, we use the Kaplan-Meier esti-
mator ŜKM (·) (Kaplan and Meier 1958) from the training
dataset to estimate the survival function. The margin L1 loss
is defined as:

L1margin(D, t̂i
0.5

) =
1

|Duncensor|+
∑

k∈Dcensor
ak

×[ ∑
i∈Duncensor

|di − t̂0.5i |+
∑

k∈Dcensor

ak|BG(ck)− t̂0.5k |

]

where αk is the weight in each Best-Guess estimation
contributing to the L1-margin loss. Since instances with
early censor times provide less information than cases with
late censor times, we assign more weight to the late cen-
sor time instances in the margin L1 loss by setting ak =

1− ŜKM (ck).

Margin truncated L1 loss: In the margin truncated L1
loss(L1-margin-T loss), we address a common challenge in
survival datasets where tracking a patient’s life for an ex-
tended period may not be feasible. When using the Best
Guess method to estimate a censored patient’s event time,
we observed that both the predicted time and the best guess
could become significantly large if the censor’s predicted
time is long enough. This large difference may not align
with clinical interests, as clinicians often focus on assessing
a patient’s short-term risk rather than long-term living con-
ditions. To address this issue, we introduce a truncated time
τ to limit the impact of extremely long predictions and best
guesses. The L1-margin-T loss is mathematically defined as:

L1margin-T(D, t̂0.5) =
1

|Duncensor|+
∑

k∈Dcensor
ak

×[ ∑
i∈Duncensor

|di − t̂0.5i |+
∑

k∈Dcensor

ak × c loss

]
,

where c loss =
∣∣∣∣min(τ,BG(ck))−min(τ, t̂0.5k )

∣∣∣∣
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Here τ represents the truncated time, which serves as an
upper limit for both the predicted time and the best guess.
By using min(τ , ·), we ensure that neither value exceeds τ ,
thus mitigating the effect of overly long predictions. In this
study, we use the longest time of 4794 days (greater than
13 years), which we can track in our study, as the truncated
time τ . This choice of τ reflects the practical constraints of
our dataset and aligns the loss function more closely with
clinical priorities.

Integral Brier Score(IBS)
The IBS (Graf et al. 1999) provides an average measure of
the Brier score (Brier and Allen 1951) across a time interval
from 0 to infinity. The Brier score itself is a mean squared
error metric between the true event status (for uncensored:
either 1 for alive or 0 for dead) and the predicted survival
probability at a single time point. A lower IBS indicates a
better model, with the baseline score being 0.25 for a model
that predicts a survival probability of 0.5 for all patients.

Statistical Comparison
We used a bootstrap statistical test to compare the perfor-
mances between our models in the evaluation stage. First,
we selected a single, randomly chosen ECG record from
each patient’s collection of ECGs in the holdout set. This
step was repeated to generate 10 distinct random sets. Sub-
sequently, for each random set, we performed the traditional
bootstrap process, repeating it 10 times, yielding total of 100
replacement sets for evaluating each model. Then, perfor-
mance metrics were computed for each of 100 sets, and 95%
confidence interval (CI) was calculated for each model. This
allows us to compare each model’s performance using the
upper and lower bounds of CI. When 95% CIs were not over-
lapping, difference between two model performances was
considered to be statistically significant.

As illustrated in Table 1, the following key observations
can be made:

Deep Learning Raw ECG traces vs. ECG Measurements
(Model A vs. Model C): Model A, an end-to-end ISD
model that utilizes a ResNet architecture to process raw
ECG data with a significantly high C-index of 0.7643, and
significantly low hinge L1 loss of 547.50, margin truncated
L1 loss of 1219.54, and margin L1 loss of 2260.60 outper-
forms Model C, which relies on hand-crafted ECG features.
This result underscores the effectiveness of deep learning
techniques in handling raw ECG data, as opposed to rely-
ing solely on ECG measurements. The superiority of Model
A over Model C demonstrates the potential of leveraging
complex neural network architectures to extract meaningful
features from raw data.

Incorporating Predicted Diagnosis Probabilities (Model
B vs. Model A): Model B, which employs a two-step
learning process with an ICD-10 based feature extractor,
achieves a significantly higher C-index of 0.8004 and sig-
nificantly lower hinge L1 loss of 514.78, margin truncated
L1 loss of 1078.21, margin L1 loss of 2116.31, and IBS of
0.1368, outperforming Model A. This finding emphasizes

the value of incorporating predicted diagnosis probabilities
into the prognosis model. We transformed each instance into
a vector of 1414 predicted diagnosis probabilities and com-
bined them with demographic features.

Discussion and Conclusion
In this study, we have made notable strides in leveraging
ECG data for survival prediction. Our contributions include
the development of an end-to-end individual survival al-
gorithm, the innovative use of predicted probabilities from
an ICD-wise diagnosis model, and the introduction of the
margin truncated L1 loss to assess short-term performance.
These advancements collectively enhance the accuracy and
relevance of survival predictions, particularly for high-risk
patients.

Our findings reveal that the machine learning models we
developed can effectively predict survival probabilities for
all future time points. The end-to-end model outperforms
traditional models that rely on ECG measurements. More-
over, Model B, which incorporates predicted probabilities,
demonstrates superior performance in multiple evaluation
metrics, including concordance index, hinge L1 loss, margin
L1 loss, margin truncated L1 loss, and IBS. This success un-
derscores the potential of deep learning techniques in lever-
aging the ECG feature representations from diagnosis tasks
on estimating patients’ health risks.

Despite these promising results, our study has limitations.
First, our models are trained and tested on a single health-
care system’s data, which may limit their generalizability to
other healthcare systems or populations. Secondly, while our
study demonstrates that ECG traces significantly outperform
ISD models trained with traditional ECG measurements, it is
worth noting that the magnitude of improvement may not be
substantial. Finally, while our models perform well in pre-
dicting survival probabilities, they do not provide insights
into the specific factors contributing to these predictions.
This limits their interpretability, which is a crucial aspect
of clinical decision-making. Future research will focus on
predicting readmission times using the ISD algorithm, en-
hancing interpretability through explainable AI techniques,
and validating the models on diverse healthcare systems to
ensure their generalizability and robustness.

The models and algorithms developed in this study hold
substantial promise for clinical practice. The introduction of
the margin truncated L1 loss aligns the models with clinical
priorities, focusing on short-term risks that are often more
relevant to patient care. The end-to-end ECG ISD model out-
performed ECG measurements ISD model, which can guide
personalized treatment strategies and risk assessments. Fi-
nally, this pioneering approach, which uses the ECG feature
representation from diagnosis models, opens new horizons
for further research and development in this vital area.
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