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Abstract

In this paper, we discuss a selection of tools from dynam-
ical systems and order statistics, which are most often uti-
lized separately, and combine them into an algorithm to es-
timate the parameters of mathematical models for infectious
diseases in the case of small sample sizes and left censoring,
which is relevant in the case of rapidly evolving infectious
diseases and remote populations. The proposed method relies
on the analogy between survival functions and the dynamics
of the susceptible compartment in SIR-type models, which
are both monotone decreasing in time and are both deter-
mined by a dual variable: the hazard function in survival pre-
diction and the number of infected people in SIR-type mod-
els. We illustrate the methodology in the case of a continuous
model in the presence of noisy measurements with different
distributions (Normal, Poisson, Negative Binomial) and in a
discrete model, reminiscent of the Ricker map, which admits
chaotic dynamics. This estimation procedure shows stable re-
sults in experiments based on a popular benchmark dataset
for SIR-type models and small samples. This manuscript il-
lustrates how classical theoretical statistical methods and dy-
namical systems can be merged in interesting ways to study
problems ranging from more fundamental small sample situ-
ations to more complex infectious disease and survival mod-
els, with the potential that this tools can be applied in the
presence of a large number of covariates and different types
of censored data.

1 Introduction
Most often, modern methodology in survival prediction is
concerned with right censoring, namely situations in which
the researchers only know the lower bound on survival time
(Yu et al. 2011; Kvamme and Borgan 2019). A typical sit-
uation is that of patients surviving beyond the time until
which a doctor is monitoring their diseases. Furthermore,
machine learning fits the best the purpose of generalization
which takes advantage of the large flow of data and ex-
tensive computational power to prove results valid to un-
seen instances and a large body of work has been dedi-
cated to the development of survival prediction algorithms
(Wang, Li, and Reddy 2022). More recently and motivated
by the COVID-19 pandemic, machine learning researchers
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have dedicated their attention to the development and im-
plementation of new algorithms for high-dimensional epi-
demiological data that take advantage of a long history
of mathematical modeling of infectious disease dynamics
(Brauer, Castillo-Chavez, and Feng 2019; Schutt, Foster, and
Selvitella 2021; Olson, Foster, and Selvitella 2022; Schutt,
Foster, and Selvitella 2022). In particular, researchers have
developed new methodologies that combine the predictive
power of machine learning algorithms with interpretable
models regulated by coupled systems of nonlinear differen-
tial equations. Such equations, often called compartmental
models, describe the trajectory of the disease, by dividing the
population in compartments and by describing the flow from
one compartment to another a system of nonlinear differen-
tial equations (Qian, Alaa, and van der Schaar 2020; Vega,
Flores, and Greiner 2022). Some independent attention has
been given to the potential impact of classical theoretical
statistics tools, such as order statistics, which, for decades,
have been for decades a source of results in engineering, re-
liability theory, and survival analysis (Arnold, Balakrishnan,
and Nagaraja 2008). Indeed, the combination of machine
learning and differential equation tools can benefit from such
a long tradition of researchers in statistical theory who have
studied the theoretical underpinnings on time-to-event data
and in particular the asymptotic behaviour of order statistics
and maximum likelihood estimators (MLEs) for large sam-
ple sizes and censored data (Bhattacharya 1985; Casella and
Berger 2002; Arnold, Balakrishnan, and Nagaraja 2008).

In this paper, we illustrate a circle of ideas to connect SIR
models with survival analysis methods and a combination of
these methodologies to describe what the potential effect is
of left censoring in the case of small samples which is the
traditional situation in epidemiological models and typical
for closed (Menchhofer et al. 2021) or data-disadvantaged
communities (Foster and Selvitella 2020, 2021d,b). For such
a purpose, we provide a maximum likelihood estimator
(MLE) for noisy infectious disease data and show some of
the potential effects of censoring and of neglecting censor-
ing in a small sample situation or for systems of differential
and difference equations which admit chaotic motion. We
adapt an asymptotic theorem for general MLEs of Type II
censored data based on non-parametric properties of order
statistics to the case in which the underlining deterministic
dynamics is governed by SIR-type epidemic models. For il-
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lustrations, we use a publicly available dataset collected dur-
ing the flu epidemic in an English boys schoolboard (763 in-
dividuals) from January 22nd, 1978 (day 0) to February 4th,
1978 (day 13) (BMJ 1978). We illustrate then the effect of
left censoring in the presence of noise in the data, with noise
modeled with equidispersed and overdispersed distributions
(Normal, Poisson, and Negative Binomial). We also discuss
an example of a discrete toy-model for infectious disease
dynamics based on the Ricker map (Ricker 1954; Lutscher
2019), which admits chaotic motion for certain ranges of pa-
rameters. For this model, we show how crucial it is to not ne-
glect censored data, by illustrating an example in which the
likelihood without censored data provides estimates of the
parameters which give rise to a chaotic dynamics even if the
starting point of the algorithm is nearby a stable trajectory.
We also show how in such a case, the MLE which includes
left censoring terms is more stable. Note that the problem of
left censored data is interesting in infectious disease models
because it is important to not neglect even the minimal in-
formation available early on in a rapidly growing epidemic;
early measurements are the most noisy and missing impor-
tant information in the first periods after the first infection
can have important negative consequences on predictions
and, in turn, on decisions concerning non-pharmaceutical in-
terventions (Qian, Alaa, and van der Schaar 2020; Foster and
Selvitella 2021a,c; Selvitella et al. 2021).

The remaining part of this manuscript is organized as fol-
lows. In Section 2, we give some theoretical results, includ-
ing introductory facts on SIR models and order statistics
and Theorem 1 that covers thelarge sample asymptotics case
of the MLE of the parameters of stochastic processes with
mean function determined by an SIR model with random
noise in the case of Type II left censored data. Section 3 de-
scribes our experiments for not chaotic time-continuous SIR
models, while Section 4 is dedicated to the effect of left cen-
soring in models with chaotic dynamics, such as an exten-
sion of the Ricker model. We conclude with the discussion
of our results in Section 5 and conclusions in Section 6.

2 Theory
The SIR Model. Consider the following SIR model.

Ṡ(t) = −βS(t)I(t)

İ(t) = βS(t)I(t)− γI(t)

Ṙ(t) = −γI(t)

. (1)

Here t ∈ [,+∞), S(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0,
S(t), I(t), R(t) ∈ C1([0,+∞)]), and S(t) + I(t) +R(t) =
N . The compartments S, I,R represent susceptible, infec-
tious, and recovered individuals, respectively. The parameter
β > 0 represents the transmission rate, while the parameter
γ > 0 represents the death rate. We will consider the random
variables Y (t) := I(t) + ϵ(t), such that E[Y (t)] = I(t) for
every t ∈ [0,+∞) and V ar(Y (t)) = V ar(ϵ(t)) = σ2, with
ϵ(t) independent and identically distributed. In other words,
Y (t) is a non-stationary stochastic process with mean func-
tion I(t) and constant variance σ2. The three parameters of
the model are therefore β, γ, σ2. To maintain conservation

of the total population, we will adjust the susceptible terms
accordingly: X(t) := S(t)− ϵ(t).
Order Statistics. Consider a random sample −∞ <
Y1, . . . , Yn < +∞ and the corresponding order statistics
−∞ < Y1:n ≤ · · · ≤ Yn:n < +∞. Here Ys:n represents the
s-th smallest order statistics out of a sample of n elements.
In this framework, s is not a random variable. If the results
of an experiment are observed only after Ys:n, the s-th data
element, we obtain a Type II left censored sample. Suppose
Yi ∼ Y are independent for i = 1, . . . , n with pdf f(y|θ)
and cdf F (y|θ). The likelihood function is given by

L(θ|y) = n!

s!
F (ys|θ)s

n∏
k=s+1

f(yk|θ), ys < · · · < yn.

Here s is fixed, while Ys:n is random. Similarly, in the case
of Type II right censored sample, the likelihood function is
given by

L(θ|y) = n!

r!
(1− F (yr|θ))r

n−r∏
k=1

f(yk|θ), y1 < · · · < yr.

Here r is fixed, while Yr:n is random. For large sample sizes,
we have the following asymptotic theorem.

Theorem 1 Consider the stochastic processes X(t) =
S(t)− ϵ(t) and Y (t) = I(t) + ϵ(t) with ϵ(t) ∼ WN(0, σ2)
(white noise - independent identically distributed random
variables), and with S(t), I(t) solving system (1). Consider
also a random sample of size n: (X1, Y1), . . . , (Xn, Yn)
with (Xi, Yi) := (X(ti), Y (ti)) for i = 1, . . . , n and
t1, . . . , tn ∈ R+ and the regularity assumptions of (Bhat-
tacharya 1985) for the density of ϵ(t). Then

1. P (Xt+1 < Xt) → 1 as σ2 → 0.
2. The asymptotic distribution of the MLE θ̂ := (β̂, γ̂, σ̂2)T

given by

θ̂ = argminθ∈R3
+
L(θ|X; s) = (2)

n!

s!
F (ys|θ; t, S,R)s

n∏
k=s+1

f(yk|θ; t, S,R), (3)

ys < · · · < yn, (4)

with X = [ti;Si, Ii, Ri]
n
i=1 in the limit for n → +∞ is

given by
√
n(θ̂ − θM ) ∼ N(0,J−1(θM)), with θM :=

(βM , γM , σ2
M )T being the vector of the true values of

the parameters and J(θM) being the Fisher Information
Matrix of θM .

Remark 1 Note that the exact shape of the dependency
y|θ; t, S,R is quite involved as it depends on the solution
of equation (1). The asymptotic theorem does not depend on
the exact shape of the information matrix J(θ).

Sketch of the Proof of Theorem 1. Since Xn = Sn +
ϵn, then Xn − Xn+1 = ϵn + Sn − Sn+1 − ϵn+1 ∼
WN(Sn − Sn+1, 2σ

2). Define δn := ϵn − ϵn+1. Then
P (|δn − E(δn)| ≥ t) ≤ 2σ2/t2 → 0 and so P (Xt+1 <
Xt) → 1 as σ2 → 0. For the ease of notation, in this sketch
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s -Log Lik. R0 σ
0 60.73 4.13 18.52
1 57.50 4.13 19.16
2 53.98 4.12 19.67
3 50.67 4.09 20.49
4 44.36 3.84 17.64
5 37.52 3.34 14.04
6 34.33 3.18 15.01
7 30.41 3.01 15.58

Table 1: Normal Error - Algorithm 1a.

of the proof, we consider dim(θ) = 1 (the general case
is analogous). Following a similar argument from (Bhat-
tacharya 1985): By Taylor expansion of the score equation√
n(θ̂ − θM ) ≃ −L′(θM |y)/L′′(θM |y), and so

√
n(θ̂ −

θM ) ≃ n1/2 ∗ L′(θM |y)/J(θ0). On the other side E[n1/2 ∗
L′(θM |y)/J(θM )] = 0 and V ar[n1/2 ∗L′(θ0|y)/J(θM )] =
1/J(θM ). The result follows from Lindeberg-Feller central
limit theorem (Varadhan 2021; Casella and Berger 2002).
The complete proof follows closely ideas from (Arnold, Bal-
akrishnan, and Nagaraja 2008; Bhattacharya 1985; Lawless
1982; Casella and Berger 2002). In the case of large samples
and censoring of orders r, s = o(n) (not just bounded in n
as presented in Theorem 1), the effects of the censoring is
relatively negligible as well with a similar argument.

Algorithm 1: MLE for SIR models with Type II left censored
data

Input: X = [ti;Si, Ii, Ri]
n
i=1 dataset; θ0 = (β0, γ0, σ

2
0)

starting values; s censored position.
1. Simulate SIR-model(1) with θn = (βn, γn, σ

2
n)

T .
2.a Compute L(θn|X; s) in eq. (2). [Algorithm 1a]
2.b Compute L(θn|Xn

s+1; s) in eq. (2). [Algorithm 1b]
Output: MLE θ̂ = (β̂, γ̂, σ̂2)T ; R̂0 estimated basic repro-
duction number; Confidence bands for I(t).

Theorem 1 covers the case of large sample asymptotics.
From now on, we will concentrate on small sample sizes
only, as the distribution theory in such cases is more in-
volved. In particular, distributional assumptions on the par-
ent distribution are required. In small sample problems, it
is important to try to save as much as possible of what we
know, as data might not speak for itself loud enough in small
sample sizes.

3 Experiments I - Stable Dynamics
In our experiments, we used Nelder-Mead algorithm (Nelder
and Mead 1965) to optimize the likelihood in equation (2).
Normal Error Experiment
We fit the SIR model in equation (1) using both MLE Al-
gorithm 1 (Algorithm 1 with likelihood 2.a) and Algorithm
1b (Algorithm 1 with likelihood 2.b) with a normally dis-
tributed error term. We start both algorithms with β = β0 =
0.003, γ = γ0 = 0.48, and σ = σ0 = 19. Confidence bands
are reported in Figure 1 and statistics in Tables 1 and 2.

Normal Error - Algorithms 1a and 1b.

(a) Normal Error & MLE - Algorithm 1a & s = 0

(b) Normal Error & MLE - Algorithm 1a & s = 7

(c) Normal Error & MLE - Algorithm 1b & s = 7

Figure 1: Curve fit with 95 % Confidence Bands from Al-
gorithm 1a based on Type II censored sample and Normal
Error. a: s = 0. b: 1a & s = 7. c: 1b & s = 7.
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s -Log Lik. R0 σ
0 60.73 4.13 18.52
1 56.87 4.13 19.22
2 52.91 4.12 19.89
3 48.98 4.12 20.77
4 43.19 3.86 18.18
5 36.77 3.35 14.39
6 33.11 3.47 15.17
7 29.38 3.33 16.09

Table 2: Normal Error - Algorithm 1b

s -Log Lik. R0 σ
0 70.73 4.08 10.03
1 68.84 4.07 20.05
2 65.24 4.04 19.70
3 62.78 4.01 19.48
4 55.52 3.74 17.65
5 49.27 3.33 16.54
6 45.94 3.18 16.19
7 40.61 3.03 19.41

Table 3: Poisson - Algorithm 1a

As expected, Algorithm 1a seems to decrease its perfor-
mance with respect to Algorithm 1b after the time corre-
sponding to the peak of I(t) which happens at t = 5. After
that time, the likehood L(θ|X; s) is not valid anymore, as we
loose monotonicity. From there on, Algorithm 1a decreases
performance and Algorithm 1b is more competitive. The de-
crease in performance can be even a potential criterion to
detect the maximum number of infections.
Poisson vs Negative Binomial Errors Experiment
We fit the SIR model in equation (1) using MLE Algo-
rithm 1a with Poisson distributed and Negative Binomial
distributed error term. Algorithm 1a with error following a
Poisson (equidispersed distribution) error starts with β =
β0 = 0.003, γ = γ0 = 0.48, and σ = σ0 = 10. Algorithm
1a with error following a Negative Binomial (overdispersed
distribution, so higher sigma) error starts with β = β0 =
0.003, γ = γ0 = 0.48, σ = σ0 = 20.

The model with a Poisson error has negative log-
likelihood higher than both those with Normal and Negative
Binomial error terms for all s = 0, . . . , 7. Confidence bands
are reported in Figure 2 and statistics in Tables 3 and 4.

s -Log Lik. R0 σ
0 60.15 3.91 36.07
1 58.18 3.87 39.28
2 54.81 3.73 38.73
3 51.07 3.59 34.48
4 45.33 3.29 30.92
5 39.60 3.01 29.18
6 34.46 2.82 24.98
7 28.96 2.66 52.98

Table 4: Negative Binomial - Algorithm 1a

4 Experiments II - Chaotic Dynamics
Consider again the SIR system (1). If we solve the S(t)-
equation, we obtain:

S(t) = S0 exp

{
−β

∫ t

0

I(s)ds

}
.

If we plug the solution of the S(t)-equation as a function of
the variable I(t) in the I(t)-equation, we obtain:

İ(t) = I(t)

(
βS0 exp

{
−β

∫ t

0

I(s)ds

}
− γ

)
.

If we rescale the time t with respect to death rate units so
that τ = t/γ and we intend the time derivative with respect
to the scaled variable τ , we get

İ(τ) = I(τ)

(
R0 exp

{
−β

∫ τγ

0

I(s)ds

}
− 1

)
, (5)

with R0 := βS0/γ, the basic reproduction number. If we
pass to the discrete dynamics İ(τ) 7→ Iτ+1 − Iτ , we obtain:

Iτ+1 = Iτ ∗R0 exp

−β

[τγ]∑
s=0

Is

 , (6)

with [x] defining the integer part of x. This system is very
reminiscent of the Ricker model (Ricker 1954; Lutscher
2019), given by

Iτ+1 = Iτe
r(1− Iτ

k ),

with R0 = exp(r) (r is interpreted as an intrinsic growth
rate of a population), β = r/k (k is interpreted as the car-
rying capacity of the environment), and with Iτ being the
expected number of individuals in generation τ . In the case
of constant parameters, it is know that the SIR model is
not chaotic (Brauer, Castillo-Chavez, and Feng 2019; Diek-
mann, Heesterbeek, and Britton 2013), while the Ricker
model admits chaotic solutions for r in an appropriate range
(Lutscher 2019). On the other side, it is well known that
in the case of periodic transmission β = β(t) with appro-
priate frequency, the SIR model presents chaotic dynamics
(Brauer, van den Driessche, and Wu 2008; Earn, Rohani,
and Grenfell 1998; Earn et al. 1998). Such a periodic term
β(t) morally re-weights the terms of the cumulative num-
bers of infectious diseases present in (5) and prevents so-
lutions to decay to zero, so that its effect is that of resem-
bling a Ricker-type dynamics. Therefore, we use the Ricker
model as a toy model to illustrate the effect of left cen-
soring in chaotic epidemiological models. Note that if we
send τ → +∞ on both sides of equation (6) and define
I∞ := limτ→+∞ Iτ , Itotal =

∑∞
s=0 Is, we obtain

I∞ = I∞ ∗R0 exp {−βItotal} ,

which has a solution either I∞ = 0 or Itotal = lnR0

β (in
the case Itotal < +∞). The first solution is present also
in the Ricker model and is an unstable equilibirum, while
the second is reminiscent of the second fixed point of the
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Poisson vs Negative Binomial Error - Algorithm 1a.

(a) Poisson — MLE - Algorithm 1a & s = 0

(b) Negative Binomial - Algorithm 1a & s = 0

Figure 2: Curve fit with 95 % Confidence Bands from Al-
gorithm 1b based on Type II censored sample s = 0. (a):
Poisson and (b): Negative Binomial Errors.

Ricker map, the one which goes from asymptotically sta-
ble for 0 < lnR0 < 2 to chaotic for lnR0 closer and
closer to 3 (Lutscher 2019). In the case in which the dy-
namics is chaotic, we cannot assume that the number of in-
fected Iτ is monotone until its maximum Imax and then de-
creases. In fact, one expects many local maxima to appear
in an a-periodic manner (Brauer, van den Driessche, and Wu
2008). A way to go is to couple the I(t)-equation with a
S(t)-equation, estimate first the S(t)-equation, and then de-
duce the corresponding estimates for the I(t)-equation. This
would require switching from left to right censoring in like-
lihood 2 and Algorithms 1a and 1b. We study the system

St+1 = St − βStIt
It+1 = IτR0 exp {−βIt}
Rt = N − It − St

(7)

It ≥ 0, St ≥ 0, Rt ≥ 0 and St + It + Rt = N for every
t ∈ N, with N ∈ N representing the total population size.

We can use Algorithm 1a and Algorithm 1b to illus-
trate some phenomena emerging in the presence of left cen-
sored data. We simulate system (7) with a population of

s -Log Lik. R0 σ
0 862022 0.96 2.99
5 1882933 1.14 2.47
10 X X X
s -Log Lik. R0 σ
0 862022 0.96 2.99
5 1818663 1.11 2.47
10 540963 12.26 15.45

Table 5: Ricker Model - Algorithms 1a (Up) and 1b (down).

N = 1000, parameters R0 = 1.5, β = 0.002 and with an
additive noise ϵ added to It distributed as ϵ ∼ N(0, σ2) with
σ2 = 1. We want to estimate these parameters, and we use
R0 = 3, β = 1, and σ2 = 9 as starting values for Algorithm
1a vs Algorithm 1b for the S(t) - equation, so using the right
censored version of likelihood 2 (the number of individuals
in the susceptible compartments is decreasing in time). We
followed the dynamics until St > 0.01 using the full sim-
ulated data and right censoring for s = 0, 5, 10. The algo-
rithm suffers very soon the complicated dynamics and even
without censoring s = 0 the estimation behaves weirdly and
looses the monotonicity of the S variable (See Figure 3).
An interesting phenomenon appears with Algorithm 1b with
censoring at s = 10 (See Figure 3). The starting points of the
algorithm would provide stable solutions, however the noise
takes over and the algorithm transitions quickly to a chaotic
behaviour with a basic reproduction number R0 ≃ 12.16, a
value of the parameter where the Ricker dynamics for I is
chaotic (ln 12.16 > 3; Table 5). The use of Algorithm 1a
does not show such a serious instability.

5 Discussion
We have gone through some simple examples and illustrate
some potential problems in the analysis of infectious dis-
ease dynamics with survival analysis methods to motivate
research on left censoring at the intersection of dynami-
cal systems, theoretical statistics, and survival prediction.
We believe a lot of great ideas might emerge with cross-
pollination between these areas, also for high-dimensional
models and large datasets. We believe that small sample es-
timates are still important and can survive censoring, espe-
cially in the case the dynamics is not-chaotic, once appro-
priate methodology is developed. Our goal has not been to
optimize models and algorithms for predictive purposes, but
to illustrate and review some of the problems that we might
encounter with left censored data in infectious disease mod-
els and to promote a combination of tools that are usually
not developed jointly. We also discussed several features of
censored data methodology combined with ideas from sur-
vival analysis and differential equations to solve problems
which can be encountered in the estimation of parameters in
the case of small samples and potentially chaotic dynamics
in infectious disease models. We connected the infectious
disease dynamics of an SIR model to survival analysis by
noticing that the dynamics of the susceptible compartment
S(t) has analogous functional properties of those of a sur-
vival function. Theorem 1 covers the case of large samples
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while the experiments the case of small sample size, which
is a situation typically encountered in close environments,
remote locations, or historical epidemics (Menchhofer et al.
2021; Selvitella et al. 2021; Earn et al. 2020). Given that our
experiments are concerned primarily with the case of small
data, the models cannot be too complicated and the data is
not rich enough for generalization purposes.

The idea to enlarge the parameter space with a second
equation in the Ricker model (7), adding the “susceptible
equation” to the “infectious equation”, in order to facil-
itate parameter estimation using survival prediction ideas
and monotonicity, reminds of the idea of adding a momen-
tum equation in stochastic gradient descent (SGD) (Nesterov
2013). GD might get stuck into local minima of non-convex
functions and might require a large number of iterations to
reach convergence because of noisy, oscillating minimiz-
ing sequences. The momentum equation aims at mitigating
these two problems. In a similar way, adding the “suscep-
tible equation” to the “infectious equation” in the case of
chaotic motion straightens down the dynamics, makes con-
vergence monotone, and does all of this without sacrificing
biological interpretability as the S(t))-equation represents
the equation for the susceptible compartment. Note that the
monotonocity problem of the I(t)-equation is present also
in non-chaotic dynamics as I(t) is never monotone in inter-
esting cases (R0 > 1) (Brauer, Castillo-Chavez, and Feng
2019), but the problem is more limited in the sense that the
number of bumps has a more predictable distribution and the
monotonicity of the censoring is valid in regular time inter-
vals. Although Algorithm 1a has proven to be more stable
for chaotic dynamics, in the presence of a noise term, than
Algorithm 1b, the estimation of parameters in chaotic mod-
els remains very delicate as the ranges of parameters that
give rise to non-chaotic solutions often occupy a restricted
region of the parameter space. The idea of using survival
prediction methods in combination with differential equa-
tion models is underdeveloped but not new in the literature.
In (KhudaBukhsh et al. 2021), the authors show that solu-
tions to coupled systems of nonlinear ordinary differential
equations describing the large-population limits of Marko-
vian stochastic processes for epidemic models have a nat-
ural interpretation as survival functions or cumulative haz-
ard functions. In (Tang et al. 2022), the authors introduce an
ODE notion for survival analysis to provide a unified mod-
eling framework and to enable the development of versatile
and scalable procedures for statistical inference and param-
eter estimation. Note that data in survival models or infec-
tious disease models might be censored in many different
ways. Types of censoring include right/left/interval censor-
ing or Type I/Type II/hybrid censoring and they all have their
own specificity (Arnold, Balakrishnan, and Nagaraja 2008).
For illustrative purposes, we treated only Type II censoring
and left censoring. Left censoring is much less studied in
survival prediction literature with respect to right censoring.

6 Conclusions
We illustrated a methodology to estimate the number of in-
fected individuals in SIR-type models for small sample sizes
in the case of a left censored data. We extended a large

Ricker Model - Algorithm 1a vs Algorithm 1b

(a) Ricker Model - Algorithm 1a

(b) Ricker Model - Algorithm 1b

Figure 3: Curve fit with 95 % Confidence Bands from Al-
gorithms 1a vs 1b based on Type II censored sample s = 0.
The vertical axis is X(t) = S(t)− ϵ(t), while the horizontal
axis is the time t. (a): Algorithm 1a. (b): Algorithm 1b.

sample asymptotic theorem for MLEs (Arnold, Balakrish-
nan, and Nagaraja 2008) for left censored data to the case of
noisy infectious disease trajectories. We ran multiple exper-
iments using a popular small sample size dataset for testing
the fit of SIR models (BMJ 1978). We discussed the appro-
priateness of the inclusion of left censoring information in
Algorithms 1a vs 1b in the presence of Normal, Poisson,
and Negative Binomial noise. We showed that including in-
formation about censored data in the likelihood is crucial for
the stability of the estimates, especially in models which al-
low chaotic motion. Further work needs to be done in the
case of more complicated mathematical models for infec-
tious disease dynamics and with different types of censoring
(e.g. Type I censoring, random censoring, hybrid censoring).
Although Theorem 1 suggests a simplified situation in the
case of large sample size, under which regime the censoring
of a finite number of observations is not a big problem, key
is to address the high-dimensional case.
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